

Back to the Future: A Retroactive Study of Aspect Evolution in
Operating System Code

Yvonne Coady

University of British Columbia
201 2366 Main Mall

Vancouver, BC V6T 1Z4
ycoady@cs.ubc.ca

Gregor Kiczales
University of British Columbia and
Intentional Software Corporation

500 108th Ave NE #1050
Bellevue, WA 98004

gregor@intentsoft.com

ABSTRACT
The FreeBSD operating system more than doubled in size
between version 2 and version 4. Many changes to primary
modularity are easy to spot at a high-level. For example, new
device drivers account for 38% of the growth. Not surprisingly,
changes to crosscutting concerns are more difficult to track. In
order to better understand how an aspect-oriented
implementation would have fared during this evolution, we
introduced several aspects to version 2 code, and then rolled
them forward into their subsequent incarnations in versions 3 and
4 respectively. This paper describes the impact evolution had on
these concerns, and provides a comparative analysis of the
changes required to evolve the original versus aspect-oriented
implementations.
Our results show that for the concerns we chose, the aspect-
oriented implementation facilitated evolution in four key ways:
(1) changes were better localized, (2) configurability was more
explicit, (3) redundancy was reduced, and (4) extensibility
aligned with an aspect was more modular. Additionally, we
found the aspect-oriented implementation had negligible impact
on performance.

1. INTRODUCTION
The FreeBSD operating system has grown from roughly 212,000
lines of code (LOC) in version 2 (v2), to 357,000 LOC in v3, and
474,000 LOC in v4. Many evolutionary changes to primary
modularity are easy to appreciate at a high-level. For example,
compared with v2, new device drivers in v4 introduced 581 new
subdirectories and files, accounting for over 100,000 new LOC, or
38% of the growth. Changes to crosscutting concerns however,
are not as straightforward to track. For example, the number of
places where the page daemon may be activated was reduced by
50% between v2 and v4, whereas the number of places a process
can block in device driver code grew by two orders of magnitude.
In order to better understand how an aspect-oriented [11]
implementation would have fared from an evolutionary

standpoint, we re-factored four crosscutting concerns in v2 code
into aspects: waking the page daemon, prefetching for mapped
files, quotas for disk usage, and tracing blocked processes in
device drivers. These implementations were then rolled forward
into their subsequent incarnations in v3 and v4 respectively. This
paper describes the impact evolution had on these concerns, and
provides a comparative analysis of the changes required to evolve
the original versus aspect-oriented implementations.
Our experiment was designed to explore a range of evolutionary
scenarios – each concern evolved differently. In terms of the
number of places the implementation of each concern had effect:
one became consistently smaller, one grew then became smaller,
one grew only incrementally, and one grew by an order of
magnitude in each version. In each case we found that, with tool
support, the aspect-oriented implementation better facilitated
independent development and localized change. In three cases,
configuration changes mapped directly to modifications to
pointcuts and makefile options. In one case, redundancy was
significantly reduced. Finally, in one case, the implementation of
a system-extension aligned with an aspect was itself better
modularized. These results suggest the ways in which an aspect-
oriented implementation of these concerns would have been more
evolution-friendly than the original implementation.
The paper starts with an introduction to the intent and inherent
structure of each crosscutting concern (Section 2), and overviews
their original implementations in versions 2, 3, and 4 (Section 3).
After a brief introduction to AspectC [3], each concern’s aspect-
oriented implementation and changes required to evolve it are
presented (Section 4). A comparison with the impact of evolution
on the original implementation then suggests specific ways in
which each aspect facilitated change, a collective analysis
summarizes the results, and the costs associated with the AspectC
runtime prototype are provided (Section 5). Finally, future work
and open issues are described (Section 6).

2. Intent and Inherent Structure
Before considering any implementation, it is useful to first
establish what each concern is intended to do, and identify its
inherent structure.

2.1 Page Daemon Activation
The page daemon frees physical memory when the number
available pages falls below some threshold. The daemon imposes
overhead for determining which pages will be replaced and for
writing them back to disk if necessary. As a result, timing is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Aspect-Oriented Software Development’03, Boston, MA.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

important factor when waking the page daemon – we want to do it
only when necessary. The daemon's activation is designed to
assess context-specific thresholds whenever the system could be
running low on available pages.

The inherent structure of page daemon activation is a set of
context-specific triggers within the virtual memory system and the
file buffer cache. Essentially, activation crosscuts operations that
consume available pages.

2.2 Prefetching
Fetching pages from disk is a relatively expensive operation.
Prefetching is a heuristic designed to amortize costs by bringing
in additional pages that may be required in the near future. As a
heuristic, we want to prefetch if it is cost effective to do so. The
virtual memory system thus suggests pages for prefetching, but
the file system decides whether or not to actually get them.

The inherent structure of prefetching is shaped by specific
execution-paths that retrieve pages from disk. Prefetching
crosscuts virtual memory and file systems, coordinating high-level
allocation and low-level de-allocation of prefetched pages.

2.3 Disk Quotas
It is often necessary to apportion disk space between multiple
users. Disk quotas are designed to track disk utilization and
enforce limits for all users and groups.

The inherent structure of quota is a set of low-level disk space
related operations that are consistently monitoring/limiting all
disk usage. Quota crosscuts disk-consuming operations from
multiple file systems.

2.4 Blocking in Device Drivers
Effective scheduling for the CPU requires processes to sometimes
explicitly surrender the CPU and block, allowing another process
to run. Blocking in device driver code is designed to ensure the
CPU is kept busy while processes wait for device I/O.

The inherent structure of diagnostic statements related to blocking
behaviour in device drivers shadows all points in the system
where a process could indefinitely block on a device. Tracking
process blocking in device drivers crosscuts all device-specific
operations involved with I/O.

