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ABSTRACT
We introduce a novel frequent pattern mining approach to
discover leaders and tribes in social networks. In particular,
we consider social networks where users perform actions.
Actions may be as simple as tagging resources (urls) as in
del.icio.us, rating songs as in Yahoo! Music, or movies as
in Yahoo! Movies, or users buying gadgets such as cam-
eras, handhelds, etc. and blogging a review on the gadgets.
The assumption is that actions performed by a user can be
seen by their network friends. Users seeing their friends’ ac-
tions are sometimes tempted to perform those actions. We
are interested in the problem of studying the propagation of
such “influence”, and on this basis, identifying which users
are leaders when it comes to setting the trend for perform-
ing various actions. We consider alternative definitions of
leaders based on frequent patterns and develop algorithms
for their efficient discovery. Our definitions are based on
observing the way influence propagates in a time window,
as the window is moved in time. Given a social graph and
a table of user actions, our algorithms can discover leaders
of various flavors by making one pass over the actions ta-
ble. We run detailed experiments to evaluate the utility and
scalability of our algorithms on real-life data. The results
of our experiments confirm on the one hand, the efficiency
of the proposed algorithm, and on the other hand, the ef-
fectiveness and relevance of the overall framework. To the
best of our knowledge, this the first frequent pattern based
approach to social network mining.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining
General Terms: Algorithms
Keywords: Social networks, Frequent pattern discovery,
Influence, Leadership, Tribes, Viral marketing.

1. INTRODUCTION
Consider a social network where users perform various ac-

tions. As an example, in del.icio.us (http://del.icio.us/),
users bookmark urls and annotate them with various tags.
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Here, tagging a url with a tag such as Ocean Kayaking is
an action. As another example, a user in Yahoo! Movie
(http://movies.yahoo.com/) may decide to rate the movie
There will be blood, which is also an action. As a third
example, a user in facebook (http://www.facebook.com/)
may decide to buy a new camera and decide to write a re-
view on it in her personal blog. In each of these examples,
users may choose to let their network friends see their ac-
tions. Seeing actions performed by their friends may make
users curious and may sometimes tempt some fraction of the
users to perform those actions themselves, some of the time.
Informally, we can think of this as an influence (for perform-
ing certain actions) propagating from users to their network
friends, potentially recursively. If such influence patterns
repeat with some statistical significance, that can be of in-
terest to companies, say for targeted advertising. E.g., if we
know that there are a small number of “leaders” who set the
trend for various actions, then targeting them for adoption
of new products or technology could be profitable to the
companies.

Figure 1(a)-(b) shows an example of a social graph and
a log of actions performed by users. By linking the actions
log in Figure 1(b) to the social graph in Figure 1(a), we can
trace the propagation of influence for performing actions.
The result, for actions a and b, is shown in Figure 1(c)-(d).
Observe that the graphs in Figure 1(c)-(d) are directed and
labelled even though the original social graph is undirected
and unlabelled. Direction is dictated by the order in which
actions were performed. If x performed action a before y
and there is a social tie between x and y in Figure 1(a), then
Figure 1(c) contains a directed edge from x to y; while the
label on the edge is given by the time elapsed between the
two actions.

Given a social graph together with a log of user actions, we
can determine the propagation of influence for performing
each of the actions. How can we leverage this for determin-
ing who are the leaders in setting the trend for performing
actions? It turns out there are a number of options for defin-
ing leadership. First off, intuitively, we want to think of user
u as a leader w.r.t. an action a provided u performed a and
within a chosen time bound after u performed a, a sufficient
number of other users performed a. Furthermore, we require
that these other users are reachable from u thus capturing
the role social ties may have played. Finally, we may want
to extract leadership w.r.t. performing actions in general or
performing a class of actions. For example, in Figure 1, if
we choose the time bound to be 5 units, number of users
to be influenced by a leader to be three, then user u2 is a
leader w.r.t. both actions a and b, since users u4; u5; u6



(a)

User Action Time

u3 b 13
u2 b 13
u2 a 15
u1 b 15
u3 a 16
u5 b 16
u4 b 17
u5 a 18
u7 b 18
u4 a 19
u6 a 20

(b)

(c)

(d)

Figure 1: (a) Example social graph; (b) A log of actions; (c) Propagation of action a and (d) of action b.

are influenced by u2 in Figure 1(c), while u1; u4; u5; u7 are
influenced by u2 in Figure 1(d). Notice that u3 is not a
leader w.r.t. either action. If user u5 had performed b after
u4, then u3 would be regarded a leader w.r.t. b, in addition
to u2. A stronger notion of leadership might be based on
requiring that w.r.t. each of a class of actions of interest,
the set of influenced users must be the same. To distinguish
from the notion of leader illustrated above, we refer to this
notion as tribe leader, meaning the user leads a fixed set
of users (tribe) w.r.t. a set of actions. To appreciate the
difference between leader and tribe leader, consider that we
require two users to be influenced by a leader and these two
users must be the same for both actions a and b. Then 2 is
a tribe leader for the set of actions fa; bg since users 4 and
5 are influenced by 2 w.r.t. both a and b. Clearly, tribe
leaders are leaders but not vice versa.

The notion of leader admits several candidates. However,
the influence emanating from some of them may be “sub-
sumed” by others. As an example, in Figure 1(c), both 2
and 5 are leaders w.r.t. a when the required number of
influenced users is two. However, it is clear that user 5’s
influence is subsumed by that of user 2, as 5 is one of those
influenced by 2. Thus, it is interesting to ask whether we
can discover “genuine” leaders, i.e., leaders whose influence
is not subsumed by others. Notice that a tribe leader may
be genuine or not just as a leader may be genuine or not.

