
On Effectively Finding Maximal Quasi-Cliques

in Graphs⋆

Mauro Brunato1, Holger H. Hoos2, and Roberto Battiti1

1 Dipartimento di Ingegneria e Scienza dell’Informazione,
Università di Trento, Trento, Italy
brunato|battiti@disi.unitn.it

2 Department of Computer Science,
University of British Columbia, Vancouver, BC, Canada

hoos@bs.ubc.ca

Abstract. The problem of finding a maximum clique in a graph is pro-
totypical for many clustering and similarity problems; however, in many
real-world scenarios, the classical problem of finding a complete sub-
graph needs to be relaxed to finding an almost complete subgraph, a
so-called quasi-clique. In this work, we demonstrate how two previously
existing definitions of quasi-cliques can be unified and how the resulting,
more general quasi-clique finding problem can be solved by extending
two state-of-the-art stochastic local search algorithms for the classical
maximum clique problem. Preliminary results for these algorithms ap-
plied to both, artificial and real-world problem instances demonstrate
the usefulness of the new quasi-clique definition and the effectiveness of
our algorithms.

1 Introduction

Finding maximum cliques, i.e., largest complete subgraphs, within a given graph
is a well-known NP-hard combinatorial problem that is particularly intractable
because of its non-approximability. However, state-of-the-art heuristic search
methods, in particular stochastic local search algorithms, are typically able to
find maximum or near-maximum cliques surprisingly effectively.

In real-world scenarios, relationships commonly represented by graphs are
often subject to noise, resulting in erroneously missing or added edges. This
motivates generalisations of the maximum clique problem in which the objective
is to find maximum size subgraphs that are almost fully connected — so-called
quasi-cliques.

⋆ Holger Hoos acknowledges support provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC) under Discovery Grant 238788-05; Mauro
Brunato and Roberto Battiti acknowledge support by the project CASCADAS (IST-
027807) funded by the FET Program of the European Commission.

Definition 1. Given an undirected graph (V, E), and two parameters λ and γ
with 0 ≤ λ ≤ γ ≤ 1, the subgraph induced by a subset of the node set V ′ ⊆ V is

a (λ, γ)-quasi-clique if, and only if, the following two conditions hold:

∀v ∈ V ′ : degV ′(v) ≥ λ · (|V ′| − 1) (1)

|E′| ≥ γ ·

(

|V ′|

2

)

, (2)

where E′ = E∩(V ′×V ′) and degV ′(v) is the number of elements of V ′ connected

to v.

Note that for λ = γ = 1, classical cliques are obtained; consequently, the
problem of finding a maximum (λ, γ)-quasi-clique for arbitrary λ, γ is at least as
hard as the maximum clique problem.

Condition (1) enforces a lower bound on the degree of each node within the
quasi-clique, while condition (2) poses a lower bound on the overall number of
edges. While both constraints have been previously proposed in the literature,
to the best of our knowledge they have not previously been combined. In this
work we propose this combination and show that by using it, cluster detection
for noisy data (as motivated above) can be improved.

The remainder of this work is organised as follows: Section 2 discusses the
motivation of our research and places it in the context of related work; Section 3
outlines the two maximum clique finding techniques we chose to adapt to our new
problem formulation; Section 4 discusses the modifications that these algorithms
require to operate in the more difficult space of quasi cliques; and Section 5
presents an initial experimental study on graphs that have been constructed to
capture important characteristics of several real-world applications.

2 Context and Related Work

Relevant examples of quasi-clique applications and related clustering approaches
include classifying molecular sequences in genome projects by using a linkage
graph of their pairwise similarities [1], analysis of massive telecommunication
data sets [2], as well as various data mining and graph mining applications, such
as cross-market customer segmentation [3].

Different clustering techniques capable of identifying significant intercon-
nected sub-structures in the presence of random noise have been used recently to
analyze complex interconnected networks ranging from autonomous systems in
the Internet, protein-protein interaction networks, e-mail and web-of-trust net-
works, co-authorship networks, and trade relationships among countries [4–7]. In
the area of data mining, Du et al. have recently studied techniques to enumerate
all maximal cliques in a complex network [8].