3. ORIGINAL IMPLEMENTATION
This section describes each concern’s original implementation,
and its evolution across three versions of FreeBSD1.

3.1 Page Daemon Activation
The function pagedaemon_wakeup(), and its lower level
counterpart, wakeup(&vm_pages_needed), are invoked from 16
places in v2, 9 places in v3, and 8 places in v4, as overviewed by
the partial source tree in Figure 1.
As the virtual memory (VM) system evolved, the internals of
many functions in the swap pager (swap_pager.c) were
significantly revamped. Among many other changes, 7 triggers
for page daemon wakeup were eliminated between v2 and v3.
Between v3 and v4, the reworking of the function to allocate

1 Specifically, this study uses versions 2.2, 3.3 and 4.4.

pages resulted in the loss of two triggers, and the introduction of a
new synchronization operation in VM added a new low-level
activation of the daemon.

usr/src/sys/

vm/
 swap_pager.c
 getpages()-
 putpages()---
 sync()-
 io_done()--
 vm_fault.c
 additional_pages()+
 vm_page.c
 unqueue()+
 alloc()+++xx
 vm_wait()+
 vm_await()*

kern/
 vfs_bio.c
 allocbuf()+

 Legend:

 - v2 only
 x v2 and v3
 + v2, v3, v4
 * v4 only

Figure 1. Partial source tree showing functions where

activation of the page daemon may occur.

3.2 Prefetching for Mapped Files
Tracing the page-fault path in FreeBSD v3 requires traversing 5
files, 2 levels of function tables, and 4 changes in variable names,
as previously reported in [6]. Figure 2 overviews key functions
involved with the original implementation of this coordinated
activity.

usr/src/sys/

vm/
 vm_fault.c
 vm_fault()+++
 additional_pages()+

gnu/ext2fs/
 ext2_vnops.c
 ext2_getpages()+++

ufs/ufs/
 ufs_readwrite.c
 ffs_getpages()+++#
 ffs_read()#

 Legend:
 + v2, v3, v4

 # v3 only

Figure 2. Partial source tree showing functions where
prefetching for mapped files occurs.

The most significant evolutionary change to prefetching was
between v2 and v3, when sequential mode prefetching in one file
system was modified to be substantially more aggressive than
normal mode. Control flow was diverted to the file system read
operation where additional asynchronous prefetching would be
applied, bringing pages into the buffer cache. This
implementation of sequential mode prefetching was short lived
however, as it was subsequently removed between v3 and v4.

3.3 Disk Quotas
Disk quotas are an optional feature of FreeBSD, configured
through a combination of settings in both a kernel configuration
file and on a per-file system basis with 46 compiler directives in
three file system subdirectories in v4: 37 #ifdef QUOTA
preprocessor directives in UFS, FFS, and EXT2, and 9 #if
QUOTA directives in EXT2. Quota spans 22 functions from 11 files
in these file systems, as highlighted by the files shown in Figure 3.
The file names in common from the different subdirectories in the
Figure reflect an overlap in the implementation of quota.

Quota grew incrementally, as a result of new features being added
to the file systems: from v2 to v3, it spread to 16 new places, and
from v3 to v4 to one new place in FFS.

usr/src/sys/

ufs/ufs/
 vfs.c [0,1,1]
 vnops.c [7,13,13]
 inode.c [3,3,3]

 gnu/ext2fs/
 vfs.c [4,4,4]
 vnops.c [0,8,8]
 inode.c [2,2,2]
 alloc.c [3,3,3]

ufs/ffs/
 vfs.c [3,3,3]
 inode.c [2,3,3]
 alloc.c [5,5,5]
 balloc.c [0,0,1]

 Legend:

 number of occurrences
 in: [v2,v3,v4]

Figure 3. Partial source tree showing files where quota
operations for disk usage occurs.

3.4 Blocking in Device Drivers
When waiting for device I/O, a process blocks by calling tsleep.
Among other things, tsleep is passed a value to block on and a
timeout after which the process will wake-up if it has not been
unblocked. Essentially, a timeout of zero means a process will
sleep until explicitly woken.
Driver code is primarily in the /dev subdirectory. Its growth,
number of calls to tsleep in total, and number of calls to
tsleep without timeout, are overviewed in Table 1.

Table 1. Device code from the /dev subdirectory.

version LOC devices
(subdirs)

calls to
tsleep()

tsleep() w/
no timeout

2 8400 7 5 2
3 46900 27 55 11
4 114800 69 110 22

4. EVOLVING SYSTEM ASPECTS
This section highlights the changes required to evolve the aspect-
oriented implementation of each concern. For each aspect, its
internal structure is overviewed, a sample of its core AspectC
implementation from one or more of the FreeBSD versions is
provided, and the impact of major evolutionary changes are
described in terms relative to its structure.
We have developed a prototype for AspectC [3] based on AspectJ
[10]. Though the prototype is still a work in progress, compared
to AspectJ, AspectC has function call and execution join points,
call, execution, cflow and within pointcuts, and before, after and
around advice.

4.1 Page Daemon Activation Aspect
Re-factoring page daemon activation as an aspect in v2 involved
removing code that controlled activation from the operations it
crosscut, and reintroducing the same functionality using AspectC.

4.1.1 Internal Structure and Implementation
Since thresholds depend upon several system parameters, it is
important that the aspect is structured to make three things clear:
(1) the contexts of the threshold checks, (2) the specifics of the

thresholds used, and (3) the relationships between the contexts
and the thresholds, system-wide.
Figure 4 shows some of the core implementation of the page
daemon wakeup aspect common to v2, v3 and v4 (helper
functions not shown). The two named pointcuts identify specific
points in kernel execution when paging may be needed. That is,
they explicitly name the contexts of the threshold checks: when
unqueuing available pages, and when allocating buffers
respectively. Each of the two advice declarations uses one of
these named pointcuts to define what page threshold should be
used at each point, and wakes the daemon accordingly.