In this paper, we make the following contributions:

• We formally define the problem of extracting leaders
from a database consisting of a social graph plus a
table representing the log of user actions. We define
various notions of leader, tribe leader, and their confi-
dent and genuine variants (Section 3).

• We develop efficient algorithms for extracting leaders
of various flavors from an input data consisting of a
social graph and a table of user actions. Our algo-
rithms make one pass over the actions table. This is
significant since we expect the table to be very large
(Section 4).

• We demonstrate the utility and scalability of our algo-
rithms, via an extensive set of experiments (Section 5)
on a real-world dataset obtained by joining data com-
ing from Yahoo! Messenger (the social graph) and Ya-
hoo! Movies (the action log, where the action corre-
sponds to rating a movie).

Influence propagation and leadership have been consid-
ered in the context of viral marketing [10, 22, 17]. There,
the model is based on probabilistic causation: there is a
probability with which a user will perform an action if his
neighbors have performed it. These works focus on the op-
timization problem of finding the k best people to target an

ad to in order to maximize the influence. The framework is
entirely based on the social graph together with edge weights
representing the probabilities of influence. Our problem set-
ting is considerably different. The input includes not just
a graph (which is not edge-weighted) but an actions table
which plays a central role in the definition of leaders. Sec-
ondly, our focus is on finding all leaders based on the fre-
quent pattern mining approach, which is different from the
approach employed in the above works. To the best of our
knowledge, our notions of leaders and our algorithms are
novel. Related work appears in the next section. We sum-
marize the paper in Section 6 and discuss future work.

2. RELATED WORK
The study of the spread of influence through a social net-

work, i.e., the extent to which people are likely to be influ-
enced by actions of their friends has a long history in the
social sciences. The first investigations focused on the adop-
tion of medical [9] and agricultural innovations [24]. Later
marketing researchers have investigated the diffusion pro-
cess of the “word-of-mouth” effect and its application to the
so-called viral marketing [6, 12, 21].

The first work to consider the propagation of influence
and the problem of identification of influential users by a
data mining perspective is [10, 22]. Suppose we are given
a social network together with the estimates of reciprocal
influence between individuals in the network, and suppose
that we want to push a new product in the market. The idea
behind viral marketing is that by targeting the most influ-
ential users in the network we can activate a chain-reaction
of influence driven by word-of-mouth, in such a way that
with a very small marketing cost we can actually reach a
very large portion of the network. The mining problem is
the following: given such a network with influence estimates,
how to select a set of users such that by targeting this set we
maximize the spread of influence. The problem is tackled by
means of a probabilistic model of interaction, and heuristics
are given for choosing users with a large overall effect on the
network. More recently [17] attacked the exact same prob-
lem as a problem in discrete optimization obtaining prov-
able performance guarantees for approximation algorithms
in several preexisting models coming from mathematical so-
ciology. The same group of authors in [16] adopts the de-
creasing cascade model used in sociology and economics and
devises a simple greedy algorithm for it. In [13] the price
of the item subject to viral marketing is introduced in the
model, leading to the problem of revenue maximization. An-
other related problem, namely outbreak detection is studied
in [19]: how to select nodes in a network in order to detect
the spread of a virus as fast as possible? In [1] instead the
problem of how to identify influential bloggers is studied.



As discussed in the introduction, even if the general goal
is very similar, our problem setting is considerably different,
as we have a different input and as we adopt a completely
different mining approach, i.e., pattern discovery.

Among the various kinds of patterns that we study, there
is also tribe leaders, i.e., users that lead a fixed set of users
for different actions. As a side effect of mining tribe leaders,
we also mine tribes which can be considered as small com-
munities. The problem of identifying communities in social
networks has been studied extensively in the data mining
community, especially focusing on how to model community
formation and evolution in time [14, 18, 4, 23, 15, 5, 11].
Again our problem statement is very different in that we
focus on actions log, and in terms of the pattern discovery
approach that drives our work. [20] considers a particu-
lar form of social network, called friendship-event network,
made by the usual social ties, plus a series of events in which
the various nodes of the network may be organizers or par-
ticipants. Thus also in their context there is a kind of actions
log, that is the events organization and participation. Our
work is different as we consider actions more in general than
the organizer-participant relationship. Also the objective is
different: [20] studies the notion of social capital based on
the actor-organizer friendship relationship and the notion of
benefit, based on event participation.

3. PROBLEM DEFINITION
A social graph is an undirected graph G = (V; E) where

the nodes are users. There is an undirected edge between
users u and v representing a social tie between the users.
The tie may be explicit in the form of declared friendship,
or it may be derived on the basis of shared interests be-
tween users. Our discussion and algorithms are neutral to
the source that gives rise to these edges. An action log is
a relation Actions(User;Action; Time), which contains a
tuple (u; t; a) indicating that user u performed action a at
time t. It contains such a tuple for every action performed
by every user of the system. We will assume that the pro-
jection of Actions on the first column is contained in the
set of nodes V of the social graph G. In other words, users
in the Actions table correspond to nodes of the graph. We
let A denote the universe of actions. We next define prop-
agation of actions. In the following, we assume for ease of
exposition that a user performs an action at most once. Our
algorithms do not assume this. In Section 5, we explain how
our algorithms handle the case where users may perform an
action multiple times.

Definition 1 (Action propagation). We say that an
action a ∈ A propagates from user vi to vj iff (vi; vj) ∈ E
and ∃(vi; a; ti); (vj; a; tj) ∈ Actions with ti < tj.

Notice that there must be a social tie between vi and vj,
both must have performed the action, one strictly before the
other. This leads to a natural notion of a propagation graph,
defined next.