This contribution aims at extending the work done by the authors in efficient
clique algorithms, in particular Reactive Local Search (RLS) and Dynamic Local
Search for Maximum Clique (DLS-MC). Both algorithms are based on stochastic
local search methods. The DLS-MC algorithm for the maximum clique problem

is based on the idea of assigning penalties to nodes that are selected to be part
of a clique [9]. The RLS algorithm uses a reactive mechanism to control the
amount of diversification during the search process by means of prohibitions [10,
11]. Both algorithms are outlined in Sec. 3. The objectives of our work are as
follows:

– To develop efficient and effective heuristic algorithms for the problem of
finding maximum (λ, γ)-quasi-cliques.

– To understand which heuristic components are effective as a function of the
relevant graph parameters.

– To understand the effect of the problem parameters (average and minimum
connectivity requirements) on the empirical run-time of the algorithms and
on the quality of the results they produce.

– To assess the viability of the proposed techniques to discover a wide range
of maximal quasi-cliques. Discovering many comparable solutions is critical
when a quasi-clique detection module is only a first step towards a compact
description of a graph, or when additional requirements or constraints are
given by the user in a later phase to select from a large set of quasi-cliques.

3 Clique finding heuristics

This section outlines the two state-of-the-art stochastic local search algorithms
for the maximum clique problem whose extension to quasi-clique finding is de-
scribed later in this paper. A description of the data structures used by both
algorithms precedes their outlines.

3.1 Data structures for classical clique search

Both, DLS-MC and RLS use two data structures to efficiently compute local
search steps from a current clique, V ′ ⊆ V : the set of nodes Add(V ′) that can
be added to the current clique V ′ (i.e., of nodes in V \ V ′ that are connected
to all nodes in V ′) and the set Miss(V ′) of nodes in V that are connected to all
nodes but one in the current clique V ′, as shown in Fig. 1. Note that Add(V ′) is
called PossibleAdd in the original RLS description, and improving neighbour

set in the DLS-MC paper. The set Miss(V ′) is called OneMissing in RLS and
level neighbour set in DLS-MC. Based on these sets, the following types of search
steps can be efficiently implemented:

– Add one node: Once the node v ∈ Add(V ′) to be added has been chosen,
all elements of Miss(V ′) not connected to v are dropped; elements of Add(V ′)
not connected to v are moved to Miss(V ′).

– Remove one node: All nodes v ∈ V ′ are eligible for removal. Once a node
v to be removed has been chosen, it is added to Add(V ′); furthermore, all
nodes in Miss(V ′) that are not connected to v are promoted to Add(V ′).
The set of nodes from V \ (V ′ ∪Miss(V ′)∪Add(V ′)) that are not connected
to v is then scanned to identify nodes to be added to Miss(V ′).

Miss(V’)

V’

Add(V’)

Fig. 1. Node sets involved in a classical clique search.

– Plateau move: A node v ∈ Miss(V ′) is added to the current clique, followed
by the removal of the node v′ ∈ V ′ that is not connected to v; the sets
Add(V ′) and Miss(V ′) are incrementally updated similarly as in the case of
add and remove moves.

All three types of moves result in a clique.

3.2 Reactive Local Search (RLS)

Reactive Local Search (RLS) [10, 11] operates by maintaining the current clique
V ′ and modifying it with two basic moves: node addition and node removal.
The basic diversification mechanism of RLS is based on Tabu Search [12, 13]:
every time a node is added to or removed from the current clique, it cannot
be considered for removal or addition (it is prohibited) for the next T moves.
The basic Tabu Search heuristic is complemented by a memory-based reactive
scheme that automatically modifies the parameter T in order to adapt it to the
problem instance. Important details of RLS are as follows:

Choice of the best move. At every step, the algorithm looks for a node to be
added to the current clique V ′ among all non-prohibited nodes in Add(V ′). A
node v ∈ Add(V ′) with a maximal number of connections within Add(V ′) (i.e.,

one whose addition to the clique leaves as many candidates as possible in the
next step) is chosen, with ties broken randomly. If no nodes can be added, a non-
prohibited node v ∈ V ′ whose removal results in the largest set Add(V ′ \ {v})
(containing the candidates for addition to be considered in the following step)
is chosen for removal, with ties broken randomly. If all candidates for addition
and removal are prohibited, then a node is removed uniformly at random. In all
cases, the selected node is prohibited for the following T steps.

