
Does a Programmer’s Activity Indicate Knowledge of
Code?

Thomas Fritz†, Gail C. Murphy†, Emily Hill‡
†Department of Computer Science ‡Computer and Information Sciences

University of British Columbia University of Delaware
Vancouver, BC, Canada Newark, DE, USA

{fritz,murphy}@cs.ubc.ca hill@cis.udel.edu

ABSTRACT
The practice of software development can likely be improved if an
externalized model of each programmer’s knowledge of a particu-
lar code base is available. Some tools already assume a useful form
of such a model can be created from data collected during develop-
ment, such as expertise recommenders that use information about
who has changed each file to suggest who might answer questions
about particular parts of a system. In this paper, we report on an
empirical study that investigates whether a programmer’s activity
can be used to build a model of what a programmer knows about
a code base. In this study, nineteen professional Java programmers
completed a series of questionnaires about the code on which they
were working. These questionnaires were generated automatically
and asked about program elements a programmer had worked with
frequently and recently and ones that he had not. We found that
a degree of interest model based on this frequency and recency of
interaction can often indicate the parts of the code base for which
the programmer has knowledge. We also determined a number of
factors that may be used to improve the model, such as authorship
of program elements, the role of elements, and the task being per-
formed.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—
integrated environments

General Terms
Experimentation, Human Factors

Keywords
interaction, degree-of-interest, program structure, structural knowl-
edge

1. INTRODUCTION
As a developer works on a system, she gains knowledge about

the domain of the system, the development process used to build

c©ACM, 2007. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages: 341 - 350.
http://doi.acm.org/10.1145/1287624.1287673
ESEC/FSE’07,September 3–7, 2007, Cavtat near Dubrovnik, Croatia.

the system, and the design and implementation of the system [12]
amongst other aspects. Since each developer’s work on, and expe-
rience with, a system differs from other developers working on the
same system, each developer gains a unique set of knowledge.

Various software engineering tools have attempted to form mod-
els ofwho knows whatabout a system automatically as a means of
recommending experts for a particular aspect of a system (e.g., [9]).
These expertise recommenders focus on knowledge about the sys-
tem artifacts. They mine bug reports and source code revisions to
determine which developers have contributed to different parts of
the system. A tacit assumption with these recommenders is that
interactions on a bug report or changes to the source indicates a
developer’s knowledge about a particular part of the system.

The idea that a developer’s activity with the content of a sys-
tem’s artifacts is a proxy for knowledge about those artifacts seems
reasonable. After all, this idea is consistent with models of how
humans learn and gain knowledge. However, beyond the basic
idea, what does it mean for a developer to haveknowledgeabout
a part of the source. Does it mean that the developer can ex-
plain what that part of the source does? Can they describe how
that part of the source is structured or how it works? Answers to
these questions would help direct work in expertise recommenda-
tion; for instance, by determining how much activity is necessary
to gain enough knowledge to answer broad questions or by guiding
the tool support needed for a supposed expert to answer a particular
question. Answers to these questions could also open up the use of
an activity-based model of knowledge for other purposes, such as
using it for the basis of collaboration or personalizing information.

As an initial investigation into what knowledge a developer has
about source code based on his or her activity, we conducted an ex-
ploratory study that focused on one kind of knowledge—knowledge
about program structure—and one kind of activity—programming.
In this study, a programmer’s interaction with the Eclipse Inte-
grated Development Environment (IDE)1 was used as a description
of the programmer’s activity. Using a software plug-in, we moni-
tored the interactions of nineteen industry Java programmers with
their IDE over a period of five weeks. When a subject reached a
threshold of interaction, our plug-in presented a questionnaire that
asked about the structure of program elements with which the sub-
ject interacted. There were three thresholds, and thus three ques-
tionnaires, that a subject might be asked to answer. To ensure our
study did not stress memory recall, some tool support was provided
with each questionnaire to help a subject answer a question about
a program element. We also interviewed thirteen of the nineteen
programmers.

Through an analysis of the answers to the automatically gen-

1www.eclipse.org , verified 18/03/07

erated questionnaires, we found that there is a significant differ-
ence in the mean number of correct answers between program ele-
ments a subject had interacted with frequently and recently (as rep-
resented by a high degree of interest (DOI) value [6]) and program
elements that were accessed less frequently and less recently. We
did not find any evidence that the frequency or recency of activity
alone with an element indicated knowledge. This result suggests
that in a non-trivial number of cases, a programmer’s activity about
the program sourcecan indicate one kind of knowledge, knowl-
edge about program structure, and that a DOI model captures some
of the elements for which a programmer likely has this knowledge.
Through an analysis of the interview data, we determined a num-
ber of factors that influence this knowledge that are not a part of the
current DOI model used, such as whether the programmer authored
the element and the particular kind of task being performed by the
developer when the activity took place.