Definition 2 (Propagation graph). For each action
a, we define a propagation graph PG(a) = (V(a); E(a)), de-
fined as follows. V(a) = fv j ∃t : (v; a; t) ∈ Actionsg; there
is a directed edge vi �t−−!vj whenever a propagates from vi to

vj, with (vi; a; ti); (vj; a; tj) ∈ Actions, where �t = tj - ti.

The propagation graph consists of users who performed
the action, with edges connecting them in the direction of
propagation. Observe that the propagation graph is a DAG.
Each node can have more than one parent; it is directed, and
cycles are impossible due to the time constraint which is the
basis for the definition of propagation. Note that the prop-
agation graph can possibly have disconnected components.
In other words, the propagation of an action is just a di-
rected instance (a flow) of the undirected graph G, and the
log of actions Actions(User;Action; Time) can be seen as
a collection of propagations. Influence can propagate tran-
sitively. Thus, a definition of leader w.r.t. setting the trend
for performing an action should take this into account. To
aid in the definition of leaders, we define the notion of an
influence graph next. The elapsed time along a (directed)
path in a propagation graph is the sum of edge labels along
the path. E.g., in Figure 1(c), the elapsed time on the path
u2!u4!u6 is 4+ 1 = 5.

Definition 3 (User influence graph). Given action
a, a user u, and a maximum propagation time threshold �,
we define the influence graph of the user u, denoted Inf�(u; a)
as the subgraph PG(a) rooted at u, such that it consists of
those nodes of PG(a) which are reachable from u in PG(a)
and such that every path from u to any other node in Inf�(u; a)
has an elapsed time at most �.

In Figure 2 we show an example of propagation graph
PG(a), and two user influence graphs.1 The propagation
time threshold � allows us to set limits on how long after an
action is performed, we regard another user performing that
action as influenced by the previous user. Given a threshold
 , we say that user u acted as a leader w.r.t. action a
whenever the size (in number of nodes) of Inf�(u; a) is at
least  . The threshold  ensures sufficiently many users
are influenced by the given user in the context of action
a. Note that the two constraints defined by the thresholds
� and  are conflicting constraints. In fact, � limits the
influence graph rooted at u to be not grown after a certain
elapsed time, while the second constraint requires to have
an influence graph larger than  .

A user to be identified as a leader must act as such suffi-
ciently often, i.e., for a number of actions larger than a given
action threshold �. This may be seen as the minimum fre-
quency constraint in pattern discovery and association rule
mining [2].

Problem 1 (Leaders). Given a set of actions I ⊆ A,
and three thresholds �,  and �, a user v ∈ V is a leader iff:

∃S ⊆ I; jSj ≥ � : ∀a ∈ S : size(Inf�(v; a)) ≥  
The intuition behind the above definition is that for suffi-

ciently many actions (≥ �) at least  other users are influ-
enced to perform the action within � time units from when
the given user v performed it. In this case, we regard v
as a leader. Notice the definition does not force the set of
influenced users for different actions to be the same.

Problem 2 (Tribe-leaders). Given a set of actions
I ⊆ A, and three thresholds �,  and �, a user v ∈ V is a
tribe leader iff:

∃S ⊆ I; jSj ≥ �; ∃U ⊂ V; jUj ≥  : ∀a ∈ S :U ⊆ Inf�(v; a):
1W.r.t. some underlying social graph and action log, not
shown.
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Figure 2: The propagation graph of an action PG(a) in fig.(a), Inf8(u4; a) in fig.(b), Inf8(u2; a) in fig.(c).

The notions leader and tribe leader were illustrated in
Section 1. Clearly, every tribe leader is a leader, but not
vice versa.

3.1 Additional constraints
In addition to using an absolute lower bound on the num-

ber of actions in which a user acts as a leader, we could apply
a “confidence threshold” (similarly to the classical measure
of confidence in association rules [2]), requiring that a user
is a leader for a large fraction of the actions he performs.

More precisely, for a user v ∈ V , let P(v) = fa ∈ A j
v performed ag and L(v) = fa ∈ A j v is a leader w.r.t. ag.
Then the leadership confidence of v is the ratio conf(v) =
jL(v)j=jP(v)j. We define:

Problem 3 (Leaders with confidence measure).
Given a set of actions I ⊆ A, and a confidence threshold
0 < ' ≤ 1, a user v is said to be a confidence leader if it is
a leader and conf(v) ≥ '.

It may happen that one user acts as a leader according to
the given definitions, but in concrete he is always a follower
of the same leader. In some sense he benefits from the influ-
ence of a true leader, so that he also may seem a leader. To
avoid this kind of “fake” leaders, we propose the following.

Given the usual three thresholds �,  and �, for a user v,
let gen(v) denote the ratio

jfa ∈ L(v) j @u ∈ V : u is leader for a^ v ∈ Inf�(u; a)gj
jL(v)j

i.e., the fraction of actions led by v for which v’s leadership is
genuine, in that it is not a consequence of v being present in
the influence graph of some other leader w.r.t. that action.
We call gen(v) the genuineness score of v. The notion of
genuine leaders is defined next.

Problem 4 (Genuine leaders). Given a set of actions
I ⊆ A, and a threshold 0 <  ≤ 1, we define a leader v to be
a genuine leader provided the genuineness score of v is above
the threshold, i.e., gen(v) ≥ .

Both confidence and genuineness constraints can be ap-
plied to tribe leaders as well. Note that when we focus on a
single action a, the notions of leader for a and tribe leader
for a coincide. Thus we use the exact same definitions. So a
genuine tribe leader is a tribe leader whose genuineness score
is above a threshold, and similarly for confidence. Our goal is
to efficiently extract leaders and tribe leaders, possibly with
each of the other criteria (confidence and genuineness) or
even with both. This leads to eight distinct problems: lead-
ers and tribe leaders without additional constraints, with
one of the two, or with both additional constraints.