Memory reaction. Different graphs require different degrees of diversification,
so a reactive mechanism is used in RLS to adjust the value of T . All visited
cliques are mapped to the step of their last appearance as current cliques (using
a hash table for fast retrieval). If the current clique has been visited too recently,
the prohibition period T is increased. If a predefined number of steps occur
without any increase of T , meaning that no clique is repeated too early, then T
is decreased.

Restart mechanism. If the algorithm performs a given number of steps with-
out improving the size of the maximum clique, the search is restarted by resetting
the current clique to an unused node of the graph that is chosen uniformly at
random. If all nodes have already been used at least once, then the random choice
is made from the set of all nodes. All other parameters and data structures are
reset to their initial values (T ← 1, the hash table is emptied).

3.3 Dynamic Local Search for Maximum Clique (DLS-MC)

Dynamic Local Search for Maximum Clique (DLS-MC) [9] uses two basic types
of search steps to modify the current clique V ′: node addition and plateau moves.

The basic diversification mechanism of DLS-MC is based on penalty values

associated with each node. At the beginning of the search process, the current
clique is set to a single node that is uniformly chosen at random and all node
penalties are set to zero. The algorithm then alternates between two search
phases:

– In the expansion phase, which continues as long as Add(V ′) is not empty,
a node from Add(V ′) with minimum penalty is selected (with ties broken
randomly) and added to the current clique;

– In the plateau phase, which continues as long as Add(V ′) is empty and
Miss(V ′) contains at least one node, a node in Miss(V ′) with minimum
penalty is selected for addition, and the node of V ′ not connected to it is
removed from the current clique. Moreover, at the beginning of the plateau
phase, the current clique is recorded (as V ′′), and the phase is terminated
when V ′ ∩ V ′′ = ∅.

In addition, a prohibition mechanism is used to prevent the plateau phase from
cycling through a small set of cliques: once a node is chosen for addition, it
becomes prohibited until the end of the current plateau phase. At the end of the
plateau phase, two actions are taken:

Penalty update. The penalty values of all nodes in the current clique V ′ are
increased by 1. Additionally, every pd update cycles, all nonzero penalties are
decremented by 1, so that penalties are ‘forgotten’ over time.

Clique perturbation. If pd = 1 (meaning that every increase in penalties is
immediately cancelled, so that penalties always remain equal to zero), a new
current clique is generated by adding a new node v ∈ V chosen uniformly at
random and removing from the current clique V ′ all nodes that are not connected
to v. If, on the other hand, pd > 1 (penalties are used), then the current clique
is reduced to the last node that was added to it.

4 Supporting data structures for quasi-clique search

When adapting DLS-MC and RLS to the quasi-clique setting, more complex sets
of nodes must be maintained in order to support the basic search steps.

The number of edges is always an integer, therefore we can conveniently
rewrite constraints (1) and (2) in order to use integer variables to store clique
bounds:

∀v ∈ V ′ : degV ′(v) ≥ ⌈λ · (|V ′| − 1)⌉ (3)

|E′| ≥

⌈

γ ·

(

|V ′|

2

)⌉

(4)

4.1 Adding one node

Let us define the set of critical nodes in a (λ, γ)-clique as those nodes whose
degree in V ′ is high enough to justify their presence, but would fail to satisfy
condition (3) if the clique size increased without adding an edge to them:

Crit(V ′) := {v ∈ V ′ : degV ′(v) < ⌈λ · |V ′|⌉}.

Consider, for example, the case shown in Fig. 2, where V ′ = {1, 5, 6, 7}. It
is easy to verify that V ′ is a (λ, γ)-quasi-clique for λ = γ = 2/3. If, however, a
new node were added to V ′, the degree of nodes 1 and 7 would no longer satisfy
condition (3), unless edges are added to both of them; therefore, Crit(V ′) =
{1, 7}.

