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Abstract

Information about user preferences plays a key role in automated decision making. In
many domains it is desirable to assess such preferences in a qualitative rather than quanti-
tative way. In this paper, we propose a qualitative graphical representation of preferences
that reflects conditional dependence and independence of preference statements under a
ceteris paribus (all else being equal) interpretation. Such a representation is often compact
and arguably quite natural in many circumstances. We provide a formal semantics for this
model, and describe how the structure of the network can be exploited in several inference
tasks, such as determining whether one outcome dominates (is preferred to) another, order-
ing a set outcomes according to the preference relation, and constructing the best outcome
subject to available evidence.

1. Introduction

Extracting preference information from users is generally an arduous process, and human
decision analysts have developed sophisticated techniques to help elicit this information
(Howard & Matheson, 1984). A key goal in the study of computer-based decision support is
the construction of tools that allow the preference elicitation process to be automated, either
partially or fully. Methods for extracting, representing and reasoning about the preferences
of naive users are particularly important in AI applications, ranging from collaborative
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filtering (Lashkari, Metral, & Maes, 1994) and recommender systems (Nguyen & Haddawy,
1998) to product configuration (D’Ambrosio & Birmingham, 1995) and medical decision
making (Chajewska, Getoor, Norman, & Shahar, 1998). In many of these applications
users cannot be expected to have the patience (or sometimes the ability) to provide detailed
preference relations or utility functions. Typical users may not be able to provide much
more than qualitative rankings of fairly circumscribed outcomes.

In this paper we describe a novel graphical representation, CP-nets, that can be used
for specifying preference relations in a relatively compact, intuitive, and structured manner
using conditional ceteris paribus (all else being equal) preference statements. CP-nets can
be used to specify different types of preference relations, such as a preference ordering
over potential decision outcomes or a likelihood ordering over possible states of the world,
for example, as in Shoham’s (1987) preference semantics. However, it is mainly the first
type—preferences over the outcomes of decisions—that motivates the development of CP-
nets. The inference techniques for CP-nets described in this paper focus on two important,
related questions: how to perform preferential comparison between outcomes, and how to
find the optimal outcome given a partial assignment to the problem attributes.

Ideally, a preference representation should capture statements that are natural for users
to assess, be reasonably compact, and support effective inference. Our conditional ceteris
paribus semantics requires that the user specify, for any specific attribute A of interest,
which other attributes can impact her preferences for values of A. For each instantiation
of the relevant attributes—the parents of A—the user must specify her preference ordering
over values of A conditional on the parents assuming the instantiated values; for instance,
a1 may be preferred to a2 when b1 and c2 hold. Such a preference is given a ceteris paribus
interpretation: a1 is preferred to a2 given b1 and c2 all else being equal. In other words, for
any fixed instantiation of the remaining attributes, an outcome where a1 holds is preferred
to one where a2 holds (assuming b1 and c2). Such statements are arguably quite natural
and appear in several places (e.g., in e-commerce applications). For instance, the product
selection service offered by Active Buyer’s Guide1 asks for (unconditional) ceteris paribus
statements in assessing a user’s preference for various products. The tools there also ask
for certain semi-quantitative information about preferences. Conditional expressions offer
even greater flexibility.

Preference elicitation is a complex task and is a key focus of work in decision analysis
(Keeney & Raiffa, 1976; Howard & Matheson, 1984; French, 1986), especially elicitation
involving non-expert users. Automating the process of preference extraction can be very
difficult. There has been considerable work on exploiting the structure of preferences and
utility functions in a way that allows them to be appropriately decomposed (Keeney &
Raiffa, 1976; Bacchus & Grove, 1995, 1996; La Mura & Shoham, 1999). For instance, if
certain attributes are preferentially independent of others (Keeney & Raiffa, 1976), one can
assign degrees of preference to these attribute values without worrying about other attribute
values. Furthermore, if one assumes more stringent conditions, often one can construct
an additive value function in which each attribute contributes to overall preference to a
specific“degree” (the weight of that attribute) (Keeney & Raiffa, 1976). For instance, it
is common in some engineering design problems to make such assumptions and simply

1. See www.activebuyersguide.com.
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require users to assess the weights (D’Ambrosio & Birmingham, 1995). This allows the
direct tradeoffs between values of different attributes to be assessed concisely. Case-based
approaches have also recently been considered (Ha & Haddawy, 1998).

Models such as these make the preference elicitation process easier by imposing specific
requirements on the form of the utility or preference function. We consider our CP-net rep-
resentation to offer an appropriate tradeoff between allowing flexible preference expression
and imposing a particular preference structure. Specifically, unlike much of the work cited
above, CP-nets capture conditional preference statements.

The remainder of the paper is organized as follows. Section 2 provides background on
preference orderings, and important notions such as preferential independence and con-
ditional ceteris paribus preference statements. We then define CP-nets, discussing their
semantics and expressive power in depth, and some of the model’s properties. In Section 3
we present an algorithm for outcome optimization in CP-nets and provide an example of an
application of CP-nets that illustrates the optimization process. Section 4 introduces two
kinds of queries for preferential comparison, namely, ordering and dominance queries, and
investigates their computational properties. Section 5 discusses several general techniques
for answering dominance queries that exploit the structure of a CP-net. In Section 6 we
discuss the applicability of our complexity results and algorithms to a slight generalization
of CP-nets that allow incompletely specified local preferences and/or statements of prefer-
ential indifference. Finally, in Section 7 we examine some related work and applications of
CP-nets, and discuss a number of interesting directions for future theoretical research and
applications.

2. Model Definition

Philosophical treatment of many intuitive qualitative preferential statements began in 1957
in a pioneering work of Halldén (1957), and was continued by Castañeda (1958), von Wright
(1963, 1972), Kron and Milovanović (1975), Trapp (1985), and Hansson (1996). The reason
for such an intensive analysis of these statements is expressed concisely in the opening of
Hansson’s (1996) paper:

When discussing with my wife what table to buy for our living room, I said:
“A round table is better than a square one.” By this I did not mean that
irrespectively of their other properties, any round table is better than any
square-shaped table. Rather, I meant that any round table is better (for our
living room) than any square table that does not differ significantly in its
other characteristics, such as height, sort of wood, finishing, price, etc. This
is preference ceteris paribus or “everything else being equal”. Most of the
preferences that we express or act upon seem to be of this type. [Emphasis
added.]

An important property of ceteris paribus preferential statements is their intuitive nature
for users of all types. Independently of the work of philosophers in this area, reasoning about
ceteris paribus statements has drawn the attention of AI researchers. For example, Doyle
et al. (1991) introduced a logic of relative desire to treat preference statements under a
ceteris paribus assumption. This logic bears some similarity to von Wright’s (1963) logic
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of preferences, but supports more complicated inferences.2 However, to the best of our
knowledge, no serious attempt has been made to exploit preferential independence for the
compact and efficient representation of such ceteris paribus statements. In this paper, we
take steps toward structured modeling of qualitative ceteris paribus preferential statements.

We start by defining the notion of a (qualitative) preference relation and a number of
basic preference independence concepts, followed by the introduction of CP-nets and their
semantics.

2.1 Preference Relations

We focus our attention on single-stage decision problems with complete information, ignor-
ing in this paper any issues that arise in multi-stage, sequential decision analysis and any
considerations of risk that arise in the context of uncertainty.3 We begin with an outline of
relevant notions from decision theory. We assume that the world can be in one of a number
of states S and at each state s there are a number of actions As that can be performed. Each
action, when performed at a state, has a specific outcome (we do not concern ourselves with
uncertainty in action effects or knowledge of the state). The set of all outcomes is denoted
by O. A preference ranking is a total preorder � over the set of outcomes: o1 � o2 means
that outcome o1 is equally or more preferred to the decision maker than o2. We use o1 � o2

to denote the fact that outcome o1 is strictly more preferred by the decision maker than o2

(i.e., o1 � o2 and o2 6� o1), while o1 ∼ o2 denotes that the decision maker is indifferent to o1

and o2 (i.e., o1 � o2 and o2 � o1). We will use the terms preference ordering and relation
interchangeably with ranking.

The aim of decision making under certainty is, given knowledge of a specific state, to
choose the action that has the most preferred outcome. We note that the ordering � will
vary across decision makers. For instance, two customers might have radically different
preferences for computer system configurations that a sales program is helping them con-
struct.

Often, for a state s, certain outcomes in O cannot result from any action a ∈ As: those
outcomes that can be obtained are called feasible outcomes (given s). In many instances,
the mapping from states and actions to outcomes can be quite complex. In other decision
scenarios, actions and outcomes may be equated: a user is allowed to directly select a
feasible outcome (e.g., select a product with a desirable combination of attributes). Often
states play no role (i.e., there is a single state).

One thing that makes decision problems difficult is the fact that outcomes of actions and
preferences are usually not represented so directly. For example, actions may be represented
as a set of constraints over a set of decision variables. We focus here on preferences. We
assume a set of variables (or features or attributes) V = {X1, . . . ,Xn} over which the
decision maker has preferences. Each variable Xi is associated with a domain Dom(Xi) =
{xi

1, . . . , x
i
ni
} of values it can take. An assignment x of values to a set X ⊆ V of variables

(also called an instantiation of X) is a function that maps each variable in X to an element of
its domain; if X = V, x is a complete assignment, otherwise x is called a partial assignment.

2. For a more detailed discussion on this issue, we refer the reader to Doyle and Wellman (1994).
3. Such issues include assigning preferences to sequences of outcome states, assessing uncertainty in beliefs

and system dynamics, and assessing the user’s attitude towards risk.
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We denote the set of all assignments to X ⊆ V by Asst(X). If x and y are assignments to
disjoint sets X and Y, respectively (X∩Y = ∅), we denote the combination of x and y by
xy. If X∪Y = V, we call xy a completion of assignment x. We denote by Comp(x) the set
of completions of x. Complete assignments correspond directly to the outcomes over which
a user possesses preferences. For any outcome o, we denote by o[X] the value x ∈ Dom(X)
assigned to variable X by that outcome.

Given a problem defined over n variables with domains Dom(X1), . . . ,Dom(Xn), there
are |Dom(X1)| × · · · × |Dom(Xn)| assignments. Thus direct assessment of a preference
function is usually infeasible due to the exponential number of outcomes. Fortunately, a
preference function can be specified (or partially specified) concisely if it exhibits sufficient
structure. We describe certain standard types of structure here, referring to Keeney and
Raiffa (1976) for a detailed description of these (and other) structural forms and a discussion
of their implications. A set of variables X is preferentially independent of its complement
Y = V −X iff, for all x1,x2 ∈ Asst(X) and y1,y2 ∈ Asst(Y), we have

x1y1 � x2y1 iff x1y2 � x2y2.

In other words, the structure of the preference relation over assignments to X, when all
other variables are held fixed, is the same no matter what values these other variables take.
If the relation above holds, we say x1 is preferred to x2 ceteris paribus. Thus, one can
assess the relative preferences over assignments to X once, knowing these preferences do
not change as other attributes vary.

We define conditional preferential independence analogously. Let X, Y, and Z be
nonempty sets that partition V. X is conditionally preferentially independent of Y given
an assignment z to Z iff, for all x1,x2 ∈ Asst(X) and y1,y2 ∈ Asst(Y), we have

x1y1z � x2y1z iff x1y2z � x2y2z.

In other words, X is preferentially independent of Y when Z is assigned z. If X is condition-
ally preferentially independent of Y for all z ∈ Asst(Z), then X is conditionally preferentially
independent of Y given the set of variables Z.

Note that the ceteris paribus component of these definitions ensures that the statements
one makes are relatively weak. In particular, they do not imply a stance on specific value
tradeoffs. Consider two variables A and B that are preferentially independent, so that
the preferences for values of A and B can be assessed separately; for instance, suppose
a1 � a2 and b1 � b2. Clearly, a1b1 is the most preferred outcome and a2b2 is the least;
but if feasibility constraints make a1b1 impossible, we must be satisfied with one of a1b2 or
a2b1. We cannot tell which is most preferred using these separate assessments. However,
under stronger conditions (e.g., additive preferential independence) one can construct an
additive value function in which weights are assigned to different attributes (or attribute
groups). Such a decomposition of a preference function allows one to identify the most
preferred outcomes rather readily, and this, as well as some other special forms of preference
structure, are especially appropriate when attributes take on numerical values. For an
extensive discussion of various special forms of preference functions we refer to Keeney and
Raiffa (1976), as well as Bacchus and Grove (1995, 1996) and Shoham (1997).

139



Boutilier, Brafman, Domshlak, Hoos & Poole

2.2 CP-Networks

Our representation for preferences is graphical in nature, and exploits conditional preferen-
tial independence in structuring preferences of a user. The model is similar to a Bayesian
network (Pearl, 1988) on the surface; however, the nature of the relation between nodes
within a network is generally quite weak (e.g., compared with the probabilistic relations
in Bayes nets). Others have defined graphical representations of preference relations; for
instance Bacchus and Grove (1995, 1996) have shown some strong results pertaining to
undirected graphical representations of additive independence. Our representation and se-
mantics is rather distinct, and our main aim in using the graph is to capture statements
of qualitative conditional preferential independence. We note that reasoning about ceteris
paribus statements has been explored in AI (Doyle et al., 1991; Wellman & Doyle, 1991;
Doyle & Wellman, 1994), though not in the context of network representations or exploiting
preferential independence in a computational fashion.

For each variable Xi, we ask the user to identify a set of parent variables Pa(Xi) that can
affect her preference over various values of Xi. That is, given a particular value assignment
to Pa(Xi), the user should be able to determine a preference order for the values of Xi,
all other things being equal. Formally, given Pa(Xi) we have that Xi is conditionally
preferentially independent of V− (Pa(Xi)∪{Xi}). Given this information, we ask the user
to explicitly specify her preferences over the values of Xi for all instantiations of the variable
set Pa(Xi). We use the above information to create an annotated directed graph in which
nodes stand for the problem variables, and every node Xi has Pa(Xi) as its immediate
ancestors. The node Xi is annotated with a conditional preference table (CPT) describing
the user’s preferences over the values of the variable Xi given every combination of parent
values. In other words, letting Pa(Xi) = U, for each assignment u ∈ Asst(U), we assume
that a total preorder �i

u is provided over the domain of Xi: for any two values x and x, either
x �j

u x′, x′ �j
u x, or x ∼j

u x′. For simplicity of presentation, we ignore indifference in our
algorithms. Though treatment of indifference is straightforward semantically, consistency
of arbitrary networks with indifference cannot be assumed, as we discuss in Section 2.5.
Likewise, we assume that CPTs for all variables are fully specified, though we discuss
partially specified CPTs in Section 6.

We call these structures conditional preference networks or CP-networks (CP-nets, for
short).

Definition 1 A CP-net over variables V = {X1, . . . ,Xn} is a directed graph G over
X1, . . . ,Xn whose nodes are annotated with conditional preference tables CPT(Xi) for each
Xi ∈ V. Each conditional preference table CPT(Xi) associates a total order �i

u with each
instantiation u of Xi’s parents Pa(Xi) = U.

We illustrate the CP-net semantics and some of its consequences with several small
examples. For ease of presentation, all variables in these examples are boolean, though our
semantics is defined for features with arbitrary finite domains.