We provided the basic pattern discovery framework for
mining leaders given the social graph and an action log.
However, it should be noted that it is not mandatory for the
final analyst to provide all the thresholds: she can query our
system asking, e.g., the top-k users w.r.t. average number of
followers per action given �, or the top-k tribe leaders w.r.t.
confidence. In fact, our algorithms by scanning the actions
log, produce a summary of the influence for which only the
� threshold is needed. The various kinds of leaders then can
be selected from this summary by a simple post-processing,
as described in the next section.

4. ALGORITHMS
Any algorithm for extracting leaders must scan the action

log table and traverse the graph. Our assumption is that the
graph is large (in the order of hundreds of thousands to mil-
lions of nodes) and the action log contains millions of tuples.
While the graph is large, given a (maximum propagation)
time threshold �, and a specific time interval with length �,
we assume the subgraph corresponding to users performing
actions within the interval is small. This is confirmed by the
real data sets we used for our experiments, where � was set
to several weeks. Thus, our focus is on minimizing the scans
of the action log table.

Our algorithms are able to extract the patterns (leaders
and tribe leaders) in no more than one scan of the action
log table Actions. The key insight behind this is as follows.
We assume that the action log is stored in chronological or-
der of actions. Given the threshold �, we scan the Actions
table by means of a window of width �. Thus at any posi-
tion of the window, a subset of tuples in Actions falls in the
window. Let W denote the current position of the window.
The position W induces a subgraph of the social graph G:
GW = (VW ; EW), where VW is the set of users who per-
formed some action within the window W and an edge is
present in EW iff it is present in E and both its endpoints
are in VW . We call GW the subgraph of G visible from the
window.

By sliding the window chronologically backwards we can
compute an influence matrix IM�(U;A), where U is the
number of users and A is the number of actions. The entry
IM�(u; a) is the number of users/nodes, influenced by u
w.r.t. action a within time �. This number includes u. So,
a user u performed action a iff IM�(u; a) > 0. Then leaders
can be computed from the IM� easily. When it comes to
compute tribe leaders, influence matrix is inadequate: for
tribe leaders, we need to check that a fixed set of ≥  users
were influenced by the leader on sufficiently many actions.
To address this problem, we propose the influence cube. The
influence cube is a User × Action × User cube with cells
containing boolean entries: IC�(u; a; v) = 1 if user v was



Figure 3: (a) Action log; (b) Propagation graph visi-
ble in current window for a action; (c) Influence Vec-
tor for the current nodes; (d) Queue for the current
action; (e) Lock Bit Vector for the current action.

influenced by user u w.r.t. action a, w.r.t. an underlying
time threshold �. From this, we can determine whether u is
a tribe leader, as described later in Section 4.3.

4.1 Computing Influence Matrix
We now describe the major steps in detail and discuss

their efficient implementation. To illustrate our algorithms,
we will use the running example shown in Figure 3. Fig-
ure 3(a) shows a schematic action log and shows the window
at the bottom-most position, i.e., the most recent actions
fall in the window. Figure 3(b) shows a possible subgraph
of G visible from the window. Nodes in light grey and their
incident edges are not yet visible.

Algorithm 1 gives the algorithm at a high level. The steps
are explained in detail next. We start by positioning the win-
dow at the bottom of the action log, thus seeing only most
recent actions (step 1). We visit the nodes of GW by explor-
ing G and computing necessary state at the visited nodes,
e.g., the nodes influenced by a given node (steps 2-3). We
move the window backward in time. Clearly, as the window
moves existing action tuples may fall off the window (view)
and other tuples may enter the window. This in turn causes
parts of the visible graph GW to disappear and new parts to
appear. Our algorithms make use of two key operations –
update and propagate. For simplicity of exposition, let us fo-
cus on one action a, although our algorithms simultaneously
keep track of the influence propagation information for sev-
eral actions. When a node of GW disappears as the window
moves, we need to update the state of existing nodes. When
a new node appears in the window, we need to propagate
the state from existing nodes to the new node so that its
state can be computed efficiently (steps 6-8).

By repeated application of update and propagate as the
window is moved backward in time, we can compute the
influence matrix IM�(U;A).

Next we describe the update and propagate procedures
in detail. We start with the representation of node (user)
state. We use a bit vector to track which users are influ-
enced by a given user. Since the graph is huge and only a
relatively small number of nodes are visible from any win-
dow, we would like to optimize the number of bits. However,
as the window moves, the bits need to be dynamically allo-
cated. Moreover, when we adapt the algorithm for comput-

Algorithm 1 Compute Influence Matrix

Input: Graph G; Action log Actions; Threshold �.
Output: Influence matrix IM�(U;A).
1: Position a window of size � at the end of table Actions.
2: Discover the visible subgraph GW of G on the fly from the

tuples in the window.
3: Compute the state of every node by starting from the most

recent tuples and working backward up the graph.
4: Fill in the cells IM�(u; a) whenever we have the state for

node u w.r.t. action a computed.
5: while top of Actions not reached do
6: Move the window from the most recent tuple in the window

to the next earlier tuple.
7: For every tuple that drops off the window, update the

state of every other node.
8: For every new tuple that appears in the window, compute

the state of the corresponding node by propagating the
state from its children in the visible graph.