Figure 4. Core page daemon wakeup for v2, v3 and v4.

The first pointcut, unqueuing_available_pages, names points
in the execution when the vm_page_unqueue function executes
in the control flow of any one of the four functions listed.
Furthermore, this pointcut makes the vm_page_t parameter
available to advice that uses this pointcut. The four functions
listed were the only functions that called vm_page_unqueue in
the original implementation. There were, however, four other
functions that called a related function,
vm_page_unqueue_nowakeup – identical to vm_page_unqueue
except for the wakeup of the daemon. During re-factoring, we
removed the nowakeup version of this function, and replaced
calls to it with calls to vm_page_unqueue.
The first advice executes around these points in the system, using
the AspectC keyword proceed to allow the originally intended
function, vm_page_unqueue, to execute. Since it is only within
the control flow of the functions explicitly identified by cflow
that the advice is triggered, no other functions that call the
unqueue operation trigger the advice, thus better localizing
daemon activation, while preserving functionality from the
original implementation.
For each of the advice, we can see the context of the threshold by
looking at the pointcut, the details of the threshold by looking at

aspect page_daemon_wakeup {

 pointcut unqueuing_available_pages(vm_page_t m):
 execution(void vm_page_unqueue(m))
 && cflow(execution(void vm_page_activate(vm_page_t))
 || execution(void vm_page_wire(vm_page_t))
 || execution(void vm_page_unmanage(vm_page_t))
 || execution(void vm_page_deactivate(vm_page_t,
 int)));

 pointcut allocating_buffers(vm_object_t obj,
 vm_pindex_t pindex):
 execution(vm_page_t vm_page_lookup(obj, pindex))
 && cflow(execution(int allocbuf(struct buf*, int)));

 around(vm_page_t m):
 unqueuing_available_pages(m)
 {
 int queue = m->queue;
 proceed(m);
 if (((queue - m->pc) == PQ_CACHE) &&
 (pages_available() < vm_page_threshold()))
 pagedaemon_wakeup();
 }

 around(vm_object_t obj, vm_pindex_t pindex):
 allocating_buffers(obj, pindex)
 {
 vm_page_t m = proceed(obj, pindex);
 if ((m != NULL) && !(m->flags & PG_BUSY)
 && ((m->queue - m->pc) == PQ_CACHE)
 && (pages_available() < vfs_page_threshold()))
 pagedaemon_wakeup();
 return m;
 }
 …
}

the advice body, and the relationships between the two, system-
wide, by looking at the aspect.

4.1.2 Impact of Evolution
Evolutionary changes that impact this aspect are a composite of
three separate sets of changes to: (1) the swap pager, (2) the VM
page operations, and (3) page daemon activation code, itself.
Changes arising from (1) and (2) required adding/deleting specific
pointcuts and advice – essentially configuration changes within
the aspect. Changes to daemon activation directly mainly
involved re-factoring of threshold checks – introducing some
helper functions to reduce redundancy and increase readability.
These changes were also local to the aspect.

4.2 Prefetching for Mapped Files Aspect
In re-factoring prefetching as an aspect in v2, we had to re-factor
some of the existing VM and file system operations to allow for
more fine-grain composition with the aspect than the original
implementation would support. This initial re-factoring did not
require further modification as the versions evolved.
It is important to note that the coordination is between VM and a
given file system, specifically FFS or EXT2 in this example, but
not between the file systems themselves. In fact, the optimized
implementation of sequential mode prefetching associated with
the evolution between v2 an v3 was only introduced to FFS, the
native FreeBSD file system, and not to EXT2, a port of the Linux
file system to FreeBSD.

4.2.1 Internal Structure and Implementation
A portion of the single aspect for both normal and sequential
mode mapped file prefetching common to v2 and v4 is shown in
Figure 5. The aspect structures coordination between the high-
level allocation for prefetched pages and their possible subsequent
low-level de-allocation, further down the execution path. Most of
the details involved in this aspect are similar to those presented in
[6], but are briefly overviewed here to provide background for its
evolutionary scenario.
The pointcuts name the high-level and the low-level parts of the
execution paths involved, vm_fault_path and getpages_path
respectively, exposing the necessary parameters at each point. The
getpages_path covers corresponding operations from two
different file systems, FFS and EXT2, respectively. The advice
then coordinates allocation/de-allocation along these control flows
– the first advice allocates pages for prefetching, while the next
two may de-allocate pages if it is no longer cost effective to
retrieve them.

4.2.2 Impact of Evolution
Unlike the page daemon aspect, none of the evolutionary changes
to prefetching are the result of revamping the functions
prefetching crosscuts. Instead, the changes are concentrated on
the prefetching concern. The most significant evolutionary
change was the use of the file system read-path for sequential
mode between v2 and v3. In the aspect-oriented implementation,
we split the existing v2 aspect into two separate, but related,
aspects for normal and sequential modes respectively.
In v4, this sequential mode optimization was removed. In the
aspect-oriented implementation, this meant removing the
sequential mode aspect from the makefile, and modifying the
normal mode aspect to reunite the two.

4.3 Disk Quota Aspect
Re-factoring quota in v2 involved separating the sections of quota
code associated with compiler directives from the file system
operations it crosscut. Some of this separation involved re-
factoring file system operations to allow for composition.