Example 1 (My Dinner I) Consider the simple CP-net in Figure 1(a) that expresses my
preference over dinner configurations. This network consist of two variables S and W ,
standing for the soup and wine, respectively. Now, I strictly prefer fish soup (Sf ) to veg-
etable soup (Sv), while my preference between red (Wr) and white (Ww) wine is conditioned
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?>=<89:;S

��
?>=<89:;W

Sf � Sv

Sf Ww � Wr

Sv Wr � Ww

(a)

�� ��
�� ��Sv ∧ Ww

��

zz

�� ��
�� ��Sv ∧ Wr

���� ��
�� ��Sf ∧ Wr

���� ��
�� ��Sf ∧ Ww

(b)

Figure 1: (a) CP-net for “My Dinner I”: Soup and Wine; (b) the induced preference graph.

on the soup to be served: I prefer red wine if served a vegetable soup, and white wine if
served a fish soup.

Figure 1(b) shows the preference graph over outcomes induced by this CP-net. An arc
in this graph directed from outcome oi to oj indicates that a preference for oj over oi can
be determined directly from one of the CPTs in the CP-net. For example, the fact that
Sv ∧ Wr is preferred to Sv ∧ Ww (as indicated by the direct arc between them) is a direct
consequence of the semantics of CPT(W ). The top element (Sv ∧Ww) is the worst outcome
while the bottom element (Sf ∧ Ww) is the best. �

Example 2 (My Dinner II) Figure 2(a) extends the chain CP-net of Example 1 by adding
the main course M as another variable. In this example, my preference over the options
for the main course is clear: I strictly prefer a meat course Mmc to a fish course Mfc. In
addition, I prefer not to have two fish courses in one dinner; thus my preference between
vegetable and fish soup is conditioned on the main course: I prefer to open with fish soup if
the main course is meat, and with vegetable soup if the main course is fish. As in Example 1,
Figure 2(b) shows the corresponding induced preference graph over outcomes. �

Example 3 (Evening Dress) Figure 3(a) illustrates another CP-net that expresses my pref-
erences for evening dress. It consists of three variables J , P , and S, standing for the jacket,
pants, and shirt, respectively. I unconditionally prefer black to white as a color for both the
jacket and the pants, while my preference between the red and white shirts is conditioned
on the combination of jacket and pants: if they have the same color, then a white shirt
will make my outfit too colorless, thus I prefer a red shirt. Otherwise, if the jacket and the
pants are of different colors, then a red shirt will probably make my outfit too flashy, thus
I prefer a white shirt. Figure 3(b) shows the corresponding preference graph. �
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Figure 2: (a) CP-net for “My Dinner II”; (b) the induced preference graph.
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Figure 3: (a) CP-Net for “Evening Dress”: Jacket, Pants and Shirt; (b) the induced pref-
erence graph.

2.3 Semantics

The semantics of a CP-net is straightforward. It is defined in terms of the set of preference
rankings that are consistent with the set of preference constraints imposed by its CPTs.

Definition 2 Let N be a CP-net over variables V, Xi ∈ V be some variable, and U ⊂ V
be the parents of Xi in N . Let Y = V− (U∪{Xi}). Let �i

u be the ordering over Dom(Xi)
dictated by CPT(Xi) for any instantiation u ∈ Asst(U) of Xi’s parents. Finally let � be a
preference ranking over Asst(V).

A preference ranking � satisfies �i
u iff we have—for all y ∈ Asst(Y) and all x, x′ ∈

Dom(Xi)— yxu � yx′u whenever x �i
u x′. A preference ranking � satisfies the CPT

CPT(Xi) iff it satisfies �i
u for each u ∈ Asst(U). A preference ranking � satisfies the

CP-net N iff is satisfies CPT(Xi) for each variable Xi.
A CP-net N is satisfiable iff there is some preference ranking � that satisfies it.

Thus a network N is satisfied by � iff � satisfies each of the conditional preferences expressed
in the CPTs of N under the ceteris paribus interpretation.

Theorem 1 Every acyclic CP-net is satisfiable.
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Proof: We prove this constructively by building a satisfying preference ordering. This proof
is by induction on the number of variables. The theorem trivially holds for one variable, as
the total ordering is specified directly by the CP-net.

Suppose the theorem holds for all CP-nets with fewer than n variables. Let N be a
network with n variables. If N is acyclic, there is at least one variable with no parents;
let X be such a variable. Let x1 � x2 � . . . � xk be the ordering over Dom(X) dictated
by CPT (X). For each xi, construct a CP-net, Ni, with the n − 1 variables V − {X} by
removing X from the initial CP-net, and for each variable Y that is a child of X, revising
its CPT by restricting each row to X = xi. By the inductive hypothesis, we can construct
a preference ordering �i for each of the reduced CP-nets Ni.

We can now construct a preference ordering for the original network N as follows. We
rank every outcome with X = xi as preferred to any outcome with X = xj if xi � xj

in CPT(X). For any outcomes with identical values xi of X, we rank them according to
the ordering �i associated with Ni (ignoring the value of X). It is easy to see that this
preference ordering satisfies N . �

For example, consider the CP-net of Example 1 (Figure 1). Somewhat surprisingly, the
information captured by this network is sufficient to totally order the outcomes:

Sf ∧ Ww � Sf ∧ Wr � Sv ∧ Wr � Sv ∧ Ww

since this is the only ranking that satisfies this CP-net. However, this need not be the case—
in general, a satisfiable CP-net can be satisfied by more than one ranking. For instance,
consider the CP-net in Figure 4.4 There are two rankings that satisfy this network:

abc � abc̄ � ab̄c̄ � ab̄c � āb̄c̄ � āb̄c � ābc � ābc̄

abc � abc̄ � ab̄c̄ � āb̄c̄ � ab̄c � āb̄c � ābc � ābc̄

Preferential entailment in a CP-net is defined in a standard way.

Definition 3 Let N be a CP-net over variables V, and o, o′ ∈ Asst(V) be any two out-
comes. N entails o � o′ (i.e., that outcome o is preferred to o′), written N |= o � o′, iff
o � o′ holds in every preference ordering that satisfies N .

Lemma 2 Preferential entailment is transitive. That is, if N |= o � o′ and N |= o′ � o′′

then N |= o � o′′.

Proof: If N |= o � o′ and N |= o′ � o′′ then o � o′ and o′ � o′′ in all preference rankings
satisfying N . As each of these rankings is transitive, we must have o � o′′ in all satisfying
rankings. �

For example, consider the CP-net N in Figure 4(a) and the following three outcomes:
o = abc̄, o′ = ab̄c̄, and o′′ = ab̄c. The outcomes o and o′ assign the same values to all
variables except of B. In addition, given the value of Pa(B) = {A} in o and o′, the value of
B in o (B = b) is preferred to the value of B (B = b̄) in o′, all else being equal. Therefore,
we have that N |= o � o′. In the case of o′ and o′′, the same argument with respect to the

4. This is the network from Example 2 (“My Dinner II”) with the variables renamed.
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Figure 4: A simple chain-structured CP-network.

variable C will show that N |= o′ � o′′ as well. Observe that o � o′′ cannot be derived
directly from the CPTs of N . However, from Lemma 2, it follows that this relation can be
inferred by taking the transitive closure of the direct relations o � o′ and o′ � o′′.

Notice that, given a CP-net, we can assess each outcome in terms of the conditional
preferences it violates. For example, in the CP-net of Example 1: the outcome Sf ∧ Ww

violates none of the preference constraints; Sf ∧ Wr violates the conditional preference for
W ; Sv∧Wr violates the preference for S; and Sv∧Ww violates both. Somewhat surprisingly,
the ceteris paribus semantics implicitly ensures that violating the preference for S is worse
than violating that for W , since Sf ∧ Wr � Sv ∧ Wr. That is, the parent preferences have
higher priority than the child preferences. This property has important implications for
inference as we will see below.

2.4 Cyclic Networks

As mentioned, nothing in the semantics of the CP-net model forces it to be acyclic. However,
according to Theorem 1, the acyclicity of the network automatically confers an important
property to the model: the network is satisfiable (i.e., there exists a preference ordering
that satisfies all ceteris paribus preference assertions imposed by the CPTs).

For cyclic CP-nets, the situation is much more complicated. For example, consider a
binary-valued cyclic CP-net structure in Figure 5(e). If the CPTs for this network are
specified as in Figure 5(a), then the induced preference graph (see Figure 5(b)) can be
extended to a complete preference ordering consistently. However, if the CPTs are specified
as in Figure 5(c), then the network is unsatisfiable (the induced preference graph, shown in
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Figure 5(d) cannot be completed consistently). This example shows that the consistency of
cyclic CP-nets is not guaranteed, and depends on the actual nature of the CPTs.

a1 : b1 � b2

a2 : b2 � b1

b1 : a1 � a2

b2 : a2 � a1

a2b1

�� ""F
FFF

FFF
F a1b2

��||xxx
xxx

xx

a1b1 a2b2

?>=<89:;A

��
?>=<89:;B

UU

(a) (b)

a1 : b1 � b2

a2 : b2 � b1

b1 : a2 � a1

b2 : a1 � a2

a1b1
// a1b2

��
a2b1

OO

a2b2
oo

(c) (d) (e)

Figure 5: Examples of a satisfiable and an unsatisfiable cyclic CP-net over binary variables.

Recently, initial results on consistency testing for cyclic CP-nets were presented by
Domshlak and Brafman (2002a). In particular, a wide class of cyclic, binary-valued CP-
nets was identified to be efficiently testable for consistency. However, these results cover
only part of the spectrum, and further research on cyclic CP-nets is needed.

Beyond the open computational questions that cyclic CP-nets raise, their usefulness
requires further analysis. One can argue that it is possible to cluster the variables to
preserve acyclicity. Although this approach is technically feasible and probably useful in
many domains, it cannot provide a general solution. First, such clustering will affect the
space requirements of problem description and thus, it will generally degrade the efficiency
of reasoning about preferences. Second, in certain domains, it may be more natural to
express cyclic preferences even if an acyclic representation could be used. For example,
this seems to be the case in work on preference-based presentation of web page content
(Domshlak, Brafman, & Shimony, 2001), where it is argued that the preferred presentation
of a certain component of a web page may depend on the presentation of its neighbors in
the page, whose preferred presentation depend on its presentation, and so on.

One could argue that preferences naturally exhibit cyclic structure and that acyclic nets
are of theoretical interest only. Our experience indicates the opposite. Acyclic CP-nets are
shown to be effective and natural in the above-mentioned work on web page presentation
(Domshlak et al., 2001), as well as in a related project that deals with the presentation
of multi-media content in a medical domain (Gudes, Domshlak, & Orlov, 2002)—a more
extensive example from this latter domain is presented in the next section. Moreover, in
other domains, we have found it difficult to generate intuitively reasonable cyclic networks.
This is due to the fact that a cycle implies that all variables in it are equally important.
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Typically, this is not the case. Thus, because of the apparent utility of acyclic networks,
the fact that we can use composite variables made by clustering primitive variables, and
the additional complexity involved in cyclic networks, we consider only acyclic CP-nets in
the remainder of this paper. However, further investigation of cyclic CP-nets, as well as a
characterization of the different classes of utility functions that can be represented by cyclic
and acyclic networks, remains of interest.

2.5 Indifference

We have so far assumed that the preference constraints in each CPT of a CP-net totally
order the outcomes of the variable in question. Specifically, for any variable Xi with parents
U, and any u ∈ Asst(U), we assume that �i

u is a total order over Dom(Xi). The general
definition of a CP-net can allow an arbitrary total preorder �i

u over Dom(Xi), thus allowing
the user to express indifference between two values of variable X, say x and x′, given u.
We denote this by x ∼ x′ in CPT(X).

It turns out that the ceteris paribus semantics is quite strong when we say that two
variable values are equally preferred.

Example 4 Consider the following two CPTs for a network over variables A and B, with
A being a parent of B:

a ∼ a;
a : b � b; a : b � b;

These assert that the user is indifferent between a and a, but should a hold, prefers b, and
should a hold, prefers b. We can derive the following preferences over outcomes:

ab � ab � ab � ab � ab

These statements are not consistent with any preference ranking, hence this network is not
satisfiable. One way to interpret this is that if someone really did have the preferences:

a : b � b; a : b � b;

they cannot be indifferent between a and a, ceteris paribus. �

This points to a potential difficulty with the use of indifference in CP-nets. One must
be careful not to express indifference between two values of a variable (A in this case), yet
express a (strict) conditional preference for a child of that variable (B) that depends on the
values for which the user is indifferent. Intuitively, in this case, it seems that the user is
expressing the fact that they would like the value of B to match that of A (with respect to
their “sign”), but intends no preference for ab over ab (or vice versa). If this is the case,
then making A a parent of B expresses that the preference for B is subsidiary to that of A,
which is not the intent. In this case, either a cyclic network (indeed the satisfiable network
discussed in Section 2.4) or the clustering of variables A and B seems appropriate.

Despite this, indifference can be used safely as follows. Let Xi be any variable in
network N with parents U, and let Xj be any child of Xi. Let Y denote the remaining
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parents of Xj (those excluding Xi). Suppose that for some u ∈ Asst(U), and x, x′ ∈
Dom(Xi), we have x ∼ x′ in �i

u. Then as long as the local orderings in CPT(Xj) for a fixed
instantiation of Y are identical whether x or x′ holds, then the network N is satisfiable.
More precisely, if �j

xy=�j
x′y for each y ∈ Asst(Y), then network N is satisfiable. Thus,

if we are indifferent between x and x′, then our preferences over values of Xi’s children,
should exhibit indifference whether the context includes x or x′.5

For simplicity of presentation, for the remainder of the paper we continue to assume that
preference constraints in each CPT of a CP-net totally order the outcomes of the variable in
question. However, in Section 6, we do discuss the applicability of our results to satisfiable
CP-nets that capture statements of preferential indifference.

3. Outcome Optimization

One of the principal properties of CP-nets is that, given a CP-net N , we can easily determine
the best outcome among those preference rankings that satisfy N . We call such a query an
outcome optimization query. This turns to be a simple task in CP-nets.

3.1 An Algorithm for Outcome Optimization

Intuitively, to generate an optimal outcome we simply need to sweep through the network
from top to bottom (i.e., from ancestors to descendents) setting each variable to its most
preferred value given the instantiation of its parents. Indeed, while the network does not
generally determine a unique ranking, it does determine a unique best outcome (assuming no
indifference). More generally, suppose we are given evidence constraining possible outcomes
in the form of an instantiation z of some subset Z ⊆ V of the network variables. Determining
the best completion of z (that is, the best outcome consistent with z) can be achieved in a
similar fashion, as we now outline.

Outcome optimization queries can be answered using the following forward sweep pro-
cedure, taking time linear in the number of variables. Assume a partial instantiation
z ∈ Asst(Z), and the goal of determining the (unique) o ∈ Comp(z) such that N |= o � o′

for all o′ ∈ Comp(z) − {o}. This can be effected by a straightforward sweep through the
network. Let X1, . . . ,Xn be any topological ordering of the network variables. We set
Z = z, and instantiate each Xi 6∈ Z in turn to its maximal value given the instantiation of
its parents. This procedure exploits the considerable power of both the ceteris paribus se-
mantics and the graphical modeling of the preferential statements to easily find an optimal
outcome given certain observed evidence (or imposed conjunctive constraints).

Lemma 3 The forward sweep procedure constructs the most preferred outcome in Comp(z).