We begin by situating our paper in the context of previous work
(Section 2). We then discuss our exploratory empirical study (Sec-
tion 3), present quantitative (Section 4) and qualitative (Section 5)
results, discuss those results (Section 6) and describe limitations in
our study and results (Section 7).

2. RELATED WORK
Before we undertook this study, we consulted with experts in

psychology about whether studies conducted in that field would
provide the evidence that activity can help indicate knowledge. Un-
fortunately, as we outline below, studies in psychology do not pro-
vide the foundational evidence that we would like to use to direct
the building of better tools. We also looked to empirical studies
of programming to find a potential link; however, we found that
these studies also do not answer our initial question. Despite a lack
of evidence, several tools that intend to help software developers
perform their jobs more effectively assume that activity is an indi-
cator of knowledge; we outline some of the efforts that make this
assumption below to show that there is a need to investigate the
question asked in this paper.

2.1 Psychology
There is a significant amount of work in psychology on knowl-

edge. Much of this work attempts to create models that describe the
different parts of knowledge, such as implicit and explicit knowl-
edge (e.g., [4]). Ultimately, it would be desirable to understand
from the neurons up how people remember and learn so that we
could use those models to improve how we present information
about software to programmers. Lacking this understanding, with
this work, we aim to determine if we can use one kind of activity as
a proxy for one kind of knowledge without trying to precisely un-
derstand how that knowledge is gained and represented in humans.

There have been a few experiments in psychology that consider
programmers. Altmann [1], for instance, monitored an expert pro-
grammer performing a task for eighty minutes. He analyzed a ten
minute interval using a computational simulation and studied what
was likely entered into the programmer’s memory on a moment-
to-moment basis. His focus was to characterize near-term memory,
essentially what the programmer could recall less than an hour later.
We believe an understanding of what programmers can remember
or know after a more significant period of time working with the
same code is also important as it is more representative of the need
underlying the tools that have been built (Section 2.3).

2.2 Empirical Studies of Programmers
Studies have also been conducted to explore how programmers

comprehend programs, resulting in the proposal of a number of dif-

ferent models, such as the integrated meta-model [14]. Our focus
is different, considering not the mechanism by which programmers
learn about a program, but rather what they retain as knowledge
as a result of the learning process. Other studies consider the type
of knowledge experts have (e.g., [13]) and how experts share such
knowledge with newcomers and novices (e.g., [3] and [12]). These
studies do not consider how to determinewhat knowledge a pro-
grammer might have about the source; the focus of our study is to
investigate one means of determining an indicator for one kind of
knowledge.

2.3 Expertise Recommenders
To help make the case for the need for a better understanding of

how activity relates to knowledge, we briefly survey the assump-
tions made in work on expertise recommenders for software devel-
opments. A few of these recommenders use profiles of expertise
maintained by the experts (e.g., [7]). However, the vast major-
ity of recommenders are based on data about the experts’ activity
recorded as part of artifacts created during the development. For ex-
ample, Expertise Browser [9] and Expertise Recommender [7] are
based on meta-data about who has made changes to which files. An
approach developed to recommend who should fix a bug is based
on data recorded in the bug repository system [2] as opposed to
meta-data. Whether data or meta-data, the assumption is that this
limited record of activity is somehow related to who knows what
about a software system. These systems are able to recommend
with a level of precision and recall that appears useful to develop-
ers in the limited studies conducted. We may be able to better im-
prove the effectiveness of these kinds of tools if we develop a better
understanding of what kinds of activity lead to particular kinds of
knowledge.

3. STUDY
The goal of our study was to determine whether a programmer’s

recent interactions with the source code comprising a system cor-
respond to his or her knowledge of the structure of the source code.
We chose to focus our study on this kind of knowledge because we
believe that an understanding of how parts of the system interact is
needed to explain how the code works. Our hypothesis was thatthe
more frequently and recently a programmer has interacted with a
particular source code element the higher the programmer’s knowl-
edge of that element. (In the remainder of this paper, we use the
unqualified term knowledge to mean information about a system’s
implementation that a developer can recall with no to minimal tool
support).