4.3.1 Internal Structure and Implementation
Close inspection of the code in each file system reveals that the 17
compiler directives in EXT2 introduce identical functionality to
the corresponding operations in the union of UFS and FFS. That
is, all the quota code in EXT2 is redundant.
Figure 6 shows a portion of the aspect-oriented implementation of
disk quota common to v2, v3 and v4. Specifically, 5 #ifdefs in
FFS and EXT2 are replaced by the 2 advice shown in the aspect.
The pointcuts name the corresponding operations from the
different file systems that are associated with shared quota
operations. For example, the first pointcut, flushfiles, is
associated with the flushfile operation in either FFS or EXT2.
The around advice that uses this pointcut provides a single shared
implementation of the associated quota operation.

4.3.2 Impact of Evolution
Changes to disk quota between v2 and v3 resulted from the
aspect mapped_file_prefetching {

 pointcut vm_fault_path(vm_map_t map):
 cflow(execution(int vm_fault(map, ..)));

 pointcut getpages_path(vm_object_t obj,
 vm_page_t* plist, int n, int fpage):
 cflow(execution(int ffs_getpages(obj,plist,n,fpage)))
 || execution(int vnode_leaf_pager_getpages(obj,
 plist,n,fpage)));

 before(vm_map_t map, vm_object_t obj,
 vm_page_t* plist, int n, int fpage):
 execution(int vnode_pager_getpages(obj, plist, n, fpage))
 && vm_fault_path(map)
 {
 if (obj->declared_behaviour != RANDOM) {
 vm_map_lock(map);
 plan_and_alloc_prefetch_pages(obj, plist, n, fpage);
 vm_map_unlock(map);
 }
 }

 after(vm_object_t obj, vm_page_t* plist, int n,
 int fpage, int valid):
 execution(valid check_valid(..))
 && getpages_path(obj, plist, n, fpage)
 {
 if (valid)
 dealloc_all_prefetch_pages(obj, plist, n, fpage);
 }

 after(vm_object_t obj, vm_page_t* plist, int n,
 int fpage, struct transfer_args* trans_args):
 execution(int calc_range(trans_args))
 && getpages_path(obj, plist, len, fpage)
 {
 dealloc_noncontig_prefetch_pages(obj, plist, n,
 fpage, trans_args);
 }
 …
}
Figure 5. Core prefetching common to v2 and v4.
introduction of a new feature for file servers, also implemented
using compiler directives, which automatically assigned the
ownership of a new file to be that of the enclosing directory.

Since ownership relates to disk consumption, this new feature was
interleaved with quota code, introducing 14 new compiler
directives for quota over 4 existing UFS and EXT2 operations.
Between v3 and v4, a new FFS operation was introduced, also
requiring quota tracking.

Figure 6. Core quota common to v2, v3, and v4.

In order to evolve the aspect, we re-factored the original
implementation of the new feature introduced within the UFS and
EXT2 operations to allow composition, but retained its use of
compiler directives as it did not impact the aspect-oriented
implementation. Evolution thus primarily consisted of adding
pointcuts and advice as needed to incrementally extend its
configuration to include new functionality.

Figure 7. Complete aspect for tracking in v2, v3 and v4.

4.4 Tracing Blocking in Drivers Aspect
Device driver code has the highest rate of growth and, not
surprisingly, the highest rate of bugs in the kernel [5]. Within

driver code in v2, we introduced an aspect to track processes that
block on device operations without a timeout. Though this is not
an error, these situations are of particular interest when
diagnosing problematic behaviour associated with device drivers,
as processes may block indefinitely.

4.4.1 Internal Structure and Implementation
Figure 7 shows the aspect that tracks information about all
processes blocked in driver code with a timeout of zero. The
pointcut uses within to restrict the set of calls to tsleep to
those invoked from within driver code, i.e. within the
/usr/src/sys/dev subdirectory.

4.4.2 Impact of Evolution
Though the number of calls to tsleep in driver code grew from 5
in v2, to 55 in v3, and 110 in v4, this aspect did not require
modification, as it automatically applies to all code in the /dev
subdirectory. Figure 8 shows the number of devices (or
subdirectories) in each version of FreeBSD that trigger this
aspect. Specifically, it shows that in v2, of the 7 devices total, 3
of them sleep, and 2 of those 3 (shown in the list of
subdirectories) sleep without timeout; in v4, of the 69 devices
total, 27 of them sleep, and 11 of those sleep without timeout.

/usr/src/sys/dev/
 vn/* v2
 ccd/*
 hfa/* v3
 iicbus/*
 kdb/*
 smbus/* v4
 syscons/*
 mly/*
 nmdm/*
 ray/*
 si/*
 aac/*

 v2 v3 v4
 devices(subdirs) 7 27 69
 devs that tsleep 3 13 27
 tsleep w/o timeout 2 7 11

Figure 8. Drivers that use tsleep in v2, v3 and v4.

5. ANALYSIS
This section presents an analysis of the results of our experiment.
First, the ways in which the original evolution of each concern
was problematic is overviewed, then, the general ways in which
the aspects addressed these problems are summarized. Finally,
micro-benchmarks provide a cost analysis associated with runtime
support for the aspect-oriented implementation.

5.1 Evolving Scattered and Tangled Code
In their original implementations, these concerns are non-modular
– scattered and tangled in an unclear way throughout the primary
modularity they crosscut. The specific problems that developed
during the evolution of the original implementation of each
concern are outlined here.