The addition of a node should also satisfy the global density constraint (4),
so any new node must contribute at least dV ′ edges to the clique, where

dV ′ :=

⌈

γ ·

(

|V ′|+ 1

2

)⌉

− |E′|

is the minimum number of edges that must be added in order to maintain con-
straint (4). In the example from Fig. 2, a new node must contribute at least
d′V = 2 edges. Consequently, a node v ∈ V \ V ′ is eligible for addition to V ′ if
the three following conditions hold:

4

2

3

1

5

6

7

Fig. 2. A graph and a (2/3, 2/3)-quasi-clique (shaded nodes).

– v has an adequate degree in V ′ according to (3);
– v has enough edges to nodes in V ′ that as a result of adding it, the edge

density in V ′ ∪ {v} does not fall below threshold (4);
– all critical nodes in V ′ receive at least one more edge when adding v (i.e., v

is connected to all critical nodes).

Based on these conditions, the set of nodes eligible for addition to V ′ is defined
as

Add(V ′) :=

{

v ∈ V \V ′ : degV ′(v) ≥ max{⌈λ·|V ′|⌉, dV ′}∧ {v}×Crit(V ′) ⊆ E

}

.

In the example from Fig. 2, the only eligible node (connected to all critical nodes,
and contributing at least 2 edges) is node 2.

4.2 Removing one node

To be eligible for removal from a (λ, γ)-clique, a node must not be connected by
an edge to any removal-critical node, where the set of removal-critical nodes is
defined as follows:

RCrit(V ′) := {v ∈ V ′ : degV ′(v)− 1 < ⌈λ · (|V ′| − 2)⌉}.

By losing an edge, such nodes would no longer satisfy constraint (3) for the
resulting, smaller quasi-clique. In the example from Fig. 2, nodes 1 and 7 are
removal-critical, and therefore nodes connected to them, i.e., 5 and 6, cannot be
removed.

Secondly, if a node has sufficiently high degree in V ′, its removal would cause
the global edge density to fall below threshold (4). The maximum number of
edges that can be removed from quasi-clique V ′ without violating the global
density constraint is

eV ′ := |E′| −

⌈

γ ·

(

|V ′| − 1

2

)⌉

.

In the example from Fig. 2, up to 3 edges can be removed.
Generally, the set of edges that are eligible for removal is therefore

Rem(V ′) :=

{

v ∈ V ′ :
(

{v} × RCrit(V ′)
)

∩E = ∅ ∧ degV ′(v) ≤ eV ′

}

.

In the example, only nodes 1 and 7 can be removed, while removing node 5 or 6
would leave nodes 1 and 7 with too small a degree to remain within the clique.

4.3 Plateau moves

In the classical clique case, a plateau move is a node removal followed by a node
addition, and the clique property is maintained throughout the process. Note
that removals do not maintain the (λ, γ)-clique property in the general case,
but the property could be restored after a node addition; therefore, a plateau
move in the quasi-clique domain must be regarded as atomic with respect to
the quasi-clique constraints. Despite this atomicity from the quasi-clique’s point
of view, the removal and addition operations must be performed sequentially in
one of the two possible orders. In this work, we only consider the “add, then
remove” option; however, the opposite is possible.

We allow a node v ∈ V \V ′ to be added to the quasi-clique in the context of
a plateau move if, and only if, it is subsequently possible to identify at least one
node in V ′ whose removal would maintain or restore the quasi-clique property.
Considering that a node different from v should be removed, the nodes eligible
for addition only need to be sufficiently well-connected in V ′:

PAdd(V ′) := {v ∈ V \ V ′ : degV ′(v) ≥ λ · (|V ′| − 1)}.

The set of nodes eligible for removal depends on the added node. Note that, in
general, PAddV ′ ⊇ AddV ′ , and once w ∈ PAddV ′ is chosen, V ′ ∪ {w} is not
necessarily a (λ, γ)-clique. In order to select the node to be removed, we define
a plateau-critical set of nodes, depending on V ′ and on w:

PCrit(V ′, w) := {v ∈ V ′ ∪ {w} : degV ′(v)− 1 < λ · (|V ′| − 1) ∧ (v, w) 6∈ E}.

This set contains the nodes that would not satisfy the quasi-clique property when
removing an edge, unless they receive an additional edge when node w is added.
Note that w itself may not belong to this set if its degree is not high enough.