3.1 Study Subjects
Our study involved industry Java programmers. We recruited

these programmers from two IBM development laboratory loca-
tions. To be eligible to participate in the study, a programmer had
to use Eclipse IDE in her daily work. To solicit participation, we
advertised our study in a short presentation and randomly asked
people at two IBM software development locations. 34 individuals
showed interest in the study, split almost evenly over the two lo-
cations. From these 34, we ended up with nineteen subjects. The
other fifteen individuals either did not have the appropriate tool en-
vironment, did not have sufficient time, or did not reach the prede-
termined thresholds of activity.

Eight of the nineteen subjects were at one development site and
eleven were located at the other development site. The former
group worked on two different development teams and projects.
The latter group was spread evenly across six different development
teams. The experience of these subjects ranged from one month to

Q1 Can you recall the name of one class or interface that is
directly extended, implemented by ‘TYPE’, or can you
recall the name of one class that directly extends the
type ‘TYPE’?

Q2 Do you know the types of the parameters that are passed
to the invocation of method/constructor ‘METHOD’?

Q3 Do you know two methods that are called by
method/constructor ‘METHOD’?

Q4 Can you recall one method/constructor that calls
method/constructor ‘METHOD’?

Figure 1: Questions in the Questionnaire

twenty years of professional software development. The average
experience was seven years (standard deviation of 6.4 years). Two
of the nineteen subjects were female.

3.2 Study Method
Our overall method involved monitoring the interaction of sub-

jects with the Eclipse IDE and prompting the subject with a ques-
tionnaire about pieces of the system structure with which he had in-
teracted when certain thresholds of interactions were reached. Our
goal was to have each subject answer approximately one question-
naire per week over a three week period.

3.2.1 Interaction Monitoring
The interactions we monitored included selections and edits of

source code, and commands, such as the opening and closing of
editors, views and perspectives. To ensure that the number of inter-
actions was approximately equal between each questionnaire, we
based the questionnaire prompting on the number of interaction
events. We assumed an average interaction event number of 4000
per day.2 To approximate one questionnaire per week, we thus
chose 20000, 40000 and 60000 interactions as thresholds. Once
the threshold was exceeded, a dialog in Eclipse opened automat-
ically and the subjects could either work on the questionnaire or
postpone it.

A questionnaire was always generated with the most recent 20000
(40000 or 60000 events); postponing a questionnaire did not affect
the recency of exposure to the material asked about in the question-
naire.

3.2.2 Questionnaire Content
Each questionnaire presented to a subject contained eighteen ques-

tions about the source code elements with which the subject had in-
teracted. Each questionnaire was generated specifically for a sub-
ject based on the interaction captured for that subject. The eigh-
teen questions were divided into three categories of six questions.
Each group of six questions contained a question about type hi-
erarchy, two questions about type parameters, and three questions
about inter- and intra-class relations (Figure 1). In each group of
six questions, the second question type (Q2) was asked twice, once
about a method with two parameter types and once about a method
with one parameter type. Also in each group of six questions, two
questions were asked about calling relationships (Q3).

2We made this assumption based on the average interaction events
of a professional software developer who we monitored for two
weeks while working on an open source tool; we reduced this
programmer’s interaction events by one-third to account for more
meeting time in a co-located group environment.

We chose these detailed structural questions because they focus
on interactions between elements and because we could determine
the correctness of answers to these questions automatically. We
discuss the rationale for this choice in Section 6.

A questionnaire asked these six questions for three different sets
of elements: one set with high DOI, one set with medium DOI and
one set with low DOI values (Section 3.2.3). To avoid learning
effects, the method and type elements were chosen so that no el-
ement was asked about twice (over one questionnaire and over all
questionnaires).

3.2.3 Degree of Interest
We use a real number value to represent the amount of activity

a programmer has had recently with a particular program element.
This real number value represents the degree of interest (DOI) of
the element [6]; it is a combination of two components, a frequency
of how many interactions a programmer has had with the element
and a recency that decays the DOI value based on the number of
interactions a programmer has had with the source since the last
interaction with the element of interest. The DOI of an element
starts at a positive value with the first interaction. If a programmer
continues to interact with that element, its DOI will rise. If a pro-
grammer ceases to interact with the element, its DOI will gradually
decay until a programmer again begins to interact with it. Different
kinds of events contribute different scaled values to the DOI of an
element; for instance, selections of an element contribute less to
DOI than edits of an element. The DOI function used in this study
has been used successfully as part of the Eclipse Mylyn3 project
for approximately eighteen months, which has approximately tens
of thousands of users.