5.1.1 Page Daemon Wakeup
In the original implementation, identifying precisely when and
why the page daemon may be activated, system-wide, is difficult
because the code is spread out. This property is most likely the

aspect disk_quota {

 pointcut flushfiles(register struct mount *mp, int flags,
 struct proc *p):
 execution(int ffs_flushfiles(mp, flags, p))
 || execution(int ext2_flushfiles(mp, flags, p));

 pointcut vget(struct inode *ip):
 execution(void ufs_ihashins(ip))
 && cflow(execution(int ffs_vget(struct mount*, ino_t,
 struct vnode**)))
 || (execution(int ext2_vget(struct mount*,
 ino_t, struct vnode**)));

 around(register struct mount *mp, int flags,
 struct proc *p):
 flushfiles(mp, flags, p)
 {
 register struct ufsmount *ump;
 ump = VFSTOUFS(mp);
 if (mp->mnt_flag & MNT_QUOTA) {
 int i;
 int error = vflush(mp, NULLVP, SKIPSYSTEM|flags);
 if (error)
 return (error);
 for (i = 0; i < MAXQUOTAS; i++) {
 if (ump->um_quotas[i] == NULLVP)
 continue;
 quotaoff(p, mp, i);
 }
 }
 return proceed(mp, flags, p);
 }

 before(struct inode *ip):
 vget(ip)
 {
 int i;
 for (i = 0; i < MAXQUOTAS; i++)
 ip->i_dquot[i] = NODQUOT;
 }
 …
}

aspect device_blocked_notimeout {

 pointcut block_in_device(void* ident, int priority,
 const char* wmesg, int timo):
 call(int tsleep(ident, priority, wmesg, timo))
 && within(“/usr/src/sys/dev”);

 before(void* ident, int priority,
 const char* wmesg, int timo):
 block_in_device(ident, priority, wmesg, timo)
 {
 if (timo == 0)
 printf(“Blocking in device, no timeout:
 %s pid: %d\n”, wmesg, curproc->p_pid);
 }
}

reason why some activation points were re-factored, while others
were not.
Though the rationale behind the different thresholds is not
immediately apparent to a non-expert, nor is documented in the
original implementation, it is clear that thresholds require context,
for example: (1) page fault handling has the only threshold check
that does not use cache_min, the minimum number of pages
desired on the cache queue, and (2) while VM uses the number of
free_reserved pages, the number of pages reserved for dealing
with deadlock, the buffer cache uses the more conservative value
of free_min, the minimum number of pages desired to be kept
free. These subtle differences are critical for understanding
daemon activation system-wide, but difficult to appreciate in the
original implementation.
Minor re-factoring of threshold calculations were included in the
evolution of some code in VM, but this re-factoring was not
consistently applied to all the thresholds involved with activation.
Presumably this is because the parts of the system that daemon
activation crosscuts – VM and the buffer cache – did not evolve
simultaneously.

5.1.2 Prefetching
Though the optimized version of sequential mode prefetching
introduced in v3 involved only a relatively small number of
changes to the system, it introduced an important new interaction
between VM, the file system, and the buffer cache that did not
previously exist. At the level of the interfaces of the primary
modularity involved, this new interaction was impossible to
detect. Its subsequent removal in v4 required selective editing of
code within FFS operations.

5.1.3 Disk Quotas
Implementing quota with preprocessor directives supports
efficient, coarse grained configurability – we can turn off quota
functionality and know it is not part of the binary. Unless we are
working directly with quota or code it affects, we can treat this
code separately, as it is not part of the core functionality of the file
system.
Using preprocessor directives to configure a crosscutting concern
like this, however, is cumbersome for three reasons: (1) it makes it
difficult to reason comprehensively about quota, and identify the
structural relationships that hold, (2) directives can obscure
reading of the file system code quota is scattered in, and (3) drift
can occur between portions of quota code that should be identical.
The nature of drift we found did not appear to introduce
inconsistencies in quota. For example, the quota code embedded
in flushfile operations from FFS and EXT2, from two different
files respectively, is shown in Figure 9. The differences in the
declaration of the variable and the assignment of the error
condition are a merely matter of style, but are representative of the
type of drift that currently exists.

5
D
m
s
s
a
s
B
m
t

5
T
h
t
i
r
a
k
a
t

From /usr/src/sys/ufs/ffs/ffs_vfsops.c:
int ffs_flushfiles(…) {
…
#ifdef QUOTA
 if (mp->mnt_flag & MNT_QUOTA) {
 int i;
 error = vflush(mp, 0, SKIPSYSTEM|flags);
 if (error)
 return (error);
 for (i = 0; i < MAXQUOTAS; i++) {
 if (ump->um_quotas[i] == NULLVP)
 continue;
 quotaoff(p, mp, i);
 }
 }
#endif
…
}

From /usr/src/sys/gnu/ext2fs/ext2_vfsops.c:
int ext2_flushfiles(…) { // 9 LOC
…
#if QUOTA
 int i;
#endif
…
#if QUOTA
 if (mp->mnt_flag & MNT_QUOTA) {
 if ((error = vflush(mp, 0, SKIPSYSTEM|flags))!=0)
 return (error);
 for (i = 0; i < MAXQUOTAS; i++) {
 if (ump->um_quotas[i] == NULLVP)
 continue;
 quotaoff(p, mp, i);
 }
 }
#endif
…
Figure 9. Quota in FFS and EXT2 flushfile operations.

.1.4 Device Blocking
river code is problematic, in part, because it is the result of
ultiple independent developers interacting with subtle OS

pecific protocols. Though many of these protocols may be
imple to state, they are hard to manually ensure in their scattered
nd tangled form. Further, extensions to the system-wide
cheduling policy of an OS, such as the event-based scheme in
ossa [4], necessarily involve invasive, non-modular,
odifications to a rapidly growing number of points in the system

o detect events such as blocking.

.2 General Improvements with Aspects
he results of our experiment are summarized in Table 2,
ighlighting evolution through the versions, structural challenges,
he differences between the original versus aspect-oriented
mplementations, and the benefits of the aspects involved. These
esults indicate that the major differences between the original and
spect-oriented implementations of these concerns involve four
ey related properties: changeability, configurability, redundancy
nd extensibility. Each of these properties is discussed further in
he subsections that follow.