When choosing a node to be removed, we must make sure that it is not
connected to a plateau-critical node, and that we don’t remove too many edges

last_in_degree

clique_degree rank_in_sorted_list

sorted_by_clique_degree

first_in_degree

6

5

2

4

7

3

1

0

0

0

1

0

7

0

0

0

0

7

6

2

3

4

5

6

7

1 6

3

7

4

2

1

5

2

0

2

3

2

3

2

3

4

5

6

7

1

3

3

2

4

3

4

5

6

7

1

5

4

3

2

1

0

6

Fig. 3. Data structures used to support quasi-clique search, instantiated for the quasi-
clique from Fig. 2.

from V ′∪{w}. The maximum number of edges we can afford to lose from V ′∪{w}
in order to guarantee its quasi-clique property is

rV ′,w := |E′|+ degV ′(w) − γ ·

(

|V ′|

2

)

.

Considering this, the set of candidates for removal is defined as

PRem(V ′, w) :=

{

v ∈ V ′ : degV ′∪{w}(v) ≤ rV ′,w ∧ ({v}×PCrit(V ′, w))∩E = ∅

}

,

and the only nodes that can actually be added to the quasi-clique in the plateau
step are those whose corresponding set of candidates for removal is not empty.

4.4 Support set implementation

The previously defined support sets can be maintained efficiently using the
array structures illustrated in Fig. 3. In particular, we make use of an ar-
ray sorted by clique degree, where nodes v ∈ V are sorted by increasing
degV ′(v). Everytime the clique is updated by adding or removing a node, the
V ′’-degree of some nodes will be increased or decreased, and the array must be
modified to reflect the new ordering. In order to perform these changes in time
O(degV ′(v)), where V ′ is the clique before updating and v is the node to be
added, we maintain three additional arrays:

rank in sorted list

the inverse of sorted by clique degree;
first in degree

whose i-th element contains the first index in sorted by clique degree

containing a node with the given degree in the current quasi-clique;

last in degree

whose i-th element contains the last index in sorted by clique degree con-
taining a node with the given degree in the current quasi-clique.

Note that we assume that all arrays are indexed starting from 1, with the ex-
ception of first in degree and last in degree, which are indexed by node
degrees and therefore start from zero.

In general, it is not possible to incrementally maintain Add(V ′) and Rem(V ′)
in the same way as for the classical maximum clique problem. For instance,
AddV ′ is monotonic for greedy clique constructions, while for (λ, γ)-cliques, this
set can acquire or lose elements at every step. Using the previously mentioned
arrays, however, it is possible to restrict the search of eligible nodes to smaller
sets of candidate nodes. This is effective, since all conditions for node removal or
addition are defined on clique degree ranges; in particular, critical and removal-
critical nodes typically fall into a small range of degrees within the current
quasi-clique, usually just one or two.

5 Experimental analysis

In the following we demonstrate how by using our new quasi-clique definition,
based on the combined constraint set (1)+(2) with proper non-zero settings of
the local and global density parameter, and our generalised versions of RLS
and DLS-MC, we can effectively find densely connected subgraphs that are not
accessible to classical clique finding approaches.

5.1 Identification of overlapping communities

Following the motivating considerations on quasi-clique usage for community
identification, a set of benchmark graphs has been designed and generated in or-
der to capture some fundamental features of communities. The generated graphs
depend on five parameters: the number of nodes N , number of communities G,
intra-community link probability Pin, inter-community link probability Pout and
fraction f of overlap between communities. The last parameter, f , controls the
overlap between communities as follows: If N is the number of nodes in our
graph and G divides N , we define G groups g0, . . . , gG−1 so that groups gi and
gi+1 share f · N/G nodes. To generate such a graph, a random permutation
π : {0, N − 1} 7→ {0, N − 1} is generated. For every node n ∈ {0, . . . , N − 1} and
every group index i ∈ {0, . . . , G− 1}, node n belongs to group gi if and only if

N

G
·

(

i−
f

2

)

≤ π(n) <
N

G
·

(

i + 1 +
f

2

)

.