Proof: Let vz be any outcome in the set of completions of z. Define a sequence of outcomes
vi, 0 ≤ i ≤ n, as follows: (a) v0 = vz; (b) if Xi 6∈ Z, vi is constructed by setting the
value of Xi to its most preferred value given the instantiation of its parents in vi−1, with
all other variables retaining their values from vi−1; (c) if Xi ∈ Z, then vi = vi−1. By
construction, vi � vi−1. The last outcome vn is precisely that constructed by the forward

5. This restriction can be relaxed somewhat if we take into account the fact that some of Xj ’s parents could
lie in the set U, in which case these rankings need not agree for every indifference pair x and x′.
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sweep algorithm. Notice that we arrive at the same outcome irrespective of our starting
point vz (by assumption, there can be no ties). Since vn � vz for any outcome vz consistent
with the evidence, the forward sweep procedure yields the optimal outcome. �

3.2 An Example Application

We now turn to an illustration of the use of CP-nets in the context of a CP-net based system
for adaptive multimedia document presentation. Applications based on this system for the
presentation of web-based content and multi-media medical data were recently presented
by Domshlak et al. (2001) and Gudes et al. (2002). Through this example we demonstrate
the simplicity of preference specification using CP-nets, the utility of acyclic networks, and
the use of the optimization algorithm described above.

The system consists of two tools—the authoring tool, and the viewing tool. The central
part of the authoring tool is a module for the specification of a CP-net corresponding to
the created and/or edited multimedia document. Using this CP-net, a content provider
express her preferences regarding the presentation of the document content. For example,
the content provider may prefer that some material be presented if and only if some other
material is not presented. The result of such preference-based multimedia document design
is a meta-document specifying both what to present and how to present it.

The description of the content provider’s preferences, as captured by an acyclic CP-net,
becomes a static part of the document, and sets the parameters for its initial presentation.
Given such a document, the viewing tool is responsible for reasoning about these preferences;
specifically, it must determine an optimal reconfiguration of the document context after
interaction of the viewer with the document. In this process, the user’s k most recent
content choices are viewed as constraints of the form “these items must appear as I specified”.
Subject to these constraints, an optimal document presentation with respect to the content
provider’s CP-net must then be generated. Thus, for each particular session, the actual
presentation changes dynamically based on the user’s choices. More precisely, whenever
new user input is obtained, the optimization algorithm constructs the best presentation of
all document components with respect to the content provider’s preferences among those
presentations that conform to the user’s recent viewing choices. This process uses the
forward sweep procedure described above.

Example 5 (Multimedia Document) Consider a medical record that consists of six compo-
nents: two components correspond to a set of medical tests conducted in 2001—an X-ray
image and textual notes of a physician—and four components correspond to a set of medical
tests from 2002—a CT (computerized tomography) image, an X-ray image, a graph illus-
trating results of electromyography, and textual notes of a physician. For the purposes of
illustration, we assume the preferences of a content provider (e.g., the latter physician) over
the presentation options of these components can be captured using the CP-net shown in
Figure 7. The specific details of the preferences—the nature of the preferential dependencies
and the precise details of the CPTs are summarized as follows:

• CT-image [CT image, 2002] consist of four CT images of different parts of the body,
and it is shown in Figure 6(a). There are six presentation options for CT-image: it can
be either completely presented (ctplain), or completely hidden (cthide), or presented by
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(a) (b) (c) (d)

Figure 6: Document components in Multimedia Document example.
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Figure 7: Multimedia Document CP-net.

a zoom-in on one of its four parts (ctlt, ctrt, ctlb, and ctrb, standing for left-top, right-
top, left-bottom, and right-bottom parts, respectively). The physician’s preference
over the presentation options of CT-image is unconditional:

cthide � ctlt � ctrt � ctlb � ctrb � ctplain

• X-ray [X-ray, 2002] can be either hidden (xrayhide), or presented as is (xrayplain), or
presented after a segmentation (xraysegm); the image and its segmentation are depicted
in Figures 6(b) and 6(c), respectively. The preference over the presentation options
of X-ray depends on the presentation of CT-image:

ctplain xrayhide � xrayplain � xraysegm

¬(ctplain ∨ cthide) xrayplain � xraysegm � xrayhide

cthide xraysegm � xrayplain � xrayhide
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• Graph [Electromyography, 2002] is shown in Figure 6(d), and it can be either presented
(graphplain), or hidden (graphhide). The preference over the presentation options of
Graph depends on the presentation of both CT-image and X-ray:

(ctlt ∨ ctrt ∨ ctlb ∨ ctrb) ∨ xraysegm graphplain � graphhide

otherwise graphhide � graphplain

• Notes [Textual notes, 2002] can be either fully presented (notesplain), or summarized
(notessumm), or omitted all together (noteshide). The preference over the presentation
options of Notes depends on the presentation of both CT-image and Graph:

cthide noteshide � notessumm � notesplain

¬(cthide) ∧ graphplain notessumm � notesplain � noteshide

otherwise noteshide � notessumm � graphplain

• X-ray-old [X-ray, 2001] can be either hidden (xray−oldhide), or presented as is (xray−oldplain);
the image is depicted below. The preference over the presentation options of X-ray-old
depends on the presentation of X-ray:

xrayhide xray−oldhide � xray−oldplain

¬(xrayhide) xray−oldplain � xray−oldhide

• Notes-old [Textual notes, 2001] can be either presented (notes−oldplain), or omitted
all together (notes−oldhide). The preference over the presentation options of Notes-old
depends on the presentation of X-ray-old:

xray−oldhide notes−oldplain � notes−oldhide

xray−oldplain notes−oldhide � notes−oldplain

�

At the beginning of a viewing session, the initial presentation of the document, depicted
in Figure 8(a), is determined using the forward sweep procedure with Z = ∅: each compo-
nent is set to its preferred presentation given the presentation of its immediate parents in
the CP-net. For example, CT-image is hidden, since it is the most preferred option for this
component. Subsequently, the X-ray image is presented segmented, since CT-image is not
presented, and, in turn, the electromyography Graph is presented because of the above de-
cision on the presentation options for CT-image and X-ray. Suppose that the viewer chooses
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Figure 8: Document presentations after various user choices.
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to look at the right-top part of the CT-image.6 In terms of the forward sweep procedure,
this choice sets Z = {CT−image}, and z = {ctrt}. The result of the forward sweep pro-
cedure appears in Figure 8(b); here and in what follows, the shaded nodes stand for the
evidence-constrained variables Z. Now, the X-ray image is presented without segmentation
because of a zoom-in on the right-top part of CT-image, and Notes are summarized since
both the electromyography Graph is presented, and CT-image is not hidden.

Suppose that the viewer consequently chooses to hide the X-ray image. If the number
of recent viewer choices taken to constrain the presentation is greater than one, then this
choice will set Z = {CT−image,X−ray}, and z = {ctrt, xrayhide}. The result of the forward
sweep procedure appears in Figure 8(c). If consequently the viewer chooses to see the whole
CT-image, then z = {ctplain, xrayhide}, and the updated presentation is shown in Figure 8(d).

4. Comparing Outcomes

Outcome optimization is not the only task that should be supported by a preference repre-
sentation model. Another basic query with respect to such a model is preferential compari-
son between outcomes. Two outcomes o and o′ can stand in one of three possible relations
with respect to a CP-net N : either N |= o � o′; or N |= o′ � o; or N 6|= o � o′ and
N 6|= o′ � o.7 The third case, specifically, means that the network N does not contain
enough information to prove that either outcome is preferred to the other (i.e., there exist
preference orderings satisfying N in which o � o′ and in which o′ � o). There are two
distinct ways in which we can compare two outcomes using a CP-net:

1. Dominance queries – Given a CP-net N and a pair of outcomes o and o′, ask whether
N |= o � o′. If this relation holds, o is preferred o′, and we say that o dominates o′

with respect to N .

2. Ordering queries – Given a CP-net N and a pair of outcomes o and o′, ask if N 6|=
o′ � o. If this relation holds, there exists a preference ordering consistent with N in
which o � o′. In other words, it is consistent with the knowledge expressed by N to
order o “over” o′ (i.e., assert that o is preferred to o′). In such a case we say o is
consistently orderable over o′ with respect to N .

Ordering queries are clearly weaker than dominance queries. Indeed, if N |= o � o′,
then N 6|= o′ � o. But it may be the case that N 6|= o′ � o even though N 6|= o � o′.
While dominance queries are typically more useful, ordering queries are sufficient in many
applications where one may be satisfied knowing only that outcome o can be consistently
ordered over o′. For example, consider a set of products that a human or automated seller
would like to present to a customer in some non-increasing order of customer preference.
There seems to be no reason to use the strong dominance relation to sort such products.
In some applications, dominance queries cannot be replaced by ordering queries. For in-
stance, dominance queries were shown to be an integral part of constraint-based preferential
optimization in CP-nets (Boutilier, Brafman, Geib, & Poole, 1997).

6. A document explorer (which is a part of the viewing tool) is not illustrated here in order to make the
snapshots smaller.

7. Recall that, for the time being, we do not consider CP-nets with indifference in CPTs; hence two outcomes
cannot be proven equally preferred.
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We begin by showing that ordering queries with respect to acyclic CP-nets can be
answered in time linear in the number of variables. In addition, we show that a set of
outcomes can be sorted in a consistent non-increasing order with respect to an acyclic
CP-net using ordering queries only. We then provide a complexity analysis of dominance
queries. First, we introduce and study a particular form of reasoning, namely search for
flipping sequences, that can be used to answer dominance queries. Using this technique,
and focusing on binary-valued CP-nets, we show connections between the structure of the
CP-net graph and the worst-case complexity of dominance queries. We discuss dominance
queries in more detail in Section 5, where we present some general search techniques for
flipping sequences.

4.1 Ordering Queries Are Easy

Here we show that ordering queries with respect to acyclic (not necessarily binary-valued)
CP-nets can be answered in time linear in the number of variables. The corresponding
algorithm exploits the graphical structure of the model. Likewise, we show that with acyclic
CP-nets, we can construct a non-increasing ordering over outcomes, consistent with a CP-
net, using only ordering queries.

Corollary 4 Let N be an acyclic CP-net, and o, o′ be a pair of outcomes. If there exists a
variable X in N , such that:

1. o and o′ assign the same values to all ancestors of X in N , and

2. given the assignment provided by o (and o′) to Pa(X), o assigns a more preferred
value to X than that assigned by o′

then N 6|= o′ � o.

Proof: The construction in Theorem 1 provides a preference ordering satisfying N such
that o � o′. Thus o′ � o is not true in all models of N , and is not a consequence of N . �

Corollary 4 presents a condition which is sufficient but not necessary for the truth of the
ordering query N 6|= o′ � o. For instance, consider Example 2, and let o = Mmc ∧ Sv ∧ Ww

and o′ = Mfc∧Sv∧Wr. These two outcomes are incomparable according to the CP-network
(i.e., neither can be proven to be preferred to the other), but o 6� o′ cannot be deduced
using the conditions of Corollary 4, because M is the root variable of this chain CP-net,
and o assigns it a more preferred value than that assigned by o′.

Despite the fact that the condition provided by Corollary 4 for N 6|= o′ � o is not
necessary for consistent orderability, we can show that it is sufficient to provide a consistent
ordering of any pair of outcomes.

Theorem 5 Given an acyclic CP-net N , and two outcomes o and o′ over the variables of
N , the complexity of determining truth of at least one of the ordering queries, N 6|= o′ � o
or N 6|= o � o′, is O(n).

Proof: For any variable Xi, let Pa(Xi) = U in N and u and u denote the assignment
to U made by outcomes o and o′, respectively. All variables Xi, such that o and o′ assign
different values to Xi but the same values to all ancestors of Xi in N , can be identified in
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O(n) time by a top-down traversal of N . (Note that u = u′ for all such Xi). If for all such
Xi we have that o[Xi] �i

u o′[Xi], then using Corollary 4 we can deduce that N 6|= o′ � o.
Otherwise, there exist two variables of this type, Xi and Xj , for which o[Xi] �i

u o′[Xi] and
o[Xj ] ≺i

u o′[Xj ]; in this case, Corollary 4 implies that both N 6|= o′ � o and N 6|= o � o′

�
Corollary 4 provides an effective algorithm for answering ordering queries; however,

its computational efficiency comes at a price: it is sound—if the algorithm says that o is
consistently orderable over o′, then indeed, N 6|= o′ � o; but it is incomplete—if it provides a
negative response to query N 6|= o′ � o, it still may be the case that N 6|= o′ � o. Theorem 5
provides an effective algorithm that is sound, and “partially complete” in the sense that it
will return a positive answer for at least one of N 6|= o′ � o or N 6|= o � o′. In other words,
it will allow us to determine that at least one outcome can be consistently ordered over the
other.

Though the incompleteness of the algorithm for single ordering queries is problematic,
the partial completeness of the algorithm for paired queries is sufficient to allow one to
find a consistent ordering of all outcomes in polynomial time, at least in the case of an
acyclic CP-net. We first introduce some notation. We write N `oq o � o′ to represent
that the algorithm for paired ordering queries tells us that N 6|= o′ � o holds (i.e., o is
consistently orderable over o′) but N 6|= o′ � o does not (i.e., o′ is not orderable over o).
When N `oq o � o′, we can be assured that o is indeed orderable over o′; but due to the
incompleteness of the algorithm, we cannot be sure that o′ is not orderable over o. We write
N `oq o ' o′ to denote that the algorithm returns a positive response for both ordering
queries (i.e., it tells us that both outcomes are consistently orderable over the other). The
soundness of the algorithm ensures that both outcomes can indeed be consistently preferred
in this case. Note that partial completeness ensures that either N `oq o � o′, N `oq o′ � o,
or N `oq o ' o′. This will be sufficient to allow us to produce a consistent ordering of any
set of outcomes.

Theorem 6 Given an acyclic CP-net N over the variable set V, and a set of outcomes
o1, . . . , om over V, ordering these outcomes consistently with N can be done using ordering
queries only.

Proof: Define two binary relations over outcomes: o � o′ iff N `oq o � o′ and o ' o′ iff
N `oq o ' o′. We first show that the transitive closure of the relation � is asymmetric.
Assume to the contrary that there exists a set of outcomes o1, . . . , ok such that:

o1 � o2 � · · · � ok � o1 (1)

For 1 ≤ i ≤ k, let V (oi) be the set of all variables X such that the value assigned to X by oi

can be improved given the assignment provided by oi to Pa(X). Let Ni be the subgraph of N
consisting of those variables in V (oi) and their descendants in N . Observe that Corollary 4
implies Ni ⊆ Ni+1 for 1 ≤ i < k, and Nk ⊆ N1. To see this, notice that if, for some i, we
have Ni 6⊆ Ni+1, then there exists a variable X such that: (i) all ancestors of X are assigned
their most preferred values by both oi and oi+1; and (ii) given oi[Pa(X)] = oi+1[Pa(X)],
X is assigned its most preferred value by oi+1 and one of its less preferred values by oi.
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However, in this case, an ordering query will determine N 6|= oi � oi+1, which contradicts
our assumption that oi � oi+1.