}

Table 2. Summary of results.

original concern
version 2 version 3 version 4

major
evolution

structural
challenge

original
aspect benefits

page
daemon
wakeup

16 places
9 functions
4 files
2 subdirs

9 places
5 functions
3 files
2 subdirs

8 places
6 functions
3 files
2 subdirs

revamping of
code it
crosscuts:
VM and
buffer cache

multiple context
specific
thresholds

scattered
activation

 textually
localized

independent
development
& localized
change

prefetching
for mapped

files

9 places
4 functions
3 files
3 subdirs

11 places
5 functions
3 files
3 subdirs

9 places
4 functions
3 files
3 subdirs

change in
design of
sequential
mode

new subsystem
interaction
along execution
paths

internal to
functions

explicit
control flow

explicit
subsystem
interaction
& pluggability
in makefile

disk
 quota

29 places
19 functions
9 files
3 subdirs

45 places
21 functions
10 files
3 subdirs

46 places
22 functions
11 files
3 subdirs

new
functionality
in code it
crosscuts:
UFS, FFS,
EXT2

configurability
and sharing
across file
systems

#ifdefs w/
redundant
code

explicit
sharing

pointcut
configurability
& reduced
redundancy

device
blocking

5 places
3 functions
3 files
3 subdirs

55 places
49 functions
34 files
13 subdirs

110 places
94 functions
53 files
27 subdirs

new device
drivers added
to the system

consistency
across rapidly
growing
diversity

individualized
devices

centralized
assessment

comprehensive
coverage
& further
extensibility
modularized

5.2.1 Changeability
Major changes were of two forms: (1) directly to the concern
itself, and (2) indirectly, as a result of revamping the code the
concern crosscut. In the aspect-oriented implementation of each
concern considered here, changes to the concern itself were
facilitated by textual locality. Changes that resulted from
revamping the code the concern crosscut should be equally
accessible, given tool support2.
Though we can only speculate on what evolving these concerns
simultaneously with the many other evolutionary changes required
to produce a new release of the system would have been like, we
believe textual locality could further address two problems in the
original implementation. First, the inconsistencies that arose from
non-uniform evolution of the underlying primary modularity the
concerns crosscut would most likely be reduced. That is, when
localized, the concern would be more likely to evolve as a unit.
Second, coalescing diverse context-specific elements, such as the
thresholds in daemon activation, into one module brings their
differences to light, making it a more natural setting for the
original implementer to document the rationale.

5.2.2 Configurability
For three of the aspects, configuration changes mapped directly to
modifications to pointcuts and/or makefile options. This had
particular impact on the evolution of both prefetching and disk
quotas. Pluggability is key to both.
With respect to prefetching, the optimization for sequential mode
prefetching introduced a new interaction between multiple
subsystems. Moreover, this interaction was unique to a single file
system. Explicit configuration of this interaction as an aspect
better supported independent development of prefetching modes,
and ultimately, one’s eventual removal from the system.

2 As yet, there is no tool-support for AspectC.

Unplugging the optimization in the original code required
changing the internals of key file system operations.
With respect to the disk quota aspect, the pointcut declarations
reveal the underlying structural relationships between
corresponding file system operations. We can see which core file
system functions and values are involved, along with their
similarities and differences with respect to quota. Structured this
way, it should be easier to expand quota by explicitly configuring
it across more file systems3. Additionally, there is no loss of
pluggability relative to the preprocessor based implementation.

5.2.3 Redundancy
Related to the increased configurability of the quota aspect is the
elimination of redundancy across file systems. Though the
differences are benign, there exists drift in the implementation of
quota in FFS versus EXT2. The ability to specify that quota in
EXT2 is the same as the other file systems eliminates redundant
code, prevents drift, and ensures that quota operations are
consistently applied system-wide.

5.2.4 Extensibility
Scheduling code spans interrupt handlers, device drivers, and all
places in the system where process synchronization occurs. One
of the challenges in the development of Bossa, a domain specific
language for schedulers, is to precisely identify all the scheduling
points, or circumstances under which the scheduler is activated,
throughout the OS. Extending the scheduler to respond to Bossa-
defined scheduling events requires access to the context of the
scheduler invocation. To get an idea of how extensive the
challenge is to track this context, the number of calls to tsleep
system-wide is close to 500 in v4. Changing an OS to raise
scheduling events thus requires invasive modifications to

3 Currently, quota only applies to FFS and EXT2, but FreeBSD

v4 supports over a dozen different file systems.

hundreds of places in the system, compromising the modularity of
the extension. Aligning the extension with a scheduling concern
structured as an aspect, such as the device blocking aspect, thus
improves the modularity of the extension.

5.3 Runtime Costs
Like AspectJ, most AspectC constructs are static – resolved at
compile time. They introduce no more overhead than a call to an
inlineable function containing the advice body. (Though the pre-
processor could inline these directly, it currently does not, in
order to help make the pre-processor output more readable.)
But cflow is a dynamic construct and hence has runtime
overhead associated with it. We follow the AspectJ
implementation model for cflow, in which the overhead is
distributed across executions of functions that are cflow-tested,
and dispatch to advice involving a cflow test.
In the first pointcut in the page daemon wakeup aspect from
Figure 4, a cflow_push and cflow_pop are effectively added to
the code for each of the four VM operations listed. A
cflow_test is effectively added to vm_page_unqueue, as part
of testing whether the advice should run. If the advice does run,
cflow_get is called to access the parameters. These
push/pop/test/get operations all use a process-local stack
specifically dedicated to vm_page_unqueue.
Our current implementation of the push/pop/test/get runtime
routines is trivially naive. An open hash table tracks this
information on a per-process basis. A pool of entries, sufficiently
large to track the maximum number of processes in the system, is
statically allocated at boot time. Each entry tracks the necessary
cflow information for a single process, uniquely identified by the
process identifier (PID).

Figure 10. Aspect for runtime support in v2 and v3.