Note that if f = 0 the G groups form a partition of the node set, while if f > 1
overlapping regions extend to non-adjacent groups. Once assignments of nodes
to groups are computed, with the permutation function acting as a “scrambling
factor,” edges are assigned to each pair of nodes according to the number of

Fig. 4. Adjacency plot of overlapping community graph with nodes sorted by order
of appearance in the identified quasi-cliques according to different values of (λ, γ);
from top left to bottom right: original ordering, (0, 0.4), (0.65, 0) and (0.65, 0.4). Black
crosses represent edges.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ax

im
um

 J
ac

ca
rd

 In
de

x

Gamma

lambda=0
lambda=.2
lambda=.4
lambda=.6
lambda=.8

lambda=.882

Fig. 5. Differences between maximum (λ, γ)-quasi-cliques in a noisy version of a co-
authorship graph and the maximum clique in the original graph (for details, see text).

groups that they have in common. Let hij represent the number of groups in
common between nodes i and j, then:

Pr((i, j) ∈ E) =

{

Pout if hij = 0

1− (1− Pin)hij otherwise.

Figure 4 shows an example with N = 128 nodes, numbered from 1 to 128,
that are distributed in G = 4 communities with overlap factor f = 1/8 (groups
are formed by nodes 1–33, 30–65, 62–97, 94–128). The probability of edge (i, j)
to appear in the graph is Pin = 0.7 if i and j belong to the same community,
Pout = 0.1 otherwise. Node labels are then randomly permuted, so that there is
no longer a correlation between node labels and community membership.

The top left pane of Figure 4 shows the original adjacency matrix: because
of the random permutation, no structure is apparent. Next, we generated a
list of the largest maximal (0.4, 0.65)-quasi-cliques found by a short run of the
quasi-clique extension of RLS. When nodes are sorted in the order in which
they appear in this list (so that nodes contained in the largest quasi-clique are
grouped together, and so on), the resulting adjacency matrix (bottom right pane
of Fig. 4) shows a significant structure: nodes belonging to the same community
are grouped together. The adoption of constraint (2) alone (top right pane of
Fig.4) and of constraint (1) alone (bottom left pane) are not sufficient to correctly
identify the four clusters. We also note that communities cannot be directly
represented by classical cliques.

5.2 Cliques in noisy graphs

A second experiment considers noisy versions of graphs, in which edges are re-
moved uniformly at random with some small probability. For appropriate val-
ues of λ and γ, the maximum clique of the original graph should appear as a
(λ, γ)-quasi-clique in the noisy graph. In Figure 5, a co-authorship graph from a
scientific database [4] has been processed by removing each edge with 5% prob-
ability; subsequently, the DLS-MC algorithm for maximum quasi-clique finding
has been executed 10 times for each of many different values of λ and γ. As a
measure of similarity between the maximum quasi-clique found by the algorithm
and the maximum (classical) clique in the original graph, the maximum value
of the Jaccard index over all maximum quasi-cliques found in the 10 runs for
each (λ, γ) has been used. (The Jaccard index of two sets U and V is defined as
J(U, V) := |U ∩ V |/|U ∪ V |.)

The results of this experiment, shown in Figure 5, indicate that when γ
decreases, the maximum quasi-clique in the noisy graph becomes increasingly
different from the maximum clique in the original graph. On the other hand, a
higher value of λ tends to keep the similarity value higher, while the global con-
straint alone (curve with λ = 0) seems to provide worse results. Note, however,
that the curve for λ = 0.2 is an exception, because it performs worse for lower
values of γ. This behavior is not fully understood yet.

5.3 RLS and DLS-MC run-time comparison

To compare the performance of the previously discussed modifications of RLS
and DLS-MC, we ran both algorithms on a graph representing protein-protein
interaction data for S. cerevisiae (yeast). More specifically, we first determined
putative maximum (λ, γ)-quasi-clique sizes for various values of λ and γ by per-
forming long (10-minute) runs of each algorithm. Next, we measured empirical
run-time distributions for reaching these target clique sizes based on 200 inde-
pendent runs per algorithm and quasi-clique parameter setting.

Figure 6 shows the resulting cumulative run-time distribution functions for
the two algorithms. As can be seen from these results, for high values of the λ and
γ, i.e., for dense quasi-cliques, DLS-MC appears to outperform RLS, while RLS
appears to perform better on sparse quasi-cliques. The weak performance of DLS-
MC for sparser quasi-cliques seems to be caused by a large number of plateau
moves executed by the algorithm, and is currently being further investigated.