3.3 Study Support
We implemented the support for the study as an Eclipse feature4

composed of three main components: a monitor built on the Mylyn
monitor [10], a Mylyn component for computing DOI values [6],
and the questionnaire component. We focus our description here
on the questionnaire component.

When a threshold is exceeded, the questionnaire component must
determine the elements with high, medium and low DOI values
and generate the questionnaire. This component generates two lists
based on the target in each interaction event being considered: one
for all methods and one for all type elements. The component takes
into account elements that were touched (i.e., selected or edited)
at least three times to avoid elements touched by accident. Fur-
thermore, elements that were used in former questionnaires are ex-
cluded from the list.

Each list is then sorted according to the DOI values. The 20%
of elements with the highest degrees of interest, the 20% in the
middle and the 20% of elements with the lowest degrees of interest
in the sorted list are considered as the groups of elements with high,
medium and low degrees of interest.

To form the questions, elements were randomly drawn from the
groups of high, medium and low DOI. We placed constraints on
the elements used for a question to make sure answers were pos-
sible. For Q1, the target element had to have at least one type it
extends/implements or it is extended/implemented by. For Q2, one
target method element had to have at least two parameter types and
one had to have at least one parameter type. For Q3, each of the
two target method elements had to have at least two method calls in
their method body. For Q4, the target method element had to have

3www.eclipse.org/mylyn , verified 13/06/07
4The subjects used a variety of versions of Eclipse from 3.2.1 to
3.3M4.

Figure 2: Questionnaire with Open Type Action

at least one method it was called by directly. To determine if an
element met the requirements, the questionnaire component used
the Eclipse Java Development Tools (JDT). Specifically, the com-
ponent used the search engine of JDT to discover called-by and
extended-by relationships and the abstract syntax tree parser to re-
trieve information about calling relationships, parameter types and
extended and implemented types.

Once eighteen suitable elements were determined, the question-
naire component opened a wizard dialog that had one page for each
question. To avoid mistakes in recalling the exact name of a type or
method signature and to provide the subject with familiar features
of Eclipse, our tool provided the open type action and the outline
view of Eclipse. The open type action opens up a dialog and gives
the programmer the chance to look for a type via a regular expres-
sion (Figure 2). The outline view tool lists all elements declared in
a class; it was provided for questions in which a method name was
to be entered as an answer. The answer fields of the question pages
could be filled by selecting an element in either the open type view
or the outline view. This approach helped eliminate misspelling
and helped facilitate the answering process.

3.4 Result Scoring
Twice per week, we visited each subject and asked whether or

not she or he had completed a questionnaire. If so, we collected the
relevant data that contained the questions, the subject’s answers to
the questions and for each question all possible answers found with
JDT; the possible answers were stored by the questionnaire com-
ponent on the subject’s computer at the time the questionnaire was
administered. We then analyzed the results manually by compar-
ing the subject’s answer with all possible recorded answers for that
question to detect if the given answer was correct. To ensure our

tool also found all possible answers, we compared our results to the
actual code bases on a subject’s computer for a random sample of
subjects.5

We then summed up the number of correct answers for each
group of six questions (low, medium, high). As mentioned above,
in each group of six questions, Q1 and Q4 were asked once with one
possible answer each. Q2 was asked twice, once about a method
with two parameter types and once with one parameter type, result-
ing in two possible answers in the first case and one possible answer
in the second case. Q3 was asked twice with two possible answers
each time. Therefore, the correct answer score for each group was
between 0 and 9. For each questionnaire, we thus computed three
values ranging from 0 to 9, one for the group of questions about
elements with low DOI, one for medium and one for high DOI.

3.5 Interaction Levels
There was a substantial difference in the period of time it took

each programmer to reach the first threshold. Several developers
reached the first threshold after three days, the second after six and
the third after around nine days. Other subjects took twelve days
of programming to reach the first threshold. The mean time for
reaching the first threshold was7 with a standard deviation of3.10.