9: Update the IM� entries as needed.

ing tribe leaders, we would want to know for any user and
action, not just the number of users influenced but which
ones were influenced. We solve this problem of dynamic al-
location of bits for user state, by maintaining a Lock Map for
each position of the window. The lock map keeps track of
which bit is allocated to which user in the current window.
As shown in Figure 3(d), we keep the lock map as entries
in a queue for efficient manipulation. E.g., it shows user R
is assigned the right-most bit (0-th bit), user S is assigned
the 6-th bit (from right), etc. To facilitate quick allocation
of “free” bits, we keep a Lock Bit Vector in which set bits
correspond to bits or locks owned by nodes and 0 bits cor-
respond to “free” bit positions. E.g., bit positions 0; 1; 2; 4; 6
are owned by nodes R;W;V; T; S. When the window moves,
the lock map entries and the Lock Bit Vector are kept up-
dated as will be explained shortly. We represent the state
of a node as an influence vector (IV). There is one influence
vector per action performed by the user in the current win-
dow. E.g., the influence vector of user S is 01000110. This
says the users influenced by S correspond to bit positions
1; 2; 6. Positions 1; 2 correspond to users W;V , which are
the users influenced by S.

Algorithm 2 Propagate

Input: A tuple � in the form of < u;a; t >.
1: Issue the first free lock to u. Let its index be i.
2: Initialize the IV for u with only i-th bit set to 1.
3: for each element v of Queue(a) do
4: if there is an edge from u and v then
5: IV(u) = IV(u) OR IV(v).
6: Add the node for u at the tail of Queue(a)

Algorithm 2 describes the procedure Propagate. When
a new tuple is inserted, we issue a free lock to its associated
node (step 1). Searching a free lock is as simple as finding
the first 0 bit in the Lock Bit Vector (from the right). The
IV for the new element u is initialized with its own index set
to 1 (step 2). We then traverse the queue and search for a
child of u. If there is an edge from u to the current element
in the queue, then the IV of u is updated as the bit OR of
IV of u and the IV of the current element. This way, we
can compute the IV of every new node in the window (steps
3-5). When the time window moves up, a node may drop
off the window. In such a case, we need to update the states
of the remaining nodes. To do this, we traverse the queue
and reset the lock index bit in IV of each element. Then the



lock is released by resetting the bit in the Lock Bit Vector.
Procedure Update describes the algorithm.

Algorithm 3 Update

Input: A tuple � =< u; a; t > that has become invisible in the
window.

1: i = lock index of u
2: for each element v in Queue(a) do
3: reset the index i in IV(v).
4: Delete the element u from the Queue(a).

5: Release the lock.

When the window is at its bottom-most position, we com-
pute the state of every user by bit OR operations. Initialize
the IV (for a given action) for every node to be the bit vector
where only the bit owned by the node is set. In our running
example, the IV of W is obtained as the bit OR of IV of V
and the current IV of W. This way, we can compute the IV
of every node in the window by bit OR’ing it with the IV
of its children. Suppose the window now moves such that
node V drops off the window and nodes P and Q enter the
window (along with their edges linking to nodes in the win-
dow). Notice the new edges can only be directed from nodes
that just entered the window to nodes that are present in
the window. First, we update the state of nodes R; S; T;W
which are present in the old and new positions of the win-
dow. This is done by simply zeroing the bit corresponding
to V , i.e., bit 2 (from the right) in all their states. Next, by
examining the Lock Bit Vector, we allocate the first “free”
bit to each new node – bit 3 to P and bit 5 to Q. Then, in
order to compute the state of new nodes P and Q, we prop-
agate the states from their children to those nodes. Node Q
has no children in the window so its IV is just 100000. For
node P, we can compute its IV as a bit OR with its default
IV and the current IV of R; S;W.

4.2 Computing Leaders
Once the influence matrix IM� is available, we can com-

pute leaders as follows. Given a user u and thresholds
 ;�, let L(u) = fa j IM�(u; a) >  g. Then u is a leader
iff the count jL(u)j ≥ �. Thus, leaders are computed by
scanning the rows of the influence matrix. By the same
token, confidence leaders are evaluated as follows. Given
a confidence threshold ', a user is a confidence leader iff
jfa j IM�(u; a) >  j=jfa j IM�(u; a) > 0gj ≥ '. The de-
nominator corresponds to the number of actions performed
by u. Recall, IM�(u; a) keeps track of the number of users
influenced by u, including u, for performing action a within
the window �.

The genuineness score is computed by maintaining a fake
counter for every user: fake(u) is incremented whenever
u is found to be a leader for some action a and in the
influence graph Inf�(v; a) of some other leader w.r.t. a.
Then the numerator in the definition of gen(u) is simply
jL(u)j- fake(u).

4.3 Computing Tribe Leaders
As discussed previously influence matrix is inadequate for

computing tribe leaders, we need the influence cube, i.e. a
User × Action × User cube with cells containing boolean
entries: IC�(u; a; v) = 1 if user v was influenced by user
u w.r.t. action a, w.r.t. an underlying time threshold �.
From this, we can determine whether u is a tribe leader by
means of frequent itemsets mining. In fact, we can view
each array IC�(u; a; ∗) (where ‘∗’ denotes “don’t care”) as

a transaction of items where items correspond to candidate
influenced users. More precisely, for a given user u, we have
a transaction corresponding to every action. Then we can
see a tribe as an itemset, and finding tribe leaders as finding
frequent itemsets larger than a given threshold  on the
minimum acceptable tribe size, where we ensure the itemset
does not include u when we are trying to determine if u is
a tribe leader.

Lemma 1. A user u is a tribe leader iff there is at least
one itemset of size  (not containing u) that has a frequency
of � or more in the transaction database IC�(u; ∗; ∗).