If one of the graph containment relations Ni ⊆ Ni+1 is strict, the initial assumption (1)
is trivially contradicted. Therefore, we are left with the case of:

N1 = N2 = · · · = Nk = N ′

Recalling that N ′ is acyclic, consider a variable Xj ∈ N ′ that has no ancestors in N ′. Let
U = Pa(Xj) be the parents of Xj in the original network N (note that U ∩ N ′ = ∅). By
construction of the Ni we have:

o1[U] = o2[U] = · · · = ok[U] = u

This must be the case since all the ancestors of Xj are assigned to their unique optimal
assignment (of which u is a part) since none of these variables is improvable. This entails

o1[Xj ] �j
u o2[Xj ] �j

u · · · �j
u ok[Xj ] �j

u o1[Xj ],

which is inconsistent with the definition of a CP-net.
We exploit the asymmetric nature of the relation � as follows. If N |= o � o′, then we

must have o � o′. Therefore, the relation �N representing the induced preference graph
of N is a subset of �. Thus any total ordering of o1, . . . , om consistent with � will be
consistent with �N . �

An immediate consequence of Theorems 5 and 6 is that, given a set of m outcomes and
a CP-net N , the complexity of ordering these outcomes consistently with the preference
graph induced by N is O(nm2) (i.e., the cost of comparing every pair of outcomes and
ordering them accordingly).

4.2 Dominance Queries and Flipping Sequences

The ceteris paribus semantics of CP-nets allows one to directly use information in the
CPT of a variable X to alter or flip the value of X within an outcome to directly obtain
an improved (preferred) or worsened (dispreferred) outcome. A sequence of improving flips
from one outcome to another provides a proof that one outcome is preferred, or dispreferred,
to another in all rankings satisfying the network. Before defining this notion more precisely,
we illustrate the intuitions with an example.

Example 6 Consider again the CP-net from Figure 4. The following are the only two
rankings that satisfy this network:

abc � abc̄ � ab̄c̄ �
︷ ︸︸ ︷
ab̄c � āb̄c̄ � āb̄c � ābc � ābc̄

abc � abc̄ � ab̄c̄ � āb̄c̄ � ab̄c︸ ︷︷ ︸ � āb̄c � ābc � ābc̄

Thus, the only two outcomes not totally ordered are abc and abc. Notice that if we remove
either abc or abc from each of these chains of outcomes, we can move from one outcome to
the next in the chain by flipping the value of exactly one variable according to the preference
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information in its CPT given the instantiation of its parents. For example, to move from
the first outcome in these sequences (abc) to the second (abc), we use the fact that c � c
given b to “prove” that the second outcome is dispreferred to the first; that is we flip C to
a less preferred value given the instantiation b of its parent B. Conversely, we can move
backwards through this sequence by flipping c in the second outcome to c, thereby obtaining
the more preferred first outcome.

Recall that Corollary 4 demonstrates that violating the preference constraints for a
parent variable is less preferred than violating the preference constraints for any of its
children. This “greater importance” of parent variables is implicit in the ceteris paribus
semantics. Now consider the two outcomes abc and abc, which are unordered by the CP-
net in Figure 4. The outcome āb̄c̄ violates the preference over the values of A, while the
outcome ab̄c violates the preferences over the values of B and C; and A is an ancestor
of both B and C. The semantics of CP-nets does not specify which of these outcomes is
preferred—intuitively, though the preference for A has higher priority than B or C, two
or more violations of lower priority preferences may not be preferred to the violation of a
single higher priority preference. �

For any two outcomes o and o′, every improving flipping sequence from o′ to o uniquely
corresponds to some directed path from the node o′ to the node o in the preference graph
induced by the CP-net. For instance, consider the CP-net in Figure 9(a), which is exactly
the network of the “Evening Dress” example (Example 3), with simpler variable names.
There are four alternative flipping sequences from the outcome āb̄c to the outcome abc,
corresponding to the four paths between these outcomes in the induced preference graph,
depicted in Figure 9(b):

āb̄c → ab̄c → abc

āb̄c → ab̄c → ab̄c̄ → abc̄ → abc

āb̄c → ābc → abc

āb̄c → ābc → ābc̄ → abc̄ → abc

Therefore, abc � āb̄c is a consequence of this CP-net. In contrast, there is no flipping
sequence (directed path) from ābc to ab̄c̄, hence these two outcomes are incomparable.

These examples suggest that the construction of such a flipping sequence can be used
to prove dominance.

Definition 4 Let N be a CP-net over variables V, with Xi ∈ V, U the parents of Xi,
and Y = V − (U ∪ {Xi}). Let uxy ∈ Asst(V) be any outcome, where x ∈ Dom(Xi),
u ∈ Asst(U), and y ∈ Asst(Y). An improving flip of outcome uxy with respect to variable
Xi is any outcome ux′y such that x′ �i

u x. (Note that an improving flip w.r.t. Xi does not
exist if x is the most preferred value of Xi given u.)

An improving flipping sequence with respect to N is any sequence of outcomes o1, . . . , ok

such that, for each i < k, oi+1 is an improving flip of oi with respect to some variable. An
improving flipping sequence from an outcome o to an outcome o′ is any improving sequence
o1, . . . , ok with o1 = o and ok = o′.
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Figure 9: “Evening Dress” CP-net from Example 2 with simpler names.

One can define worsening flips and worsening flipping sequences in an entirely analogous
way. Obviously, any worsening flipping sequence is the reverse of an improving flipping
sequence, and vice versa.

There are two important things to notice about the examples above. First, an improv-
ing (or worsening) flipping sequence can be used to show that one outcome is better than
another. Second, preference violations are worse (i.e., have a larger negative impact on the
preference of an outcome) the higher up they are in the network, although we cannot com-
pare always two (or more) lower level violations to violation of a single ancestor constraint.
These observations underlie the inference algorithms below.

Theorem 7 (soundness) If there is an improving flipping sequence for CP-net N from
outcome o to o′, then N |= o′ � o.

Proof: If there is an improving flip from outcome o1 to another outcome o2 then N |=
o2 � o1 by the definition of |=. The theorem follows from the transitivity of preferential
entailment (Lemma 2). �

Theorem 8 (completeness) If N is an acyclic CP-net and there is no improving flipping
sequence for N from outcome o to o′, then N 6|= o′ � o.

Proof: Let G be a graph whose nodes are all outcomes (i.e., complete assignments to the
variable set V), with a directed edge from o1 to o2 iff there is an improving flip of o1 to o2

sanctioned by network N . Clearly, directed paths in G are equivalent to improving flipping
sequences with respect to N .

Next, we show that any total preference ordering � that respects the paths in G (that
is, if there is a path from o1 to o2 in G, then we have o2 � o1) satisfies network N : if � does
not satisfy N , there must exist some variable X with parents U, instantiation u ∈ Asst(U),
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values x, x′ ∈ Dom(X), and instantiation y of the remaining variables Y = V− (U∪{X}),
such that:

(a) uxy � ux′y;

(b) but CPT(X) dictates that x′ � x given u.

This is a direct consequence of the definition of satisfaction. However, if N requires that
x′ � x given u, there is a direct flip from xuy to x′uy, contradicting the fact that � extends
the graph G.

Based on this observation, we can now prove the theorem: If there is no improving
flipping sequence from o to o′, then there is no directed path in G from o to o′. Therefore,
there exists a preference ordering � respecting the paths in G in which o � o′. But this
preference ordering also satisfies N , which implies N 6|= o′ � o. �

4.3 Flipping Sequences as Plans

Searching for flipping sequences can be seen as a type of planning problem: given a CP-
net N , and a variable X with parents Pa(X) in N , each row in CPT (X) is a conditional
preference statement of the form

u : x1 � x2 � · · · � xd

where u ∈ Asst(Pa(X)), and d = |Dom(X)|. Such a statement can be converted into a set of
planning operators for improving the value of X. In particular, this conditional preference
statement can be converted into a set of d−1 planning operators of the form (for 1 < i ≤ d):

Preconditions: u ∧ xi

Postconditions:

Delete list: xi

Add list: xi−1

This corresponds to the action of improving xi to xi−1 in the context of u. (An “inverse”
set of operators would be created for worsening sequences).

Given a query N |= x � y, we treat y as the start state and x as the goal state of a
planning problem. It is readily apparent that the query is a consequence of the CP-net if
and only if there is a plan for the associated planning problem, since a plan corresponds to
a flipping sequence.

The planning problem over multi-valued variables with discrete, finite domains is known
to be pspace-complete (Bäckström & Nebel, 1995), and it remains pspace-complete under
the assumption that all the variables are binary (Bylander, 1994) (i.e., planning problems in
strips formalism with negative effects). However, this upper bound is not very informative
with respect to dominance queries, since the planning problems generated from them will
generally look quite different in form from standard AI planning problems, as there are
many more actions, and each action is directed toward achieving a particular proposition
and requires very specific preconditions. Thus dominance queries with respect to binary-
valued CP-nets correspond to a specific class of strips planning problems, the complexity
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of which was recently analyzed by Domshlak and Brafman (2002b, 2003). We now explain
this relationship.

First, we divide the preconditions of every operator in a planning problem into two types:
prevailing conditions, which are variable values that are required prior to the execution of
the operator and are not affected by the operator, and preconditions, which are affected
by the operator. Second, we introduce the notion of a causal graph (Knoblock, 1994), a
directed graph whose nodes stand for the problem variables. An edge (X,Y ) appears in
the causal graph if and only if some operator that changes the value of Y has a prevailing
condition involving X.

The complexity analysis of Brafman and Domshlak (2003) addresses planning problems
with binary variables, unary operators (i.e., operators that affect only a single variable),
and acyclic causal graphs. In the planning problem generated for a dominance query with
respect to a binary-valued CP-net, we have:

1. all the operators are unary, because each flip improves the value of a single variable;
and

2. the causal graph of the problem is exactly the graph of the CP-net, since the values
of Pa(X) required by a value flip of X are exactly the prevailing conditions of the
corresponding planning operator.

Therefore, in our computational analysis of dominance queries for binary-valued acyclic
CP-nets we can use some of the results and techniques of Brafman and Domshlak (2003).

4.4 Complexity of Dominance Queries for Binary-valued, Acyclic CP-nets

In this section we analyze the complexity of dominance testing with respect to binary-
valued CP-nets, showing a connection between the structure of the CP-net graph and the
worst-case complexity of dominance queries. In particular, we show that:

• When a binary-valued CP-net forms a directed tree, the complexity of dominance
testing is quadratic in the number of variables.

• When a binary-valued CP-net forms a polytree (i.e., the induced undirected graph is
acyclic), dominance testing is polynomial in the size of the CP-net description.

• When a binary-valued CP-net is directed-path singly connected (i.e., there is at most
one directed path between any pair of nodes), dominance testing is np-complete. The
problem remains hard even if node in-degree in the network is bounded by a low
constant.

• Dominance testing for binary-valued CP-nets remains np-complete if the number of
alternative paths between any pair of nodes in a CP-net is polynomially bounded.

The exact complexity of dominance testing in multiply connected, binary-valued, acyclic
CP-nets remains an open problem—at this stage it is not clear whether this problem is in
np or harder.

In what follows, we make the assumption that the number of parents for each variable
(i.e., node in-degree in the CP-net) is bounded by some constant. This assumption is
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justified as the CPTs are part of the problem description, and the size of a CPT (X) is
exponential in |Pa(X)|.

4.4.1 Some General Properties

We start with some notation and two useful lemmas. First, given a CP-net N and a pair
of outcomes o, o′ with respect to N , an improving flipping sequence F from o′ to o will be
called irreducible if any subsequence F ′ of F obtained by deletion of any entries except the
endpoints o, o′ of F is not an improving flipping sequence.8

Given a CP-net N , let F be the set of all irreducible improving flipping sequences
among outcomes. We denote by MaxFlip(Xi) the maximal number of times that a variable
Xi changes its value in any flipping sequence in F . Formally, let Flip(F,Xi) be the number
of value flips of Xi in the flipping sequence F . Then,

MaxFlip(Xi) = max
F∈F

{Flip(F,Xi)}

Lemma 9 below formalizes our first observation about irreducible flipping sequences with
respect to binary-valued CP-nets.

Lemma 9 For every variable Xi in a binary-valued CP-net N , we have:

MaxFlip(Xi) ≤ 1 +
∑

Xj :Xi∈Pa(Xj)

MaxFlip(Xj)

Proof: Let F be an irreducible flipping sequence with respect to N (from some outcome
o′ to some outcome o), such that MaxFlip(Xi) = Flip(F,Xi). Consider the subsequence
F ′ = f1, f2, . . . , fk ⊆ F that consists of all value flips of the children of Xi in N . Observe
that: (i) every fl ∈ F ′ requires Xi to take one of its two possible values; and (ii) no value
flip in F − F ′ depends on the value of Xi.

Now, for 1 ≤ l < k, if fl and fl+1 require the same value of Xi, then there are no value
flips of Xi in F between fl and fl+1: If there are such flips, they are simply redundant, and
this contradicts our assumption that F is irreducible. (Recall that fl and fl+1 are adjacent
in F ′, but may be separated by several flips in the original sequence F .) Alternatively, if
fl and fl+1 require different values of Xi, due to the irreducibility of F , there is exactly
one value flip of Xi in F between fl and fl+1. Similarly we can show that there is at most
one value flip of Xi in F before f1, and there is at most one value flip of Xi in F after
fk. The latter flip is necessary when fk requires Xi to take the value ¬o[Xi], thus, after
“supporting” the immediate successors, Xi still should flip its value once, in order to obtain
the value required by o.

The above implies that:

MaxFlip(Xi) = Flip(F,Xi) ≤ 1 +
∑

Xj :Xi∈Pa(Xj)

Flip(F,Xj)

8. Note that removing any proper initial or final subsequence of F results in a valid flipping sequence. We
refer here to the deletion of arbitrary elements from the sequence, excluding the endpoints.
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and thus, by definition of MaxFlip, we have:

MaxFlip(Xi) ≤ 1 +
∑

Xj :Xi∈Pa(Xj)

MaxFlip(Xj)

�
Adopting the terminology of Domshlak and Shimony (2003) and Shimony and Domshlak

(2002), a directed acyclic graph G is directed-path singly connected if, for every pair of nodes
s, t ∈ G, there is at most one directed path from s to t. Using Lemma 9, we can prove
that if a binary-valued CP-net forms a directed-path singly connected DAG then, for every
variable Xi, MaxFlip(Xi) can be bounded by n (the number of variables).

Lemma 10 If a binary-valued CP-net N forms a directed-path singly connected DAG, then,
for every variable Xi ∈ N , we have:

MaxFlip(Xi) ≤ n

where n is the number of variables in N .

Proof: In what follows, denote MaxFlip(Xi) in N as MaxFlipN (Xi). The proof is by induc-
tion on n. For n = 1 it is obvious that MaxFlip(X1) ≤ 1. Assume that when a binary-valued,
directed-path singly connected CP-net N consists of n−1 variables, then, for every Xi ∈ N ,

MaxFlipN (Xi) ≤ n − 1

Let N ′ be some binary-valued, directed-path singly connected CP-net over n variables.
Without loss of generality, let the variables {X1, . . . Xn} of N ′ be topologically ordered
based on the (acyclic) graph of N ′. Clearly, Xn is a leaf node, and we will denote by N the
CP-net obtained by removing Xn from N ′. From Lemma 9, we have:

MaxFlipN ′(Xn) ≤ 1

Observe that there are no directed paths between any predecessors of Xn in N ′, since N ′ is
assumed to be directed-path singly connected. Therefore, by Lemma 9, for each parent Xi

of Xn in N ′, we have:

MaxFlipN ′(Xi) ≤ MaxFlipN (Xi) + MaxFlipN ′(Xn)

and thus:
MaxFlipN ′(Xi) ≤ MaxFlipN (Xi) + 1

Generally, since N is directed-path singly connected, for each variable Xi ∈ N ′,

MaxFlipN ′(Xi) ≤
{

MaxFlipN (Xi) + 1, if there is a path from Xi to Xn

MaxFlipN (Xi), otherwise

and thus, for each Xi ∈ N ′, we have:

MaxFlipN ′(Xi) ≤ n

�
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TreeDT (JN |= o � o′K)
Initialize the variables in V to outcome o′.
Loop:

Iteratively remove all leaf variables from V that have assigned to
them their values in o.