We integrated AspectC runtime support into FreeBSD v2 and v3
using the aspect shown in Figure 10. In the evolution between v3
and v4, the function main() was refactored and renamed
mi_startup(). As a result, the first advice in the v4
implementation of this aspect targets this new function, but other
than that pointcut, everything else is the same.
Table 3 provides micro-benchmarks for our prototype AspectC
runtime. These were taken on a 700MHz Pentium-III processor
running FreeBSD v4. Basic tests within this environment report
the costs of forking a process from user-level to be 165.248
µseconds, and the roundtrip time of switching between user and
kernel mode and back again to be 0.705 µseconds. This roundtrip

mode switch time is the minimum overhead associated with all
system calls.
The first two rows in Table 3 show the costs of adding and
deleting hash table entries during process initialization and tear-
down. These costs correspond to the functionality introduced in
the second and third advice in Figure 10. Relative to the cost of
forking from user-level, add_pid introduces only 0.5%
additional overhead, the bulk of which is re-initialization of the
hash table entry with bzero().
The next four rows in Table 3 show the per-call costs of the cflow
push/pop/test/get routines. Relative to the absolute minimum
costs associated with each system call, these operations introduce
10-12% additional overhead. Though this is not representative of
an optimal implementation, as costs could be further reduced by
both inlining these functions and storing cflow state directly
within process data structures to eliminate the hash table lookup,
it demonstrates that the overheads of even a naive implementation
are not prohibitive.

Table 3. Runtime costs.

granularity cflow
function

overhead
(µseconds)

per-process add_pid 0.777
 del_pid 0.141

per-call push 0.079
 pop 0.080
 test 0.086
 get 0.073

Though AspectC is modeled after AspectJ, there are several
important differences that still must be addressed. This includes
C-specific issues, such as code-bloat associated with the C
preprocessor. Working within the kernel may also demand that
we explore different kinds of runtime support than is required for
user-level AOP. For example, FreeBSD v5 includes plans for a
kernel-supported threading system similar in design to scheduler
activations [1]. Tracking cflow information in this system may be
per-thread as opposed to per-process as presented here.

6. FUTURE WORK AND OPEN ISSUES
Aspect-oriented programming proposes new mechanisms to
enable the modular implementation of crosscutting concerns. This
paper evaluates aspect-oriented programming in the context of
four crosscutting concerns evolving across three versions of
FreeBSD kernels. The ways in which aspects allowed us to make
these implementations modular, the support they provided for
evolution, and the costs associated with our AspectC prototype all
indicate that aspect-oriented programming could improve the
evolvability of OS code, but many open issues remain. Here we
briefly consider the limitations of the study, the generalizability of
the aspects involved, and directions for further experimentation.

6.1 Evolvability and Metrics
Limitations of the results of this study are: (1) instead of
producing full successive versions of FreeBSD, we focused only
on the evolution of specific concerns in isolation, (2) a single
developer evolved the concerns across all versions. As a result,
we are only able to speculate how the aspects would have evolved
under conditions with multiple developers working on multiple
concerns in concert. The realistic construction of evolvability
studies and the metrics to evaluate improvements associated with

aspect acruntime {

 before():
 execution(void main(void*))
 {
 cflow_initialize_runtime();
 }

 before(struct proc *p):
 execution(void make_proc_table_entry(struct proc*, p))
 {
 cflow_add_pid_entry(p->p_pid);
 }

 after(struct proc *p):
 execution(void exit1(p, int))
 {
 cflow_del_pid_entry(p->p_pid);
 }
}

aspect-oriented implementations are general areas that require
further research.

6.2 Other System Aspects
We believe the four aspects considered here share structural
significance with other latent system aspects. For example,
system profiling and networking concerns.
Profiling inherently involves action at a variety of points in the
system. Whether it be for tracing execution, verifying system
rules, or as a basis for building more sophisticated gray-box
information and control layers [2], the ability to build a
comprehensive profile is a prerequisite for dependable systems.
Preprocessor directives are commonly used to introduce
unpluggable profiling code in the kernel. The /dev/usb
directory in FreeBSD 4.4 contains approximately 50 such #ifdef
DIAGNOSTIC statements scattered throughout roughly 10,000 lines
of code. System-wide, there are over 300 #ifdef DIAGNOSTIC
directives.
Networking involves concerns that run the length of the protocol
stacks of communicating processes. One of the contributions of
both the x-kernel [8], a framework for implementing network
protocols, and later Plexus [7], an extensible protocol architecture
for application-specific networking, was the use of protocol
graphs for representing standard protocols, with augmentation for
modified functionality. These systems used these graphs to
represent new protocols in terms of a cohesive set of related
modifications to the standard. Aspects may allow us to more
accurately reflect this design technique in the corresponding
implementation of these protocols.

6.3 Sophisticated Compositions
In order to more rigorously assess the impact aspects have on
kernel code, issues of scalability, configurability, extensibility,
evolability and performance require in depth cost/benefit analysis.
Improving modularity of operating systems will not be meaningful
if aspects substantially adversely affect performance. Specifically,
we need to determine the precise costs associated with more
sophisticated compositions of aspects in terms relative to their
current implementation.

7. RELATED WORK
Structuring kernel code to make it more amenable to change is a
common theme in many research projects. Customization has
been a leading motivating factor. Support for application-specific
customization of services range from operating systems that target
specific policy, such as paging in Mach [13], to those that have
taken a more comprehensive approach, such as the use of
reflection in Apertos [22].
Approaches that structure client participation in OS policy include
scheduler activations [1], active networking [19], policy servers in
user space [9, 12, 21], and application-specific extensions [7, 16,
18, 20]. Approaches aimed at improving structure in general
include the use of frameworks for end-to-end optimization [17],
domain specific languages [4, 14], gray-box techniques [2], and
aspect-oriented frameworks [15].
Our work focuses primarily on using AspectC to modularize
existing crosscutting concerns that map to key design decisions in
OS kernels.