In our implementation, we do not explicitly compute the
influence cube. The reason is that real data sets tend to be
quite sparse w.r.t. users performing actions. This is a com-
mon phenomenon found in del.icio.us (for tagging actions)
and Yahoo! Movies (w.r.t. rating movies) and similar so-
cial collaborative sites. Thus, a direct implementation of the
cube will be inefficient w.r.t. space. We make the observa-
tion that when Algorithm 1 computes the influence matrix,
it does so using influence vectors. Recall that for each user
and each action we have an influence vector, for every posi-
tion of the time window. Also, for every position, we have a
lock map which “decodes” the bit positions in the influence
vectors into corresponding node id’s.

Consider a user u and action a. Let t be the time u
performed a. Consider the position of the time window when
its beginning corresponds to time t (and end to t+ �). The
influence vector of u w.r.t. a for this position tells us exactly
which are the various bit positions corresponding to users
influenced by user u on action a. Thus, the combination of
influence vector of u for a for window position t and the lock
map provides a compact representation of the transaction,
i.e., row IC�(u; a; ∗) in the influence cube.

Algorithm 4 Tribe Leaders

Input: Graph G; Action log Actions; Thresholds �; ; �.
1: Position a time window of size � at the end of table Actions

and move it backward in time just as in Algorithm 1.
2: Compute the influence vector for every node and every action

as before.
3: When the IV of user u w.r.t. action a for window position t

is available, where u performed a at t, update the influence
cube row IC�(u; a; ∗) using the IV and the current lock map.

4: When the influence cube is computed, compute �-frequent
itemsets of size ≥  (not containing u) by means of
ExAMiner [7].

5: Determine the tribe leaders and tribe led by them using the

frequent itemsets computed above, using Lemma 1.

We then compute frequent itemsets using a special algo-
rithm optimized for our needs. Notice that we are not inter-
ested in all frequent itemsets, but only in those ones whose
size is  or more. This problem has been deeply studied
in the literature [8, 7] and a large variety of optimizations
have been developed in this context. Here we adopt the
ExAMiner implementation [7]. The idea is that a transac-
tion whose size is <  can be discarded since none of its
subsets will have size ≥  either, and therefore the transac-
tion cannot support any valid itemsets. This data reduction,
in turn reduces the support of other frequent and invalid
itemsets thus reducing the search space and creating new
room for removal of other transactions. This has a recursive
rippling effect that reduces the computation considerably.

The overall approach for computing tribe leaders is sum-
marized in Algorithm 4.
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Figure 4: The dataset used in the experimentation: (a) nodes degree distribution, (b) distribution of the size
of the connected components, (c) distribution of ratings per movie, and (d) distribution of ratings per user.

4.4 Complexity Analysis
Suppose the maximum number of nodes visible in any po-

sition of the time window is n. We expect n to be a small
fraction of the total number of nodes in the graph G. At any
stage, we need n bits to be used for both the Lock Bit Vector
and for each of the influence vectors. The key atomic oper-
ations in our algorithm are bit operations (AND and OR)
and entering or removing a lock map entry into the queue.
Each update operation might involve the deletion of O(n)
nodes from the queue. Updating the Lock Bit Vector as
nodes get deleted costs at most O(n2) bit level operations.2

Similarly, when a node gets deleted, updating the influence
vector of other nodes can cost O(n) bit AND operations,
which corresponds to O(n2) bit level operations. Suppose
on an average when the window moves k nodes drop off the
window and k nodes enter the window, where k < n and k
is O(n). Then the worst case cost for updating all existing
nodes in the window when k nodes drop off is O(kn2). Let
T be the number of tuples in the Actions table. Then the
number of distinct positions of the window is O(T=k). Let A
be maximum number of actions performed by a user. Since
we need to maintain influence vectors separately for each
action, the total number of bit level operations for update
is O(TAn2).

By a similar analysis, we can show that propagate, which
involves the atomic steps of finding a “free” bit in the Lock
Bit Vector, entering a node in the queue, finding children of
a node among nodes in the window, and modifying the in-
fluence vector of a node by bit OR’ing with influence vectors
of its children cost O(TAn2) bit level operations. A node is
inserted into the queue or deleted from the queue at most
once per tuple in the action log table. We thus have:

Lemma 2. The influence matrix can be computed using
O(TAn2) bit level operations, and using O(T) insert and
delete operations on the queue. Here, T;A; n are parame-
ters as explained above.

The complexity of computing tribe leaders is determined
by: (a) computing the influence cube and (b) finding the
existence of frequent itemsets. Influence cube can be com-
puted with the same number of bit operations as influence
matrix (Lemma 2). Finding frequent itemsets is well-known
to be of exponential complexity. But it’s a thoroughly stud-
ied problem and the use of several algorithmic tricks makes
it quite efficient in practice.

5. EXPERIMENTAL EVALUATION
In this section, we describe the comprehensive empirical

evaluation we conducted in order to assess both the effi-
ciency of our algorithms and the relevance and usefulness of
2As opposed to word level.

the overall proposal. All the experiments are performed on
a 3 GHz Intel Pentium 4 CPU with 2 Gb main memory, run-
ning Suse Linux 10.1 with kernel 2.6.16.54. The algorithms
were implemented in C++ with STL and compiled with gnu
g++ compiler version 4.1.0. We also exploited the bitstring
handling library proposed in [3].

5.1 Dataset used
In our problem setting, we need both the social network

and the actions database. Using the Yahoo! Movies data
we have the actions (ratings of movies) but we do not have
any social network information. Thus for producing the so-
cial network we “crossed-over” the Yahoo! Movies ratings
with a subgraph of the Yahoo! Instant Messenger graph, as
described in the following.