If V = ∅, then return yes.
Find a variable X s.t. its value can be improved, and no value of its

descendants in N can be improved, given the current assignment to V.
If no such variable was found, then return no.

Otherwise, change the value of X.

Figure 10: Flipping sequence search algorithm for binary-valued, tree-structured CP-nets

4.4.2 Tree-structured CP-nets

We start by presenting a flipping sequence search algorithm for the class of binary-valued,
tree-structured CP-nets, and prove its correctness. Then we show that the time complexity
of this algorithm is O(n2), and show that this is actually a lower bound for flipping-sequence
search over binary-valued, tree-structured CP-nets.

Figure 10 presents our TreeDT algorithm for binary-valued, tree-structured CP-nets.
Informally, TreeDT starts by initializing all the variables in V to their values in the (pur-
ported) less preferred outcome o′, and continues with an incremental, bottom-up conversion
of this initial assignment to the assignment induced by the (purported) more preferred out-
come o. Each step starts by iteratively removing from N all leaf variables (i.e., its maximal
fringe or canopy) that are already consistent with o. If at some iteration this step removes
all variables in N , then all variables are assigned to their values in o, and thus the required
improving flipping sequence from o′ to o has been generated.

Otherwise, let N ′ stand for the updated N (with nodes removed). A node X ∈ N ′ is a
candidate variable if: (i) the value of X can be flipped; and (ii) no descendant of X in N ′

can have its value flipped, given the current assignment to the variables of N ′. We then flip
the value of an arbitrary candidate variable (if one exists) and repeat with node removal; or
we report that there is no improving flipping sequence from o′ to o if there are no candidate
variables.

The TreeDT algorithm is deterministic and backtrack-free. Below we show that TreeDT
is complete for binary-valued, tree-structured CP-nets, and generates only irreducible flip-
ping sequences—thus the time complexity of TreeDT is O(n2). The fact that it generates
irreducible flipping sequences ensures its soundness (since by generating only valid flipping
sequences it can only provide correct positive answers to dominance queries).

Theorem 11 The algorithm TreeDT is sound and complete for binary-valued, tree-structured
CP-nets.

Proof: Consider an execution of TreeDT on a dominance query N |= o � o′ with respect
to a binary-valued, tree-structured CP-net N .
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First, suppose we iteratively remove from the tree any leaf variables that have as values
those required by the target outcome o. It is easy to see that this does not affect the
completeness of the algorithm: because N is acyclic, the variables in the fringe are not the
ancestors of any other variables. Hence, the value of the variables in the fringe does not
influence our ability to flip the values of any other variables (hence it does not remove any
improving flipping sequence from consideration).

Second, consider a variable X such that, after iteratively removing variables as above,
its value can be improved, yet none of its descendents in N can be improved, given the
current assignment v to V. If X is a leaf node, then changing its value does not influence
our ability to flip values of any other variables. In addition, the current value v[X] of X
is different from o[X], otherwise X would have been part of the removed fringe. Therefore,
the (improving) change of X’s value at this point is necessary in any improving flipping
sequence. Alternatively, suppose that X is not a leaf node. Since the leaf nodes in the
subtree of N rooted at X were not a part of the removed fringe, (at least) their values
remain to be changed. Because N is a tree, X completely separates its descendents in N
from all other variables; so no improving flip in the subtree of X will be possible until we
change the value of X. Hence the value of X must be changed in any flipping sequence
from this point before the value of any descendent of X.

What remains to be shown is that when there are several candidate variables that can
be flipped, it does not matter which one we flip first. If there is more than one candidate
variable, each one of them will have to be flipped at some point—each such flip is necessary
for flipping the children of the corresponding variable. However, any changes made to one
of these candidates or below it has no affect on the other candidates or their descendants.
Thus, the evaluation order of the candidate flips is irrelevant, and cannot prevent us from
finding a flipping sequence if one exists.

Thus the algorithm is complete. The soundness of the algorithm should be clear from
the proof as well. The flip generated at each step of the algorithm is a valid improving flip
given the current outcome v. �

Theorem 12 The time complexity of the flipping-sequence search over binary-valued, tree-
structured CP-nets is O(n2), where n is the number of variables in the CP-net.

Proof: Since the algorithm TreeDT is backtrack-free, the only thing that remains to be
shown in addition to Lemma 10 and Theorem 11 is that (on binary-valued, tree-structured
CP-nets) TreeDT generates only irreducible flipping sequences. However, the proof of this
subclaim is straightforward since we have already shown that:

1. TreeDT flips the value of each variable X either to achieve the value of X in the
(purported) more preferred outcome of the query, or to allow the required value flips
of the descendants of X, and

2. The role of the latter flips of X cannot be fulfilled by value flips of any other variables.

Therefore, given an improving flipping sequence F generated by TreeDT, removing any
subset of value flips from F makes F either illegal, or its ends are not (o′, o), respectively.
Hence, any improving flipping sequence generated by the TreeDT algorithm is irreducible.
�
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Theorem 13 below shows that even when limiting ourselves to chain binary-valued CP-
nets, there are dominance queries whose minimal flipping sequences have quadratic length.
Thus TreeDT is asymptotically optimal.

Theorem 13 Θ(n2) is a lower bound for the flipping-sequence search over binary-valued
tree-structured CP-nets.

Proof: For the proof see Appendix A. The proof is by example, providing a dominance
query on a binary-valued, tree CP-net for which the size of a minimal flipping sequence is
Θ(n2).

4.4.3 Polytree CP-nets

DAGs with no cycles in the underlying undirected graphs, also known as polytrees, offer a
minimal extension of directed trees. Unfortunately, the TreeDT procedure is not complete
for polytree CP-nets unless extended with some form of backtracking (even when restricted
to binary variables). This is due to the fact that several parents of a given node may each
be allowed to have their values flipped, but only one of the choices may lead to the target
outcome while the others lead to a dead end. For instance, consider the CP-net N from
Figure 9 and the query N |= ab̄c̄ � āb̄c. Starting with the outcome āb̄c, in the first iteration
of TreeDT, we have the choice of flipping either A or B. If B is chosen, the assignment is
changed to ābc. However, this cannot lead to the target, since there is no way to flip B
back to b̄. Thus, a dead end is reached. On the other hand, if A is chosen then TreeDT will
successfully generate the improving flipping sequence āb̄c → ab̄c → ab̄c̄. Thus, an incorrect
choice of improving variable may require backtracking.

However, dominance testing for binary-valued, polytree CP-nets remains polynomial
time, although the algorithm for its solution is more complicated than TreeDT. An algorithm
is adapted from the corresponding algorithm for planning problems with binary variables,
unary operators, and polytree causal graphs described by Domshlak and Brafman (2003).

Theorem 14 Dominance testing for binary-valued, polytree CP-nets is in p.

Proof: According to the reduction from the CP-net dominance queries to the classical
planning problems (see Section 4.3), every dominance query with respect to a binary-valued,
polytree CP-net can be compiled into a propositional planning problem with unary operators
and polytree causal graph. An algorithm for the latter problem is presented by Brafman
and Domshlak (2003), and the time complexity of this algorithm is O(22κn2κ+3), where κ
is the maximal in-degree of the causal graph.

Recall our assumption that the in-degree of the CP-net is bounded by some constant (in
this case, κ). This assumption is justified as the CPTs are part of the problem description,
and the size of a CPT (X) is exponential in |Pa(X)|. Therefore, the complexity of the
algorithm of Brafman and Domshlak (2003) on CP-nets is polynomial in the size the CP-
net. �
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4.4.4 Intractable dominance queries

While dominance testing for binary-valued, polytree CP-nets is polynomial, we can show
that for binary-valued, directed-path singly connected CP-nets, this problem is np-complete.9

This can be proved using a CP-net-oriented extension of the proof for the corresponding
claim with respect to planning problems (Brafman & Domshlak, 2003). These results also
entail that dominance testing for binary-valued CP-nets remains in np if the number of
distinct paths between any pair of nodes in the CP-net is polynomially bounded.

Theorem 15 Dominance testing for binary-valued, directed-path singly connected CP-nets
is np-complete.

Proof: For the proof see Appendix A.

An immediate extension of directed-path singly connected DAGs are max-δ-connected
DAGs: a directed graph is max-δ-connected if the number of different directed paths be-
tween any two nodes in the graph is bounded by δ.

Theorem 16 Dominance testing for binary-valued, max-δ-connected CP-nets, where δ is
polynomially bounded in the size of the CP-net, is np-complete.

Proof: The theorem is immediately entailed by the corresponding result for planning
of Brafman and Domshlak (2003); for the proof in terms of CP-nets, see Appendix A.

Theorem 15 implies that dominance testing for binary-valued, acyclic CP-nets is hard.
However, the exact complexity of this problem is still an open question—it is not clear
whether this problem is in np or if it is harder. Some preliminary analysis of this prob-
lem (Domshlak & Brafman, 2002a) shows a connection between the complexity of the flip-
ping sequence search for binary-valued, acyclic CP-nets and the diameters of some specific
graphs. A complementary result with respect to these graphs (Domshlak, 2002b), namely re-
cursively directed hypercubes, shows that dominance queries with respect to binary-valued,
acyclic CP-nets with unbounded node in-degree may require flipping sequences of size ex-
ponential in n, where n is the number of variables in the CP-net.

It has been shown that the most general class of planning problems with binary variables,
unary operators and acyclic causal graphs is harder than np (Brafman & Domshlak, 2003).
However, this result does not imply that answering dominance queries is harder than np as
well, as we do not know of a reduction from this class of planning problems into CP-nets.

5. Search Techniques for Dominance Queries

In the previous section we showed that dominance testing is generally hard even for binary-
valued CP-nets, and that tractable algorithms exist only for specific problem classes. How-
ever, CP-nets impose a rich structure on preferences that can be exploited by various search
strategies and heuristics which often significantly reduce search effort, and allow the effec-
tive solution of many problem instances. In this section we discuss the search for flipping

9. While every polytree is directed-path singly connected, the converse is not true.
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sequences and several rules that allow significant pruning of the search tree without im-
pacting soundness or completeness of the search procedure. These rules are described in
the context of improving flipping sequences, but they can be applied to worsening search
mutatis mutandis.

Given a CP-net N , and an outcome o, we define the improving search tree of o, T (o), as
follows: T (o) is rooted at o, and the children of every node o′ in T (o) are those outcomes that
can be reached by a single improving flip from o′. It is easy to see that every rooted path
in T (o) corresponds to some improving flipping sequence from the outcome o (with respect
to N), and vice versa.10 For example, consider the preference graph shown in Figure 11(a),
which is induced by the CP-net in Figure 4. Figure 11(b) depicts the improving search
tree T (ābc̄) with respect to this preference graph. Clearly, we can treat every dominance
query N |= o � o′ as searching T (o′) for a node associated with the outcome o, starting
from the root node o′. For instance, in the example above, given the dominance query
N |= ab̄c̄ � ābc̄, any of the dotted paths shown in Figure 11(c) bring us to outcome ab̄c̄.
However, taking a different direction during the tree traversal would lead to a dead end,
requiring backtracking in order to find a suitable flipping sequence. Any generic search
algorithm can be used to traverse the improving search tree to find an improving sequence
that supports a dominance query.

5.1 Suffix Fixing

Suffix fixing is a rule that allows certain moves in T (o) to be pruned from the search
tree without impacting completeness of the search. Let N be a CP-net over the variables
V = {X1, . . . ,Xn}, numbered according to an arbitrary topological ordering consistent with
the network N . We define an rth suffix of an outcome o ∈ Asst(V), for any r ≥ 1, to be
the subset of the outcome values o[Xr]o[Xr+1] · · · o[Xn]. Notice that the rth suffix of an
outcome depends on the topological ordering of variables used. Finally, we say that the rth
suffixes of outcomes o and o′ match iff o[Xj ] = o′[Xj ] for all r ≤ j ≤ n.

Let o∗ be a node in an improving search tree T (o′), and let o be the target of the search;
in other words, we are attempting to find a flipping sequence that proves N |= o � o′. The
suffix fixing rule requires that if the rth suffix of o∗ and o matches, for some value r, no
neighbors of o∗ can be explored whose rth suffix does not also match o. This is equivalent
to ruling out the exploration of any flipping sequences that destroy the suffix of an outcome
that matches the target outcome o. The following lemma ensures that pruning such branches
of the search tree T (o′) when searching for a path to o does not affect completeness.

Lemma 17 Let N be a CP-net, and o and o∗ be outcomes whose rth suffix matches (for
any topologically consistent ordering X1, · · · ,Xn of the variables in N). If there is path in
T (o∗) from root o∗ to o, then there is a path from root o∗ to o such that every outcome on
that path assigns the same values to Xr, · · ·Xn (i.e., with the same suffix match).

Proof: The proof is straightforward: Because N is acyclic, no suffix variable is an ancestor
of any non-suffix variables. Hence, the value of the suffix variables does not influence (for
better or worse) our ability to flip values of the remaining variables. �

10. The corresponding worsening search tree of o can be defined similarly using the worsening flips.

167



Boutilier, Brafman, Domshlak, Hoos & Poole
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Figure 11: (a) The preference graph induced by a CP-net; (b) the improving search tree
T (ābc̄); (c) paths to outcome ab̄c̄; and (d) pruning T (ābc̄) by suffix fixing.
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Suppose, given query N |= o � o′, there is a path in T (o′) to an outcome o∗ of the type
mentioned in the lemma above. Since the subtree of T (o′) rooted at o∗ is just T (o∗), we are
assured that if any path from o′ to o passes through o∗, there is a path from o′ to o that
passes through o∗ in which the suffix of o∗ is preserved on the subpath from o∗ to o. From
this we conclude:

Proposition 18 Any complete search algorithm for the improving search tree remains com-
plete if pruning using the suffix rule is used.

The suffix fixing rule effectively prunes the search tree under a node o∗ as described above
to contain only paths that retain the suffix values of the target o. Though backtracking
over choices that lead to o∗ may be required, as may those choices at o∗ that preserve
suffixes, consideration of the full search tree under o∗ will not be required (if there is a
nontrivial suffix match). For example, the improving search tree T (ābc̄) for the query
N |= ab̄c̄ � ābc̄ discussed above, pruned using the suffix fixing rule and the variable ordering
A,B,C, appears in Figure 11(d). As we can see, this pruning can dramatically reduce the
size of the effective search tree.

5.2 Least-Variable Flipping

An extension of the suffix fixing rule is the least-variable flipping rule, defined as follows.
Suppose we have a CP-net N , and a query N |= o � o′. Let o∗ be an outcome, and for
any variable Xj , let u denote the instantiation of U = Pa(Xj) in o∗. We say Xj is a
least-improvable variable in o∗ if there is some value x ∈ Dom(Xj) such that x �j

u o∗[Xj ],
and no descendent of Xj in N has this property. Intuitively, a least-improvable variable is
one that is the lowest in N that can be flipped to produce an outcome that is preferred
to o∗. Naturally, there may be several such variables. We say Xj is least improvable with
respect to the target o iff Xj is the least improvable variable among those not part of a suffix
match with o. In other words, if some suffix of o and o∗ matches, we apply the definition
of least-improvable variable, restricting attention to those variables that are not part of the
matching suffix. The least-variable flipping rule requires that the only neighbors of a node
o∗ that can be expanded in the search for an improving sequence with target o are those in
which some least improvable variable with respect to o is improved.