3.6 Operational Problems
We also faced several operational problems when doing our study.

Eight subjects that had completed the first questionnaire did not
reach the second questionnaire and only eight subjects reached the
final questionnaire. This attrition seems to be for one of three rea-
sons. First, some subjects accidentally uninstalled our plug-in by
installing a new version of Eclipse and deleting the old workspace
in which the data was stored. Second, there was insufficient time
from when a subject joined the study to the end of the study period
to collect the results. Third, a questionnaire could not be created.
For example, two subjects reached the second interaction thresh-
old without having completed the first questionnaire as the study
plug-in was unable to create the first questionnaire due to interac-
tion with an insufficient number of elements to fulfill the criteria
for creating the first questionnaire.

4. QUANTITATIVE RESULTS
To evaluate our main hypothesis of whether the frequency and

recency of a programmer’s interaction with particular parts of the
source indicates knowledge of that source, we conducted within
subject statistical tests. Per subject, we paired the number of cor-
rect answers for the six elements with a low DOI within a question-
naire with the number of correct answers for the six elements with
a high DOI within the same questionnaire. We did not consider
the elements with medium DOI in the questionnaires because the
range of DOI values for those elements was very close to the range
for high and low DOI elements. Please note that in presenting the
data we have altered genders so as not to identify the subjects.

4.1 DOI and Knowledge
We depict the results of correct answers for the elements of low

and high DOI for each subject for each of the questionnaires in Fig-
ure 3. We have arranged the results per subject so that the difference
between the correct answers for high DOI and low DOI elements
increases from left to right; the differences are shown in the trend
line overlying the histogram. When the line is visible above zero,

5We performed this extra check to account for any differences on
the subjects’ machines from our test environment.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

19 6 15 11 33 5 24 18 35 4 20 1 12 23 17 22 7

N
um

be
r

co
rr

ec
t

Subject (sorted by High - Low correct)

Low 20% DOI
High 20% DOI

High - Low Correct

(a) First Questionnaire

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5 14 11 9 15 19 7 4 1 22 24

N
um

be
r

co
rr

ec
t

Subject (sorted by High - Low correct)
(b) Second Questionnaire

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5 24 20 4 11 9 1 15

N
um

be
r

co
rr

ec
t

Subject (sorted by High - Low correct)
(c) Third Questionnaire

Figure 3: Correct Answers by Subject for Questionnaire 1, 2 and 3

it is possible to see how many subjects had more high DOI cor-
rect answers than low DOI correct answers. For the subjects where
the trend line is above zero, the data supports our hypothesis that a
programmer’s activity, modeled by DOI, indicates knowledge.

To determine whether there was statistical significance in the
mean difference between correct answers for high and low DOI ele-
ments, we performed paired t-tests by pairing the number of correct
answers for high and low DOI elements by subject. The difference
in the number of correct answers for each questionnaire passed the
Kolmogorov-Smirnov and the Shapiro-Wilko normality tests.

4.1.1 First Questionnaire
Seventeen subjects answered the first questionnaire.6 Using a

paired t-test, we found that the mean high DOI correct is signif-
icantly7 higher than the mean low DOI correct per subject (two-
tailedp = 0.0016, DF = 168, mean difference= 1.7647).

In the results of this questionnaire it is interesting to see that all
subjects [S19, S6, S15, S11, S33] who had more or the same num-
ber of correct answers for elements with low DOI as for elements
with high DOI said in subsequent interviews that they were work-
ing on changes crosscutting code written by other programmers.
Furthermore, these were the only subjects that described their work

6Although the interaction of two more subjects caused the subjects
to pass the first threshold, the study plug-in did not find enough
elements in their interactions to create the questionnaire.
7We consider results to be statistically significant withp < 0.05.
8The degrees of freedom (DF) represents the number of obser-
vations used to estimate a parameter (for example, the differences
between mean low and high DOI correct per subject). In this case,
DF = number of subjects−1.

in this way for the first questionnaire. Subject S19 also said that
just shortly before the study started he had to understand the be-
havior of all six elements with low DOI, causing him to answer the
questions for the low DOI elements correctly. In addition, when
considering only subjects with a positive difference, the subjects
with less than or equal to one and a half years of professional expe-
rience [S5, S24, S18, S35] have a smaller difference in the number
of correct answers than the ones with three and a half years or more.

4.1.2 Second Questionnaire
Eleven subjects reached the threshold for the second question-

naire. For the data provided by these subjects, the two-tailed P
value for the paired t-test is 0.0578 and is thus not significant at
the 95% significance level (DF = 10). We hypothesize that this
lack of significance is from the lack of data: there are only eleven
observations in the second questionnaire versus seventeen from the
first.