For the sake of privacy, all the user data in this paper were
provided to us after anonymization. We started from a sub-
graph of the Yahoo! Instant Messenger friends-relationship
graph, containing the most active users (approx. 110 M
nodes), and through common user identifiers, we projected
this graph on the subset of users that have also rated a movie
in Yahoo! Movies (or more precisely, that have a rating in
the set of 21 million ratings provided to us). We then re-
moved isolated nodes, i.e., nodes that were not connected
to other nodes, after this projection. Accordingly, we then
selected only the ratings belonging to the users present in
the resulting subgraph. This data preparation made the
graph shrink to a smaller graph containing approximately
217,494 nodes, and 212,373 edges. Accordingly the Yahoo!
Movies data reduced from more than 21 millions ratings, to
1.8 millions ratings.

In Figure 4 we report some statistics about the dataset we
generated. The social graph is quite disconnected: it con-
tains 46,650 connected components, one of which has 94,032
nodes (see the bottom-right corner of Figure 4(b)), while
all the others have less than 50 nodes. In Figure 4(a) the
distribution of nodes degree is reported. It should be noted
that our graph exhibits a quite low density w.r.t. what is
expected from a social network graph: this is natural as our
graph is not a social network in its whole, but it is just a
projection of a social network on a subset of its nodes, i.e.,
the set of users which performed actions.

Moreover, due to the sparsity of the Yahoo! graph that
we constructed, in the following, we report experiments con-
ducted not at the granularity of the movie, but going a step
up in the hierarchy, namely at the granularity of genres.
When we roll up to the level of genre, we have an average
of 7:62 actions per user, and an average of 46093 ratings per
genre. Note that when we go up in the granularity we have to
face the following situation: the same user may execute the
same actions more than once at different timestamps (e.g.,
rating different movies corresponding to the same genre).
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Figure 5: (a) Number of leaders found on Yahoo! Movies dataset, with � = 9 weeks, for � ∈ [1; 10] and
 ∈ [5; 50]; (b) number of confidence leaders with  = 5 and varying confidence threshold; (c) number of
genuine leaders with  = 5 and varying genuineness threshold; (d) number of leaders with varying � and �.
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Figure 6: (a) Histogram of genuineness of leaders for � = 9 weeks, (b) comparison between number of leaders
and number of tribe leaders with varying  , (c) comparison of number of tribe leaders for three different �,
(d) and the corresponding run time.

This situation is not only practically relevant but it also
theoretically interesting as also discussed later in Section 6.
When a user performs an action multiple times, in principle
we may use any occurrence of action as a basis for defin-
ing propagation of influence. In the experiments we used
the first occurrence of a given action, as we believe it is
a more reliable indicator of influence propagation. At any
rate, measuring influence based on first occurrence is cer-
tainly representative of the options available.

5.2 Mining Leaders
In Figure 5 we report the number of leaders found in the

Yahoo! Movies dataset for various combinations of the input
parameters. All these graphs correspond to a time window
of � = 9 weeks. Figure 5(a) measures the number of leaders
as a function of � and  . Recall � controls the minimum
number of actions where leadership is required in order for a
user to be declared a leader, while  controls the minimum
number of influenced users. As expected, as these thresholds
go up, the number of leaders drops. E.g., when � = 5 and
 = 5, the number of leaders is 323 and it drops to 59 when
� becomes 10 and  becomes 10. Figure 5(b)-(c) depict
the variation in confidence leaders and genuine leaders as a
function of the various parameters. They can all be seen
to exhibit similar behavior. In Figure 5(d), we see how the
number of leaders varies as a function of � and �. When �
is increased from 3 to 6 weeks at any given �, the number of
leaders nearly doubles. This happens again when � is raised
from 6 to 9 weeks. In Figure 6(a) the histogram of genuine-
ness is reported: it shows that the concept of genuineness
is almost binary, clearly cutting between leaders that are
dominated by other leaders and truly genuine leaders.

5.3 Mining Tribe Leaders
In Figure 6(b) a comparison between number of leaders

and number of tribe leaders with varying  is reported, while
comparison of number of tribe leaders for three different
� is reported in Figure 6(c). Obviously for larger  and
smaller � we extract a lower number of leaders. In Figure
6(d), we report the run time for extracting the influence
vectors needed to mine tribe leaders. Recall that extracting
the influence vector only depends on the time threshold �
and not on the other two thresholds � and  . The plot
only reports the run time needed for the construction of
the influence vectors: after this step, one frequent itemsets
extraction is needed for each leader to see if it is also a tribe
leader. The run time for this second phase is not reported for
two reason: firstly this is based on pre-existing results and
it is not contribution of this paper; secondly, we found this
execution time was always very small and negligible w.r.t.
the time needed to construct the influence vectors. Note
that as expected run time is larger for larger time threshold
�, and it is linear or sublinear w.r.t. the size of the actions
log (reported on the x axis).

5.4 Qualitative evaluation
Table 1 reports the top 10 tribe leaders w.r.t. size of their

largest tribe. Note that this is not by any means an indicator
that these are the best tribe leaders. We could have shown
the top 10 by genuineness, or by confidence times genuine-
ness, but this way we would have missed the possibility of
discussing leaders with very low genuineness or confidence.
Thus we choose to inspect those ones with the largest tribes
and to see their level of confidence and genuineness. We use



� = 3weeks; � = 5
rank user id tribesize #actions conf: genu:
1 198671 15 15 0:58 0:4
2 199726 13 8 1 1
3 130514 12 17 0:89 0:94
4 206280 12 11 0:92 1
5 68241 11 12 0:92 0
6 22830 11 19 0:86 1
7 20045 11 9 0:5 0:22
8 170467 10 7 1 0:29
9 75923 10 9 0:75 1
10 81903 10 11 0:65 0:64