6 Conclusions

In this work, a new definition for quasi-cliques has been introduced which com-
bines and generalises previously proposed quasi-clique definitions. In order to
generalise high-performance stochastic local search algorithms for the maximum
clique problem to the more general problem of finding maximum quasi-cliques,
we have introduced new data structures, using which basic local search steps

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

S
uc

ce
ss

fu
l r

un
s

(%
)

Time (ms)

RLS
DLS

(a) γ = 0.9, λ = 0.9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

S
uc

ce
ss

fu
l r

un
s

(%
)

Time (ms)

RLS
DLS

(b) γ = 0.9, λ = 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000

S
uc

ce
ss

fu
l r

un
s

(%
)

Time (ms)

RLS
DLS

(c) γ = 0.9, λ = 0.2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000

S
uc

ce
ss

fu
l r

un
s

(%
)

Time (ms)

RLS
DLS

(d) γ = 0.5, λ = 0.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 100000

S
uc

ce
ss

fu
l r

un
s

(%
)

Time (ms)

RLS
DLS

(e) γ = 0.5, λ = 0.2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 100000

S
uc

ce
ss

fu
l r

un
s

(%
)

Time (ms)

RLS
DLS

(f) γ = 0.2, λ = 0.2

Fig. 6. Performance comparison between RLS and DLS-MC: percentage of successful
runs vs run-time for finding putative maximum (λ, γ)-quasi-cliques. Notice that the
diagrams have different time scales to accommodate for large variations in performance.

(node addition, removal and plateau moves) can be performed efficiently. Pre-
liminary experiments on artificial and real-world graphs have been presented in
order to motivate the adoption of this definition and to demonstrate the effec-
tiveness of our generalised algorithms and their supporting data structures.

In future work, we plan to investigate the effectiveness of our new quasi-
clique algorithms in more depth and for a wider range of graphs. It would also be
interesting to extend further high-performance stochastic local search algorithms
for the maximum clique problem, such as PLS [14], to (λ, γ)-quasi-cliques.

Acknowledgements

We gratefully acknowledge contributions by Srinivas Pasupuleti, who helped during the

initial stages of this project, Wayne Pullan, who made his implementation of DLS-MC

available to us, and Franco Mascia, whose RLS code for maximum clique finding we

used as a basis for implementating our RLS extension for quasi-cliques.

References

1. Matsuda, H., Ishihara, T., Hashimoto, A.: Classifying molecular sequences using
a linkage graph with their pairwise similarities. Theoretical Computer Science
210(2) (1999) 305–325

2. Abello, J., Resende, M., Sudarsky, S.: Massive quasi-clique detection. Proceedings
of the 5th Latin American Symposium on Theoretical Informatics (LATIN) (2002)
598–612

3. Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. Conference on
Knowledge Discovery in Data (2005) 228–238

4. Serrano, M., Boguñá, M.: Clustering in complex networks. I. General formalism.
Arxiv preprint cond-mat/0608336 (2006)

5. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in
large linked networks (2004)

6. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community
structure of complex networks in nature and society. Nature 435(7043) (2005)
814–818

7. Everett, M., Borgatti, S.: Analyzing clique overlap. Connections 21(1) (1998)
49–61

8. Du, N., Wu, B., Xu, L., Wang, B., Pei, X.: A Parallel Algorithm for Enumerating
All Maximal Cliques in Complex Network. Data Mining Workshops, 2006. ICDM
Workshops 2006. Sixth IEEE International Conference on (2006) 320–324

9. Pullan, W., Hoos, H.H.: Dynamic local search for the maximum clique problem.
Journal of Artificial Intelligence Research 25 (2006) 159 – 185

10. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4) (2001) 610–637

11. Battiti, R., Mascia, F.: Reactive local search for maximum clique: a new imple-
mentation. Technical Report DIT-07-018, University of Trento (2007)

12. Glover, F.: Tabu search - part i. ORSA Journal on Computing 1(3) (1989) 190–260
13. Glover, F.: Tabu search - part ii. ORSA Journal on Computing 2(1) (1990) 4–32
14. Pullan, W.: Phased local search for the maximum clique problem. Journal of

Combinatorial Optimization 12(3) (2006) 303 – 323