8. SUMMARY
This study compares the evolution of four scattered and tangled
concerns in kernel code with an aspect-oriented implementation

of the same concerns. Localized changeability, explicit
configurability, reduced redundancy and subsequent modular
extensibility, are shown to be the key benefits of the aspect-
oriented implementation.

9. REFERENCES
[1] Thomas Anderson, Brian Bershad, Edward Lazowska, and

Henry Levy, Scheduler Activations: Effective Kernel Support
for User Level Management of Parallelism. ACM
Transactions on Computer Systems, February 1992. 10(1).

[2] Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Information and Control in Gray-Box Systems, in
Proceedings of the 18th ACM Symposium on Operating
System Principles (SOSP). 2001.

[3] AspectC.www.cs.ubc.ca/labs/spl/aspects/aspectc.html.
[4] Luciano Porto Barreto, and Gilles Muller. Bossa: A

Language-Based Approach for the Design of Real Time
Schedulers, in Proceedings of the 23rd IEEE Real-Time
Systems. 2002.

[5] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating
System Errors, in Proceedings of the 18th ACM Symposium
on Operating System Principles (SOSP). 2001.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to Improve the Modularity of Path-
Specific Customization in Operating System Code, in
Proceedings of the Joint European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE-9). 2001.

[7] Marc E. Fiuczynski, and Brian N. Bershad. An Extensible
Protocol Architecture for Application-Specific Networking,
in Proceedings of the Winter Usenix Conference. 1996.

[8] Norm Hutchinson, and Larry Peterson, The x-Kernel. IEEE
Transactions on Software Engineering, 1991. 17(1).

[9] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger,
Hector M. Briceno, Russell Hunt, David Mazieres, Thomas
Pinckney, Robert Grimm, John Jannotti, and Kenneth
Mackenzie. Application Performance and Flexibility in
Exokernel Systems, in Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP). 1997.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An Overview of
AspectJ, in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP). 2001.

[11] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-Oriented Programming, in European
Conference on Object-Oriented Programming (ECOOP).
1997.

[12] Chris Maeda. Flexible System Software through Service
Decomposition, in Proceedings of OOPSLA. 1994.

[13] Dylan McNamee, and Katherine Armstrong. Extending the
Mach External Pager Interface to Allow User Level Page
Replacement Policies, in Technical Report University of
Washington UWCSE 90-09-05, 1990.

[14] Gilles Muller, Charles Consel, Renaud Marlet, Luciano
Porto Barreto, Fabrice Merillon, and Laurent Reveillere.
Toward Robust OSes for Appliances: A New Approach
Based on Domain-Specific Languages, in European
Workshop on Operating Systems. 2000.

http://www.cs.ubc.ca/labs/spl/aspects/aspectc.html

[15] Paniti Netinant, Constantinos Constantinides, Tzilla Elrad,
Mohamed Fayad. Supporting Aspectual Decomposition in
the Design of Adaptable Operating Systems Using Aspect-
Oriented Frameworks, in Proceedings of 3rd Workshop on
Object-Orientation and Operating Systems ECOOP-
OOOWS. 2000.

[16] Przemyslaw Pardyak, and Brian Bershad. Dynamic Binding
for an Extensible System, in Proceedings of the Second
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 1996.

[17] Aamod Sane, Ashish Singhai, and Roy Campbell.
Framework Design for End-to-End Optimization, in
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP). 1998.

[18] Christopher Small, and Margo Seltzer. A Comparison of Os
Extension Technologies, in Proceedings of the USENIX
Conference. 1996.

[19] D.L. Tennenhouse, and D.H. Wetherall. Towards an active
network architecture, ACM Computer Communications
Review, April 1996. 26(2).

[20] Alistair C. Veitch, and Norman C. Hutchinson. Kea - a
Dynamically Extensible and Configurable Operating System
Kernel, in Proceedings of the International Conference on
Configurable Distributed Systems (ICCDS). 1996.

[21] William Wulf, Ellis Cohen, William Corwin, Anita Jones,
Roy Levin, C. Pierson, and Fred Pollack, Hydra: The Kernel
of a Multiprocessor Operating System. Communications of
the ACM, 1974. 17(6).

[22] Yasuhiko Yokote. The Apertos Reflective Operating System:
The Concept and Its Implementation, in Proceedings of the
Conference on Object-Oriented Programming: Systems,
Languages, and Applications (OOPSLA). 1992.

	INTRODUCTION
	Intent and Inherent Structure
	Page Daemon Activation
	Prefetching
	Disk Quotas
	Blocking in Device Drivers

	ORIGINAL IMPLEMENTATION
	Page Daemon Activation
	Prefetching for Mapped Files
	Disk Quotas
	Blocking in Device Drivers

	EVOLVING SYSTEM ASPECTS
	Page Daemon Activation Aspect
	Internal Structure and Implementation
	Impact of Evolution

	Prefetching for Mapped Files Aspect
	Internal Structure and Implementation
	Impact of Evolution

	Disk Quota Aspect
	Internal Structure and Implementation
	Impact of Evolution

	Tracing Blocking in Drivers Aspect
	Internal Structure and Implementation
	Impact of Evolution

	ANALYSIS
	Evolving Scattered and Tangled Code
	Page Daemon Wakeup
	Prefetching
	Disk Quotas
	Device Blocking

	General Improvements with Aspects
	original
	Changeability
	Configurability
	Redundancy
	Extensibility

	FUTURE WORK AND OPEN ISSUES
	Sophisticated Compositions

	RELATED WORK
	SUMMARY
	REFERENCES