� = 9weeks; � = 5
rank user id tribesize #actions conf: genu:
1 98711 25 11 0:85 0:73
2 31018 25 9 1 1
3 170467 23 8 1 0
4 20045 22 11 0:61 0:55
5 66331 21 13 0:81 0:92
6 27381 21 16 0:57 0:63
7 85363 20 5 0:63 0:8
8 144314 20 19 0:86 0:1
9 153181 19 22 0:76 0:82
10 206280 19 12 1 0:67

(a) (b)

Table 1: Top 10 tribe leaders (those with the largest tribe) for two different values of �.

two very distant values of  , and for � = 5, i.e., they have
to influence the same tribe for at least 5 different actions.
The table reports the leader user id, the size of its largest
tribe, the number of actions in which it was a leader (a stan-
dard one not a tribe leader), the confidence value, and the
genuineness value.

There are many interesting things worth noting in these
two tables. The first thing is that large tribe leaders usually
exhibit high confidence. Consider that for � = 3weeks and
� = 5 the average confidence recorded among the leaders
is approximately 0:5. For genuineness the results are dif-
ferent. Among the top 10 tribe leaders w.r.t. size of their
largest tribe, we find approximately half showing very high
genuineness and half showing very low genuineness indicat-
ing that they are dominated by other leaders. In particular
users 170467 and 20045 which are present in both tables,
user 68241 in Table 1(a), and user 144314 in Table 1(b). We
checked the reason for these low values of genuineness and
we found out that these tribe leaders were dominated by
other tribe leaders still belonging to the top-10. In particu-
lar we found that 206280, 75923 and 198671 dominate 68241,
170467 is dominated by 130514, and 20045 is dominated by
130514 and 22830. Another positive fact worth noting, is
that there are three tribe leaders in the intersection of the
two top-10 lists.

Finally, let us highlight that being a tribe leader is not
simply being a strong leaders, but it is an orthogonal con-
cept. We have found many leaders which were acting as
leader in many actions and with a large group of followers,
but that in the end resulted not to be tribe leaders. On
the other hand, we found leaders acting as leaders in a few
actions, but that were always followed by the same tribe.
Consider for instance user 31018 in Table1(b): it acts as a
leader in only 9 actions, but in all these 9 actions it is al-
ways followed by a tribe of the same 25 users, and it is a
very genuine leader (genuineness score = 1).

The discussion above confirms the relevance and useful-
ness of the proposed framework. All the concepts of leaders,
confidence, genuineness and tribe leaders make sense per se,
and they seems to converge on “strong” leaders. Conjoin-
ing these various concepts, we can identify a small set of
strong tribe leaders that may be targeted by a viral mar-
keting campaign, for instance by giving them free sample of
the product, or by sending to them the new album of their
favorite rock band before the official release, in an attempt
of maximizing the word-of-mouth effect.

6. CONCLUSIONS AND DISCUSSION
We introduced a novel data mining approach to social net-

works analysis, based on frequent pattern discovery. While
frequent pattern mining has been studied a lot in the last
decade and it has found many real-world application scenar-
ios, to the best of our knowledge this is the first proposal of a
framework based on frequent pattern mining for discovering
leaders in social networks.

In particular, we considered social networks where users
perform actions such as tagging, buying or rating an item.
Given a database consisting of a social graph together with
a chronologically ordered log of user actions, we motivated
the problem of extracting leaders of various flavors from this
database. To that end, we proposed notions of leaders and
tribe leaders together with possible additional properties
such as confidence and genuineness. We developed efficient
algorithms for extracting all types of leaders proposed by us.
A notable feature of our algorithms is that all of them make
one scan of the action log table. This is accomplished by
performing two key operations – update and propagate – on
the fly while sliding a window through the action log table
backward in time. Various optimizations were incorporated
in the implementation of our algorithms. A key summary
data structure employed in our algorithms is called an influ-
ence matrix. In the case of tribe leaders, we use an influence
cube instead of the matrix.

We conducted extensive experiments on a combination of
Yahoo! Instant Messenger dataset forming the social graph
with user ids correlated to user ids in Yahoo! Movies dataset.
In our experiments, we demonstrated the scalability of our
algorithms, and we showed many real interesting patterns of
leadership, establishing that the notions of leaders proposed
in this paper are useful and interesting. This work comple-
ments work in the area of viral marketing [22, 16] as pointed
out in Section 2.

One potential issue with using pattern discovery for min-
ing leaders is the effect of popular actions. Actions that
are very popular may be performed by many users without
there really being any influence. This is similar to the fa-
mous beer-diaper problem in association rule mining. One
way to combat this problem is to discard the most popular
actions from the action log and use the rest of the log for
mining leaders. Another approach is to associate a “credit”
with each action, which is inversely proportional to its pop-
ularity and use the credit to determine leadership.



We are currently collecting other data sets where the social
network graph comes together with an action log: we plan
to test our algorithms on larger and denser data, both for
quantitative and qualitative evaluation. In future, it’d be
interesting to investigate whether patterns extracted from
this approach could be used to determine the parameters
required for the viral marketing problem. Furthermore, as
discussed in the experiments section, in order to determine
interesting patterns, we needed to roll up from the level of in-
dividual movies to a more general level of genre, director, or
actor. This is a feature that depends on the dataset. Given
classification hierarchies on users, actions, and time, it is
interesting to ask whether leadership cube corresponding to
multi-level generalizations over different dimensions can be
computed efficiently. Finally, it is worth noting that by min-
ing tribe leaders as a side effect we also mine tribes, that can
be considered as small communities. We plan to investigate
the relationships between our tribes and the communities
structures studied in the literature [14, 18, 23, 11].
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