The following lemma ensures that for binary-valued, directed-path singly connected
CP-nets, pruning an improving search tree using the least-variable rule does not affect the
completeness of any search procedure.

Lemma 19 Let N be a binary-valued, directed-path singly connected CP-net, and o and o∗

be outcomes whose rth suffix matches (for any topologically consistent ordering X1, · · · ,Xn

of the variables in N). Let {o1, . . . , om} (m ≤ n) be the set of all outcomes reachable from
o∗ via some least-variable flip that does not affect the matched suffix. If there is path in
T (o∗) from root o∗ to o, then there is a path from some os (s ≤ m) to o.

Proof: Without loss of generality and based on our earlier observations, we can assume no
suffix match between o and o∗ (if so, restricting attention to the set of non-suffix variables
does not affect our argument).
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Now assume, contradicting the statement of the theorem, that none of the least-variable
flips os of o∗ have a path to o, but there does exist a path from o∗ to o. This implies that
none of these least-variable flips involve leaf variables in the network N . Otherwise, we
could flip the value of such a leaf variable at o∗ without any effect on our ability to flip
other variables, and thus be able to construct a path from o∗ to o that passes through any
of the os that flip leaves.

Now, consider a leaf variable Xi in N . Since we are dealing with binary variables, on
any irreducible flipping sequence from o∗ to o the value of Xi should be flipped exactly
once. However, the current assignment o∗[Pa(Xi)] does not allow us to perform this flip
(see observation above). Thus, we must achieve another assignment to Pa(Xi) before we
can flip the value of Xi, making it a part of a suffix match.

Let NXi be the subnetwork of N induced by Xi and all ancestors of Xi in N . Because
N is directed-path singly connected, NXi forms a tree, directed toward its root Xi. Now
we reduce NXi further by removing all subtrees NXj of NXi , such that no variable in NXj

can be flipped in o∗. Note that this step cause no loss of generality, since (due to acyclicity
of N) the assignment o∗ to the variables in NXj cannot be flipped first in any improving
flipping sequence beginning with o∗. Likewise, let Xi1 , . . . ,Xim′ , m′ ≤ m, be the variables
corresponding to the least-variable flips of o∗ in NXi , and, for 1 ≤ k ≤ m′, let ρik be the
(single) directed path from Xik to Xi.

Let Υ =
⋃m′

j=1

(
NXij

\ {Xij}
)
. Because NXi is a tree, for 1 ≤ j ≤ m′, the variable Xij

separates the variables in NXij
\ {Xij} and the paths ρi1 , . . . , ρim′ . Therefore:

(i) No set of flips of the variables in Υ will enable us to flip the values of the variables on
ρi1, . . . , ρim′ ; in particular a flip of Pa(Xi) cannot be enabled. Thus, to enable a flip of
Xi, eventually we will have to flip the value of at least one variable from Xi1 , . . . ,Xim′ .

(ii) No value flip of Xi1 , . . . ,Xim′ will affect (neither positively nor negatively) our ability
to flip the values of the variables in Υ. Thus, if there is an improving flipping sequence
from o∗ to o, then at least one such sequence starts with a value flip of a variable from
Xi1 , . . . ,Xim′ .

This last observation contradicts the assumption that there is a flipping sequence from o∗

to o that does not pass through at least one os. �
The least-variable flipping rule does not distinguish the flips of different candidate least

improvable variables; it simply restricts flips to such variables. In general, not all least-
variable flips are suitable—some may lead to dead-ends, requiring backtracking (a point
illustrated in Section 4.4.3). However, when we backtrack, we need only consider other
least-variable flips, not all flips, thus significantly reducing the size of the search tree and the
expected amount of backtracking. We observe that the TreeDT algorithm for binary-valued,
tree-structured CP-nets essentially implements the least-variable flipping rule, which is,
therefore, a complete and backtrack-free search procedure for binary-valued, tree-structured
networks.

Examples 7 and 8 below show that Lemma 19 presents probably the widest class of CP-
nets for which the least-variable flipping rule is complete: Example 7 shows that the least-
variable flipping rule does not preserve completeness in binary-valued, max-2-connected
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CP-nets, while Example 8 shows the same for multi-valued, directed-path singly connected
CP-nets. Note that the CP-net in Example 8 forms a chain. Therefore, binary-valued, tree-
structured CP-nets are probably the widest class of CP-nets for which the least-variable
flipping rule is both complete and backtrack-free.

Example 7 Consider the binary-valued CP-net in Figure 12, where Figure 12(a) depicts
the graph of the CP-net, and Figure 12(b) shows the corresponding CPTs. Given query
N |= abcde � āb̄c̄d̄ē, we work in the improving tree rooted at āb̄c̄d̄ē. The only least
improvable variable that can be flipped at the root outcome is B (while A and E can
be flipped, they are not least improvable). Unfortunately, flipping B to value b leads to
outcome ābc̄d̄ē, from which the target abcde is unreachable:

(i) In order to reach the target value d for the variable D, first we should achieve the
assignment b̄ ∧ c to the variables B and C;

(ii) Achieving the assignment b̄ ∧ c after the flip in question from b̄ to b (given ā ∧ ē) is
possible only by restoring the value b̄ for B, which requires a ∧ e; and

(iii) Flipping the value of B from b to b̄ given a ∧ e will lead us to a situation in which we
can no longer flip B, preventing us from achieving the target value b.

Thus the least-variable flipping rule will not allow the discovery of an improving flipping
sequence.

On the other hand, there is a flipping sequence from āb̄c̄d̄ē to abcde that proves the
query:

āb̄c̄d̄ē → ab̄c̄d̄ē → ab̄cd̄ē → ab̄cdē → abcdē → abcde

This sequence requires that A be flipped at the root, despite the fact that it is not a
least-improvable variable. �

Example 8 Consider a chain CP-net with three variables A, B, and C, such that A is
the parent of B, and B is the parent of C. Suppose A has domain {a, a}, B has domain
{b1, b2, b3}, and C has domain {c, c}, with the following conditional preferences:

a � a;
a : b3 � b2 � b1;
a : b3 � b1 � b2;

b1 : c � c b2 : c � c; b3 : c � c

Consider the query N |= ab3c � ab1c. The value c cannot be improved in the context of b1,
but b1 can be improved to b3 in the context of a; in fact this is the only least-improvable
variable flip for outcome ab1c. Unfortunately, this flip leads to outcome ab3c from which no
path to the target ab3c exists. In contrast, flipping the non-least-improving variable A to
a first allows the discovery of a successful improving path: after flipping a to a, we change
b1 to b2, c to c, and finally b2 to b3. �
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Figure 12: A multiply connected CP-net for which the least-variable flipping rule causes
incompleteness.

Though for multiply-connected networks, and networks with multi-valued variables, the
least-variable flipping rule is not complete, we believe that it can provide useful heuristic
guidance in these cases. The least-variable-first heuristic is a heuristic for ordering children
in an improving search tree—it requires that when expanding a node o∗ (with respect to
some target o), the children corresponding to least-improving variables be explored first.
This will typically reduce the number of nodes expanded in the tree, because the least-
variable-first heuristic can be viewed as embodying a form of least commitment. Flipping
the values of a least-improving variable can be seen as leaving maximum flexibility in flipping
the values of other variables. An upstream variable limits the possible flipping sequences
more drastically than a downstream variable since altering a variable does not limit the
ability to flip the values of its non-descendants.

For multivalued networks, the least commitment strategy can be used to extend the
least-variable-first heuristic using the least improving rule: alternative improving flips of
the same least-improvable variable are considered from the least improving flip to the most
improving flip (i.e., first the flip that leads to the least preferred improving value is adopted).
This allows greater flexibility in the movement of “downstream” variables. While one can
always further improve the value of the variable in question from its less preferred value to
a more preferred value (provided that parent values are maintained), “skipping” values may
prevent us from setting descendants to their desired values. In fact, this was illustrated in
Example 8, where, after the crucial flip of variable A, using the least improving rule as a
heuristic leads directly to the target outcome.
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5.3 Forward Pruning

In a search procedure for an improving flipping sequence, no matter whether this procedure
adopts the above heuristics or not, one can use a general forward pruning technique. This
technique has a number of desirable properties:

(a) it often quickly shows that no flipping sequence is possible;

(b) it prunes the domains of the variables to reduce the flipping search space;

(c) it doesn’t compromise soundness or completeness; and

(d) it is relatively cheap: its time complexity is O(nrd2), where n is the number of variables,
r is the maximum number of conditional preference rules for each variable, and d is the
size of the largest variable domain.

The general idea is to sweep forward through the network, pruning any values of a variable
that cannot appear in any improving flipping sequence for a given query. Intuitively, we
consider the set of flips possible, ignoring interdependence of the parents and the number
of times the parents can change their values.

We consider the variables in an order consistent with the network topology (so that
parents of a node are considered before the node). For each variable Xj with parents
U, we build a domain transition graph with nodes corresponding to the possible values
xi ∈ Dom(Xj). For each conditional preference relation �j

u over Dom(Xj) of the form:

xu
1 � xu

2 � · · · � xu
d

such that u contains only unpruned values of the parents U of Xj , we include directed
arcs between the successive values in the ordering �j

u (i.e., an arc from xi to xi−1, for each
1 < i ≤ d).

When answering query N |= o � o′, we can prune any value of Xj that is not on a
directed path from o′[Xj ] to o[Xj ] in the domain transition graph for Xj . This can be
implemented by running the well-known Dijkstra’s algorithm (Cormen, Lierson, & Rivest,
1990) twice: once to find the nodes reachable from o′[Xj ] and again to find the nodes that
can reach o[Xj ]. These sets of nodes can be intersected to find the possible values for Xj

along any path from o′[Xj ] to o[Xj ] in T (o′) (i.e., along any improving sequence from o′[Xj ]
to o[Xj ] with respect to N). If the intersection is empty, the dominance query fails: there
is no legal flipping sequence from o′[Xj ] to o[Xj ]. This often results in quick failure for
straightforward queries, so that we only carry out the search for non-obvious cases.

Example 9 Consider any CP-net N in which A and B are both binary root variables,
and the preferences over the values of A and B are a � ā and b � b̄. Given a query
N |= ab̄ . . . � āb . . ., first we consider A. The domain transition graph for A consists of an
arc ā → a, thus no values of A are pruned. If the example were changed slightly so that A
had a third value a, where a � a � a, then this third value could be pruned from A, thus
simplifying the tables for all the children of A.

We then consider B, whose domain transition graph consists of a single arc b̄ → b. Since
the value of B in the (purported) more preferred outcome of the query (b̄) is not reachable
in the domain transition graph of B from the value of B in the (purported) less preferred
outcome of the query (b), the query fails quickly without looking at the other variables. �
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6. Incompletely Specified Preferences and Indifference

In many practical applications, one expects to see reluctance on behalf of the user to provide
complete CPTs or to totally order the values of each variable in every possible context.
Thus, it is natural to ask how our results and techniques can be applied in these cases.

It turns out that all the results presented in this paper, except for the linear time pro-
cedure for ordering queries, can be easily extended to work both on CP-nets with partially
specified CPTs, and on satisfiable CP-nets that capture statements of preferential indiffer-
ence. For instance, all the results presented in Section 4.4 with respect to dominance queries
remain applicable “as is,” because almost all of these results were shown by Brafman and
Domshlak (2003) to be valid in more general setting of classical planning. The only case
that was not analyzed by Domshlak and Brafman is the case of tree CP-nets. However,
the correctness of the TreeDT procedure for “extended” CP-nets can be easily verified, and
its complexity remains quadratic. This stems from the fact that Lemma 10 is valid in the
more general planning setting (Brafman & Domshlak, 2003). The only point that requires
clarification is the difference between partial specification and indifference with respect to
flipping sequences: Given a variable X with parents U, and two values x1, x2 ∈ Dom(X),
if x1 and x2 are equally preferred given u ∈ Asst(U), then given u we can flip the value
of X from x1 to x2, and vice versa. Alternatively, if x1 and x2 are incomparable given
u ∈ Asst(U), then given u we cannot flip the value of X from x1 to x2, nor from x2 to x1.

The complexity of dominance testing in the context of indifference and incompletely
specified CPTs remains an open problem. However, Theorem 20 below shows that the
flipping sequence search over multi-valued CP-nets with partially specified preferences is
not in np, even if the CP-net forms a chain and the variables are three-valued only.

Theorem 20 Flipping sequence search over multi-valued CP-nets with partially specified
preferences is not in np.

Proof: For the proof see Appendix A.

Now, consider outcome optimization queries. When the CPTs are allowed to be partially
specified, or the statements of indifference are allowed, the CP-net may induce more than
one nondominated outcome. For instance, consider again Example 1 (My Dinner I). If the
preference for the type of wine given fish soup is not specified, or the decision maker considers
both red and white wine to go equally well with fish soup, then this CP-net induces two
nondominated outcomes: fish soup with white wine, and fish soup with red wine.

The forward sweep procedure for the outcome optimization queries presented in Section 3
can be easily extended for the cases of partial specification and/or indifference by adding
branching on each variable X for which the (already generated) assignment on Pa(X)
induces more than one nondominated value from Dom(X). The complexity of the resulting
algorithm is O(nα), where n is the number of variables in the CP-net, and α is the number
of nondominated outcomes induced by the CP-net. Of course, α can be exponential in
the size of the CP-net.11 However, our adapted forward sweep procedure has the anytime
property—the solutions are generated iteratively, and the time to add a new nondominated

11. The tight upper bound of α = 2n can be shown for any CP-net by simply leaving all CPTs unspecified.
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outcome to the current set of generated solutions is O(n). Therefore, the complexity of
generating k nondominated solutions is linear in k.

Finally, an important query that can be answered efficiently in standard CP-nets is the
outcome ordering query (see Section 4.1). Although the basic Corollary 4 remains valid
in the case of CP-nets with partial specifications or statements of indifference, this is not
the case for Theorem 5. Therefore, the computational complexity of ordering queries for
extended CP-nets remains an open question, and we conjecture that this problem is hard.

7. Concluding Remarks

In this paper we introduced CP-nets, a new graphical model for representing qualitative
preference orderings which reflects conditional dependence and independence of preference
statements under a ceteris paribus semantics. This formal framework offers a compact
and arguably natural representation of preference information, and allows us to efficiently
answer some of the principal forms of preference queries.

We described several types of queries and algorithms for answering them with respect
to a specific CP-net. In particular, outcome optimization and outcome ordering queries
were shown to be solvable in time linear in the number of variables in the network. For the
dominance queries, however, the situation is more complicated. First, we demonstrated the
equivalence of answering dominance queries with the task of determining existence of an
improving (or worsening) sequence of variable value flips with respect to the given CP-net.
Then, we reduced the latter task to a special subclass of classical planning problems. These
insights allowed us to show that, in general, answering dominance queries is np-hard, but
that polynomial algorithms exist for tree and polytree-structured, binary-valued CP-nets.

In addition, we presented several techniques that one can use in a generic search proce-
dure for an improving flipping sequence. Some of these techniques were shown to have no
impact on soundness or completeness of the search for any CP-net, while other techniques
have this property only for binary-valued CP-nets. However, we argued that latter tech-
niques can be modified into general purpose heuristics that are likely to reduce significantly
the size of the expanded search tree.

Finally, we analyzed the applicability of our results for CP-nets that allow partially
specified preferences and/or capture statements of indifference.

7.1 Applications

Our goal in developing the CP-nets formalism is to facilitate the development of applications.
One such application—preference-driven, adaptive multimedia document presentation—was
recently developed at Ben-Gurion University (Domshlak et al., 2001; Gudes et al., 2002). We
described the central components of this system in Section 3.2. Another application in which
both conceptual and computational properties of CP-nets seem to be useful is a distributed
meeting scheduler. A basic prototype for such a system has been implemented at Ben-
Gurion University (Brafman & Domshlak, 2001). We are currently extending this system,
while working on the related theoretical issue of multi-agent preference-based optimization.

Another potential application for qualitative preferences in general, and thus for CP-
nets in particular, is sorting a product database according to user-specified preferences.
This problem is highly relevant in the context of electronic commerce. Several rather
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conceptually simplistic, though quite interesting, commercial applications that rely on
unconditional preference statements are available on the World Wide Web; examples in-
clude Active Sales AssistantTM (see www.activebuyersguide.com) and PersonalogicTM (see
www.personalogic.com). The general idea is to assist a user in selecting a specific product
from a product database according to her preferences. Here, it is very important to use
compact and natural representations for preference information. CP-nets extend current
models (which typically don’t allow conditional preference statements), yet offer efficiency
in ordering a given set of alternatives. Another important aspect of this problem is that
the given database precisely defines the products (represented as vectors of attribute val-
ues) available, and preference information is only required to the extent that it narrows the
choice of product to a sufficiently small selection of products from this database. Both the
graphical properties of CP-nets underlying the efficiency of the ordering queries, and the
various dominance testing strategies, can be exploited in this context to find a subset of
products that are not dominated by any other product in the database, given the (condi-
tional) preference information extracted from the user. Here, an interactive and dynamic
approach appears to be most promising, where the user is prompted for additional prefer-
ence statements until the ordering of the products in the database is sufficiently constrained
by the preference information to offer a reasonably small selection of products.

Another growing application area for CP-nets is automated constraint-based product
configuration (Sabin & Weigel, 1998). The task is to assemble a number of components
that compose a product such that given compatibility constraints are satisfied. A simple
example of this is the assembly of components for a computer system where, for instance,
the type of system bus constrains the choice of video and sound cards. While there has
been a wide and growing body of research in modeling configuration problems and efficient
problem solving methods, there is still a need for more work on modeling and learning
user preferences, and using these to achieve configurations that are not only feasible, but
also satisfactory from the user point of view. These issues are emphasized in many papers
on configuration (Freuder & O’Sullivan, 2001; Haag, 1998; Junker, 1997, 2001; Soininen
& Niemelä, 1998), especially when high-level configurators for specific, real-life domains
are discussed (Haag, 1998). The importance of incorporating user preferences into the
configuration problem stems from the fact that many such problems are weakly constrained
and have numerous feasible solutions (D’Ambrosio & Birmingham, 1995). The value of these
solutions, from the subjective point of view of a particular user, may vary significantly.

CP-nets can be used to represent user preferences which will be used together with
compatibility constraints to search for most preferred, feasible configurations. In contrast
to the database sorting application above, here the set of possible vectors of feature values
(i.e., configurations) is not explicitly given, but implicitly specified by the compatibility
constraints. A CP-net based search algorithm by Boutilier et al. (1997) was specifically
designed to address this problem. For the description of this algorithm, as well as for analysis
of its computational properties we refer the reader to Boutilier et al. (1997), Brafman and
Domshlak (2001).
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7.2 Related Work

A number of lines of research are related to CP-nets. In addition to the conceptual work in
philosophy and philosophical logic described in Section 2, in AI, Doyle and Wellman (1991,
1994) explored ceteris paribus assertions and their logical properties. However, their work
did not exploit the notions of preferential independence, and in particular did not considered
graphical representations of preference statements. To the best of our knowledge, there are
no computational results known for this formalism. Therefore, it is not clear whether useful
queries can be answered efficiently in this framework.

On the surface, CP-nets are reminiscent of Bayesian networks (Pearl, 1988), which are
also graphical structures capturing conditional independence assertions. Indeed, Bayesian
networks and their utilization of probabilistic independence provide important motivation
to our work, but the two structures differ considerably in their properties and the type of
information they present.

Motivated by the same considerations driving our work, Bacchus and Grove (1995) and
La Mura and Shoham (1999) study different notions of independence and their associated
graphical representations. Both representations allow for quantitative assessments, unlike
CP-nets (at least in their current form) and differ from CP-nets in the precise nature of the
independence concept studied. In particular, Bacchus and Grove concentrate on the notion
of conditional additive independence. Additive independence is a very strong property,
requiring that the utility of an outcome be the sum of the “utilities” of the different variable
values of the outcome. Conditional additive independence is a weaker requirement, and
thus more promising in practice. Bacchus and Grove show that the conditional additive
independence properties of a domain can be captured by an undirected graph where for set
of nodes A,B,C, A is independent of B given C if C separates between the nodes in A and
B. La Mura and Shoham (1999) define the concept of u-independence using a ceteris paribus
comparison operator over utilities. This operator measures the “intensity” of preference for
specific values of certain variables given some fixed value for the other variables and with
respect to a fixed reference point. They also define an undirected graphical structure,
expected utility networks, in which u-independence is represented using the notion of node
separation.

Finally, recent work by Benferhat, Dubois and Prade (2001) provides a preliminary inves-
tigation of the potential of possibilistic logic in qualitative decision analysis, and more specif-
ically in qualitative preference representation. The possibilistic approach takes utilities into
account, as well as probabilities, but provides a qualitative approach to decision problems
by replacing numeric preferences and probabilities with linear orderings. For discussion of
this approach to utilities and preference representation, see Benferhat et al. (2001), Dubois,
Godo, Prade, and Zapico (1998b), Dubois, Berre, Prade, and Sabbadin (1998a), Dubois,
Prade, and Sabbadin (1997), and for related qualitative models, see Boutilier (1994), Tan
and Pearl (1994).

7.3 Future Work

We see a number of potential extensions to the work described in this paper. In particular,
our work leaves a number of interesting open theoretical questions. First, the worst case
complexity of dominance testing with respect to acyclic, binary-valued CP-nets needs to
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be established—it is still an open question whether this problem is in np. Second, the
complexity of dominance queries with respect to multi-valued CP-nets remains an open
problem. Third, it is not clear how hard ordering queries are for CP-nets that capture
partial preference specification and/or the statements of preferential indifference. Finally,
there is a need to understand the expressive power of CP-nets better, specifically: what
sort of partial orderings are and are not representable by CP-nets; and among orderings
representable by CP-nets, which ones are can only be represented by a cyclic network.

Cyclic networks present another important challenge. Such networks can arise in ap-
plications where a natural notion of neighborhood is defined on the set of variables such
that preferences for one variable value depend on the value of its neighboring variables.
In such cases, the user may find it more natural to provide a cyclic preference structure
and we must be able to determine whether the specified network is satisfiable. In addition,
inference methods for such networks need to be developed or, alternatively, methods for
reducing cyclic networks to acyclic networks without significant blow-up in size. A number
of recent papers have started to deal with this question, with some interesting insights and
results (Domshlak, 2002a; Domshlak & Brafman, 2002a; Brafman & Dimopoulos, 2003;
Domshlak, Rossi, Venable, & Walsh, 2003).

We are working on various extensions of the framework presented here. These exten-
sions include the use of conditional preference statements that contain a small amount of
quantitative information. Existing applications (such as online interactive consumer guides)
suggest that a limited amount of such quantitative preference information might be rela-
tively easy to extract from the user in a natural way, and is very useful for inducing stronger
preference orderings. Preliminary work on this topic has been undertaken (Boutilier, Bac-
chus, & Brafman, 2001).

Another interesting extension of CP-nets are TCP-nets (Brafman & Domshlak, 2002).
TCP-nets add importance relations and conditional relative importance statements to the
the conditional ceteris paribus statements supported by CP-nets. Conditional importance
statements have the form “if A = a then optimizing B is more important to me than
optimizing C”. For example, “If I will be flying at night, then having a better seat is more
important than getting a more preferred carrier.”

Finally, preference-based optimization presents an interesting tradeoff between the amount
of user interaction required for extracting preference information and the amount of com-
putation needed to determine the most preferred feature vectors. By asking very specific
questions about particular, potentially complex preferences, finding most preferred feature
vectors can become much easier. On the other hand, asking too many questions, especially
those not really necessary for establishing relevant preferences, will annoy the user and make
the system less usable. Thus, finding good tradeoffs between the amount of user-interaction
and computation time for answering queries—such as finding most preferred items from a
database of optimal configurations—seems to be a promising direction for future research.
This is related to the motivation underlying goal programming (Dyer, 1972; Ignizio, 1982).
The structure of CP-nets can be exploited in determining preference elicitation strategies.
This has been explored in the context of CP-nets with quantitative information (Boutilier
et al., 2001); it remains to be seen how to use such techniques in a purely qualitative setting.
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Appendix A.

Theorem 13 Θ(n2) is a lower bound for the flipping-sequence search over binary-valued,
tree-structured CP-nets.

Proof: The proof is by example of a dominance testing query over a binary-valued, tree
CP-net for which the size of a minimal flipping sequence is Θ(n2).

Consider the following CP-net N defined over binary variables {X1, . . . ,Xn}, where
n = 2k + 1 for some k ∈ N. The domain of each variable Xi is D(Xi) = {xi, x̄i}. For
1 ≤ i ≤ n, Pa(Xi) = {Xi−1}, thus N forms a directed chain. The CPTs capturing the
preferences over the values of {X1, . . . ,Xn} are shown in Figure 13(a).

Now consider the dominance testing query JN |= o � o′K, where, for 1 ≤ i ≤ n:

o[Xi] = xi

o′[Xi] =
{

xi, i = 2m,
x̄i, i = 2m + 1

m ∈ N

The length of the minimal (and actually the only) flipping sequence from o′ to o is k2+2k+1,
proving the required lower bound. The jth flip on this sequence changes the value of the
variable Xk+1−α+β, where:

α = bj/(k + 1)c
β = (j − 1) mod (k + 1)

Informally, the first k + 1 flips change the values of Xk+1, . . . ,Xn (in this order), next k + 1
flips change the values of Xk, . . . ,Xn−1, then Xk−1, . . . ,Xn−2, etc. Finally, the last k + 1
flips change the values of X1, . . . ,Xk+1. There are k + 1 such sets, of k + 1 flips each, the
length of the above flipping sequence is thus k2 + 2k + 1.

Figure 13(b-c) illustrates o and o′, and the corresponding flipping sequence for k = 2
(i.e., n = 5). In Figure 13(c), each variable Xi is annotated with its value flips along the
flipping sequence: Arrows between the values stand for the value flips, and the sequential
numbers of the flips along the flipping sequence appear as the arrow labels.
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Variable CPT

i = 1 xi � x′
i

1 < i ≤ k + 1
xi−1 : xi � x̄i

x̄i−1 : x̄i � xi

k + 1 < i ≤ n
xi−1 : x̄i � xi

x̄i−1 : xi � x̄i

(a)

o = x1x2x3x4x5

o′ = x̄1x2x̄3x4x̄5

?>=<89:;X1

��

x̄1
7 // x1

?>=<89:;X2

��

x2
4 // x̄2

8 // x2

?>=<89:;X3

��

x̄3
1 // x3

5 // x̄3
9 // x3

?>=<89:;X4

��

x4
2 // x̄4

6 // x4

?>=<89:;X5 x̄5
3 // x5

(b) (c)

Figure 13: Illustration for the proof of Theorem 13: (a) CPTs for n variables; (b) o and o′

for k = 2; and (c) flipping sequence for k = 2.

Now we prove that the size of the minimal flipping sequence for this example (with
n = 2k + 1) is k2 + 2k + 1. We divide the proof into two steps, and show that on a minimal
flipping sequence from o′ to o:

1. For 1 ≤ i ≤ k + 1, every variable Xk+i (last k + 1 variables) must change its value at
least k + 2 − i times, and

2. For 1 ≤ j ≤ k, every variable Xj (first k variables) must change its value at least j
times.

(1) The proof of the first claim is by induction on i. For i = k + 1, the variable X2k+1 (i.e.,
Xn) must change its value at least once since o[X2k+1] 6= o′[X2k+1].

Now, we assume the induction hypothesis that, for l ≤ i ≤ k + 1, every variable Xk+i

must change its value at least k + 2 − i times, and prove the claim for Xk+l−1. Recall that
Xk+l−1 is the only parent of Xk+l, thus every pair of successive flips of Xk+l must require
different values of Xk+l−1.

Assume that k + l is even. Then, the first flip of Xk+l is from xk+l to x̄k+l, requiring
Xk+l−1 to take the value xk+l−1 while o′[Xk+l−1] = x̄k+l−1. Therefore, the first flip of Xk+l

may be performed only after the first flip of Xk+l−1, and therefore, before the flip number
k + 2− l of Xk+l, the variable Xk+l−1 will have to change its value at least k + 2− l times.
Now, since k + l is even, then so is k + 2− l. Thus, after k + 2− l flips, the variable Xk+l−1

will be assigned the value o′[Xk+l−1] = x̄k+l−1. However, o[Xk+l−1] = xk+l−1, thus Xk+l−1

will have to change its value at least one more time.
The proof for the case of k + l odd is similar: The first flip of Xk+l is from x̄k+l to xk+l,

requiring Xk+l−1 to take the value x̄k+l−1 while o′[Xk+l−1] = xk+l−1. Therefore, before the
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flip number k+2−l of Xk+l, the variable Xk+l−1 will have to change its value at least k+2−l
times. Now, since k + l is odd, then so is k + 2 − l. Thus, after k + 2 − l flips, the variable
Xk+l−1 will be assigned to the value x̄k+l−1. However, o[Xk+l−1] = o′[Xk+l−1] = xk+l−1,
thus Xk+l−1 will have to change its value at least one more time. Hence, we proved that,
for i = l − 1, Xk+i has to change its value at least k + 2 − i (= k + 3 − l) times.

(2) The proof of the second claim is by induction on j. First, we show that Xk must change
its value at least k times. From the first claim we have that Xk+1 changes its value at least
k + 1 times. Therefore, since every pair of successive flips of Xk+1 requires different values
of Xk, the variable Xk must change its value at least k times.

Now, we assume the induction hypothesis that, for l ≤ j ≤ k, every variable Xj must
change its value at least j times, and prove the claim for Xl−1. Again, since every pair of
successive flips of Xl requires different values of Xl−1, the variable Xl−1 must change its
value at least l − 1 times. �

Theorem 15 Dominance testing for binary-valued, directed-path singly connected CP-nets
is np-complete.

Proof: First we show the membership in np. Given a dominance query Π = JN |= o � o′K,
let MinFS(Π) denote the size of a minimal (= shortest) improving flipping sequence from o′

to o. Using the MaxFlip property of the variables, the following upper bound for MinFS(Π)
is straightforward from the Lemma 10:

MinFS(Π) ≤
∑

Xi∈V

MaxFlip(Xi) ≤ n2 (2)

Thus, if we guess a minimal improving flipping sequence for a given solvable problem, we
can verify it in low order polynomial time.

The proof of hardness is by reduction from 3-sat, i.e., problem of finding a satisfying
assignment for a propositional formula in conjunctive normal form in which each conjunct
(clause) has at most three literals.

Let F = c1 ∧ . . . ∧ cn be a 3-sat propositional formula, and x1, . . . , xm be the variables
used in F . Our equivalent problem can be constructed as follows:

• V = {V1, V̄1, . . . , Vm, V̄m} ∪ {C1, . . . , Cn}, where for 1 ≤ i ≤ 2m + n, the domain
D(Xi) = {f, t} (f and t stand for false and true, respectively).

• Pa(Vi) = Pa(V̄i) = ∅
• Pa(Ci) = {Vi1 , V̄i1 , Vi2 , V̄i2 , Vi3 , V̄i3}, where xi1, xi2 , and xi3 are the variables that

participate in the ith clause of F .

• Outcome o′ assigns f to all variables in V.

• Outcome o assigns t to all variables in V.

For any variable Vi or V̄i, 1 ≤ i ≤ m, the value t is (unconditionally) preferred to the
value f . In turn, for 1 ≤ i ≤ n, the value t is preferred to the value f for the variable Ci if
there exist a j, 1 ≤ j ≤ 3, such that:
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1. Vij 6= V̄ij

2. if the literal xij (and not x̄ij) belongs to the clause ci then Vij = t, otherwise V̄ij = t

For all other assignments to Pa(Ci), the value f is preferred to the value t for the variable
Ci.

The constructed inference problem has a directed-path singly connected, binary-valued
CP-net in which for 1 ≤ i ≤ n, |Pa(Xi)| ≤ 6. Let us show that an improving flipping
sequence from o′ to o exists if and only if a satisfying assignment for F can be found.

⇐ Given a satisfying assignment φ, the improving flipping sequence is as follows: First,
for 1 ≤ j ≤ m, if xj = t in φ, then flip the value of the variable Vj from f to t. Otherwise, if
xj = f in φ, then flip the value of the variable V̄j from f to t. The actual ordering of these
flips is irrelevant since these variables are mutually independent. Then, for 1 ≤ i ≤ n, flip
the value of Ci from f to t. Here also, the ordering of these flips is not significant. Finally,
flip the values of all variables Vj and V̄j that still have the value f .

⇒ Let S be an improving flipping sequence from o′ to o. If the value of a variable Ci is
flipped on S while variables Vj , V̄j ∈ Pa(Ci) had the values t, f , respectively, then variable
xj is set to true in φ. Otherwise, if Ci is flipped on S while variables Vj, V̄j ∈ Pa(Ci) had
the values f, t, respectively, then variable xj is set to false in φ. Existence of such a j is
ensured by the construction of CPT (Ci).

In turn, for 1 ≤ j ≤ m, neither Vj nor V̄j can achieve the value f after achieving the
value t. Hence, if there is an outcome o1 ∈ S such that {Vj = t, V̄j = f} ∈ o1, then there
will be no outcome o2 ∈ S such that {Vj = f, V̄j = t} ∈ o2, and vice versa. This shows
that the value of each variable Ci is flipped on S from f to t in a context consistent with
φ. Therefore, for each close ci, there is a literal lij ∈ ci, 1 ≤ j ≤ 3, such that lij ∈ φ. �

Theorem 16 Dominance testing for binary-valued, max-δ-connected CP-nets, where δ is
polynomially bounded in the size of the CP-net, is np-complete.

Proof: We prove this theorem by showing that, for any acyclic, binary-valued CP-net N ,
and for any variable Xi ∈ N , we have:

MaxFlip(Xi) ≤ 1 +
n∑

j=i+1

ρ(Xi,Xj) (3)

where ρ(Xi,Xj) denotes the total number of different, not necessary disjoint, paths from Xi

to Xj . For simplicity of presentation, we assume that the variables {X1, . . . ,Xn} of N are
numbered according to a topological order induced by the graph of N , and rewrite Eq. 3
into:

MaxFlip(Xi) ≤ 1 +
n∑

j=i+1

ρ(Xi,Xj) (4)

The proof is by induction on i. For i = n it is obvious that MaxFlip(Xn) ≤ 1, since Xn

is a leaf node in N . Now we assume that the lemma holds for any i > k, and prove it for
i = k. Without loss of generality, assume that there exist at least one variable Xj such that
Xk ∈ Pa(Xj). Otherwise, we simply have that MaxFlip(Xk) ≤ 1.
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Denote by succ(Xk) the immediate successors of Xk in N , i.e. Xik ∈ succ(Xk) iff Xk ∈
Pa(Xik). The proof is straightforward:

MaxFlip(Xk)
Lemma 9≤ 1 +

∑
Xik

∈succ(Xk)

MaxFlip(Xik) ≤

I.H.≤ 1 + |succ(Xk)| +
∑

Xik
∈succ(Xk)

n∑
j=ik+1

ρ(Xik ,Xj) =

= 1 +
n∑

j=k+1

ρ(Xk,Xj)

Now, if a binary-valued CP-net is max-δ-connected, and the variables of a given problem
Π are considered in a topological ordering induced by N , then from Eq. 4 it follows that,
for any variable Xi ∈ N , we have:

MaxFlip(Xi) ≤ δn + 1 (5)

Let MinFS(Π) denote the size of a minimal (= shortest) improving flipping sequence for
Π. From Eq. 5 follows that MinFS(Π) ≤ δn2 + n. Hence, if δ is polynomially bounded in
the size of Π, then we can guess and verify a minimal improving flipping sequence for Π in
polynomial time, and thus this class of dominance testing queries is in np. �

Theorem 20 Flipping sequence search over multi-valued CP-nets with partially specified
preferences is harder than np.

Proof: The proof is by example of a dominance query over a multi-valued, chain CP-net
with partially specified preferences, for which the minimal flipping sequence is exponentially
long.

Consider the following CP-net N defined over three-valued variables {X1, . . . ,Xn},
where n = 2k + 1 for some k ∈ N. The domain of each variable Xi is D(Xi) = {xi, x̄i, ¯̄xi}.
For 1 ≤ i ≤ n, Pa(Xi) = {Xi−1}, thus N forms a directed chain. The CPTs capturing the
preferences over the values of {X1, . . . ,Xn} are shown in Figure 14.

Now consider the dominance testing query JN |= o � o′K, where, for 1 ≤ i ≤ n,
o[Xi] = xi and o′[Xi] = ¯̄xi. Let the sequence {ai} be defined as:

ai =

{
2, i = 1
2ai−1 + 2, i ≥ 2

(6)

The length of a minimal flipping sequence from o′ to o as above is greater than:

k∑
i=1

ai > 2
n
2

Figure 15 illustrates the corresponding flipping sequence for k = 2 (i.e., n = 5), where
each variable Xi is annotated with its value flips along the flipping sequence: Arrows between
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Variable CPT
i = 1 xi � x̄i � ¯̄xi

1 < i ≤ k + 1
xi−1 : xi � x̄i � ¯̄xi

x̄i−1 : ¯̄xi � x̄i � xi

¯̄xi−1 : xi � x̄i � ¯̄xi

k + 1 < i ≤ n
xi−1 :

{
x̄i � xi

x̄i � ¯̄xi

¯̄xi−1 :
{

xi � x̄i

¯̄xi � x̄i

Figure 14:

?>=<89:;X1

��

¯̄x1
10 // x̄1

18 // x1

?>=<89:;X2

��

¯̄x2
3 // x̄2

7 // x2
11 // x̄2

15 // ¯̄x2
19 // x̄2

22 // x2

?>=<89:;X3

��

¯̄x3
1 // x3

4 // ¯̄x3
8 // x3

12 // ¯̄x3
16 // x3

20 // ¯̄x3
23 // x3

?>=<89:;X4

��

¯̄x4
2 // x̄4

5 // x4
9 // x̄4

13 // ¯̄x4
17 // x̄4

21 // x4

?>=<89:;X5 ¯̄x5
6 // x̄5

14 // x5

Figure 15:

the values stand for the value flips, and the sequential numbers of the flips along the flipping
sequence appear as the arrow labels.

Now we prove that the size of the minimal flipping sequence for the dominance query
as above is greater than

∑k
i=1 ai. We divide the proof into four steps, where the first step

shows the necessity of
∑k

i=1 ai flips for any flipping sequence from o′ to o as above, and the
subsequent three steps prove the existence of a flipping sequence from o′ to o. Recall that,
since N forms a chain, for 1 < i ≤ n, Xi−1 is the only parent of Xi, thus the value flips of
Xi depend only on the value of Xi−1.

The steps of the proof are as follows:
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(1) On a flipping sequence from o′ to o, for 2 ≥ i ≤ k + 1, every variable Xk+i (last k
variables) must change its value at least ak+2−i times, such that if fk+i

1 , . . . , fk+i
ak+2−i

is
the corresponding sequence of flips of Xi, then, for 1 ≤ j ≤ ak+2−i, we have:

fk+i
j =




¯̄xi → x̄i, j = 4k + 1
x̄i → xi, j = 4k + 2
xi → x̄i, j = 4k + 3
x̄i → ¯̄xi, j = 4k

k ∈ N (7)

(2) For 1 ≤ i ≤ k, every variable Xi (first k variables) can change its value ai times, such
that if f i

1, . . . , f
i
ai

is the corresponding sequence of flips of Xi, then, for 1 ≤ j ≤ ai,
every flip f i

j is consistent with Eq. 7.

(3) Given the sequence of flips for Xk as in (2), the variable Xk+1 can change its value
ak +1 times, such that if fk+1

1 , . . . , fk+1
ak+1 is the corresponding sequence of flips of Xk+1,

then, for 1 ≤ j ≤ ak + 1, we have:

fk+1
j =

{
¯̄xk+1 → xk+1, j = 2k + 1
xk+1 → ¯̄xk+1, j = 2k

k ∈ N (8)

(4) The sequence of flips for Xk+2 as in (1) is feasible given the sequence of flips for Xk+1

as in (3).

Step (1): The proof is by induction on i. For i = k + 1, the variable X2k+1 (i.e., Xn) must
change its value at least twice, since no value of X2k induces ¯̄x2k+1 ≺ x2k+1. The only
way to change the value of X2k+1 from ¯̄x2k+1 to x2k+1 is to flip X2k+1 first from ¯̄x2k+1 to
x̄2k+1, and then from x̄2k+1 to x2k+1. Note that these flips are consistent with Eq. 7 and
ak+2−(k+1) = a1 = 2, thus we established the induction base.

Now, we assume that the induction hypothesis that, for 2 < l ≤ i ≤ k+1, every variable
Xi must change its value at least ak+2−i times according to Eq. 7, and prove this claim for
Xk+l−1.

Consider the sequence of flips of Xk+l that we assumed to be necessary, i.e., fk+l
1 , . . . , fk+l

ak+2−l
.

According to CPT (Xk+l) we have that:

(i) every pair of successive flips of Xk+l require different values of Xk+l−1,

(ii) the required values of Xk+l−1 are {¯̄xk+l−1, xk+l−1}, and

(iii) the first flip of Xk+1 (from ¯̄xk+l to x̄k+l) requires Xk+l−1 = xk+l−1, while o′[Xk+l−1] =
¯̄xk+l−1.

Therefore, Xk+l−1 must perform ak+2−l value changes from ¯̄xk+l−1 to xk+l−1 and back, in
order to support the required value changes of Xk+l. In addition, after supporting the value
changes of Xk+l, the variable Xk+l−1 must perform another value change from ¯̄xk+l−1 to
xk+l−1, since ak+2−l is even (see Eq. 6), while o′[Xk+l−1] = ¯̄xk+l−1 and o[Xk+l−1] = xk+l−1.
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Finally, according to CPT (Xk+l−1), every value change of Xk+l−1 from ¯̄xk+l−1 to xk+l−1

and from xk+l−1 to ¯̄xk+l−1 consists of two flips: from the initial value to x̄k+l−1, and
from x̄k+l−1 to the target value. Thus the proved that Xk+l−1 must perform at least
2(ak+2−l + 1) = ak+3−l value changes, and that these value changes are consistent with
Eq. 7.

Step (2): The proof is by induction on i. For X1 the proof is straightforward, since o′[X1] =
¯̄x1, o[X1] = x1, and CPT (X1) allows us to flip the value of X1 from ¯̄x1 to x̄1, and then
from x̄1 to x1.

Now we assume the induction hypothesis that, for 1 ≤ i < k, every variable Xi can
change its value ai times according to Eq. 7, and prove the claim for Xi+1. The proof is
apparent from CPT (Xi+1), the outcomes o and o′ in query, and the induction hypothesis.
For every value achieved by Xi along its sequence of ai flips (including the initial value
o′[Xi] = ¯̄xi), Xi+1 can flip its value twice: Given Xi = ¯̄xi or Xi = xi, we can flip the value
of Xi+1 first from ¯̄xi+1 to x̄i+1, and then from x̄i+1 to xi+1. Alternatively, given Xi = x̄i,
we can flip the value of Xi+1 from xi+1 to x̄i+1, and then from x̄i+1 to ¯̄xi+1. Therefore,
Xi+1 can flip its value 2(ai + 1) = ai+1 times, and it is easy to see that these value flips of
Xi+1 are consistent with Eq. 7.

Step (3): Given the sequence of ak flips fk
1 , . . . , fk

ak
of Xk as in Eq. 7, let val(fk

j ) ∈ Dom(Xk)
be the value of Xk achieved by the flip fk

j , for 1 ≤ j ≤ ak. CPT (Xk+1) entails that, for any
triple of values of Xk achieved by a triple of successive flips fk

j , fk
j+1, f

k
j+2, 1 ≤ j ≤ ak − 2,

we have either:

val(fk
j ) : xk+1 � ¯̄xk+1

val(fk
j+1) : ¯̄xk+1 � xk+1

val(fk
j+2) : xk+1 � ¯̄xk+1

or

val(fk
j ) : ¯̄xk+1 � xk+1

val(fk
j+1) : xk+1 � ¯̄xk+1

val(fk
j+2) : ¯̄xk+1 � xk+1

In addition, we know that:

o′[Xk] = ¯̄xk : xk+1 � ¯̄xk+1

and
val(fk

1 ) = x̄k : ¯̄xk+1 � xk+1

The above entails that Xk+1 can change its value ak + 1 times according to Eq. 8.

Step (4): The proof of this subclaim is straightforward from CPT (Xk+2). Given the se-
quence of Xk+2 value flips fk+2

1 , . . . , fk+2
ak

as in Eq. 7, observe that, for 1 ≤ j ≤ ak, if
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j = 2k + 1 for some k ∈ N, then fk+2
j can be supported by the value xk+1 of Xk+1, other-

wise, if j = 2k, k ∈ N, then fk+2
j can be supported by the value ¯̄xk+1 of Xk+1. Now, since

for 1 ≤ l ≤ ak + 1,

val(fk+1
l ) =

{
xk+1, l = 2m + 1
¯̄xk+1, l = 2m

m ∈ N

it is apparent that the sequence of ak value flips of Xk+2 as in Eq. 7 is feasible given the
sequence of ak + 1 value flips12 of Xk+1 as in Eq. 8.

The above entails that N |= o � o′, and that the size of the minimal flipping sequence from
o′ to o in N is

∑k
i=1 ai, which is greater than 2

n
2 . In fact, it can be show that the value flips

for X1, . . . ,Xk+1, constructed in steps (2)-(3), are the part of the minimal flipping sequence
from o′ to o, thus the length of this sequence is greater than:

2
k∑

i=1

ai + (ak + 1)

However, the result achieved in step (1) already proves our claim that there exist dominance
queries on multi-valued CP-nets with partially specified preferences, for which there are
exponentially sized minimal flipping sequences. �
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