For this questionnaire, five subjects [S14, S11, S9, S15, S19]
stated that they were working on changes crosscutting other pro-
grammers’ code and similar to the first questionnaire, their differ-
ence in correct answers between low and high is very close to zero.
With the exception of subject S5, these five subjects are also the
leftmost on the graph ordered by the difference and there is no other
subject with a smaller difference. When looking only at the subjects
with a positive difference, all subjects that have less than one year
of professional working experience [S15, S19], except S24, have a
smaller difference than the subjects with more than seven years of
experience [S7, S4, S1, S22].

4.1.3 Third Questionnaire
Only eight subjects reached the third threshold. Performing the

paired t-test on the results of this questionnaire did not deliver a
significant result.

For this questionnaire, we saw more evidence of individual fac-
tors influencing the results. Subject S24 stated that the third ques-
tionnaire was the hardest because there were hardly any questions
about elements that were written by her. In fact, most elements
with a high DOI for that questionnaire seemed to gain a high DOI
because she stepped through them a lot when debugging. Subject
S4 and S9 stated that all six high DOI elements asked about in the
questionnaire were not written by them and they thought it was
interesting and even “surprising” [S9] that those elements had a
high DOI. Similarly to S24, subjects S4 and S9 stated that they
had interacted with several of the high DOI elements as a step of
the debugging process. Furthermore, these two subjects said they
should have known better the six elements with low DOI because
they wrote or edited those elements significantly.

4.1.4 Summary of Questionnaire Results
Assuming the answers from a given subject are independent across

questionnaires, we tested whether the mean high DOI correct for a
subject is significantly different from the mean low DOI correct.
Using a paired t-test, we found that the mean high DOI correct
is significantly higher than the mean low DOI correct per subject
(p = 0.0024, DF = 35, mean difference= 1.22).

Although on average a subject only has about one more correct
answer for high DOI questions than low DOI questions, this re-
sult supports our hypothesis that a programmer is more likely to
have knowledge of program elements with which he or she has fre-
quently and recently interacted.

4.2 Impact of DOI Components
The DOI value is an aggregation of multiple components. To in-

vestigate the impact of several primary DOI components, we plot-
ted all of the elements to which one of the subjects had a correct
answer with respect to its recency (one component) and the num-
ber of selects and edits (a second component) in Figure 4(a). Fig-
ure 4(b) shows a similar plot for elements to which a subject had an
incorrect answer. The axes in each of these plots use a logarithmic
scale.

These figures show that there appears to be no trend in correct
and incorrect answers for the components of DOI aggregated over
all subjects. If there was a trend, we would expect some cluster
to appear in Figure 4(a) that does not occur in Figure 4(b). We
also looked for a trend between selects and correctness or between
edits and correctness. However, plotting the correct elements with
respect to selects (x-axis) and edits (y-axis) and comparing it to
the incorrect elements gives us the same result: there is no trend.
Since by looking at the overall correct and incorrect answers the
data might not take into account individual differences of the sub-
jects we also broke the data down by subject. However, these plots
also showed no visible trend. For example, Figure 5 shows a box
plot that has the information about the recency of correct and incor-
rect answers per subject. There seems to be a slight trend towards
correct answers being more recent, but it is not significant. Regres-
sion analysis of correct answers, edits, selects and recency yielded
no further insights into the data.

4.3 Further Results
We also considered a number of other factors that might impact

the results.

 0

 100

 200

 300

 400

 500

 600

 700

1 4 5 6 7 9 11 12 14 15 17 18 19 20 22 23 24 33 35

R
ec

en
cy

Subject

Incorrect
Correct

Figure 5: Recency for correct/incorrect per subject

Effect of Crosscutting Code Investigation.
As mentioned above for the first and second questionnaires, the

subjects who stated that they were working on tasks involving code
which crosscut the code of other developers had a smaller differ-
ence between correct answers for high and low DOI elements. Con-
sidering the data from all three questionnaires and taking the mean
of the total number of correct answers per subject over low, medium
and high DOI, developers who were working on crosscutting code
also had significantly less correct answers (pooled two-sample t-
test:p = 0.0252, mean difference= 4.0301).

Correctness Tendencies.
Subjects that had more correct answers for elements with a high

DOI also tended to have more correct answers for elements with a
low DOI. There was a significant correlation for both questionnaire
one (Pearons’sr = 0.61623, p = 0.0084) and questionnaire two
(r = 0.66469, p = 0.0257). As there are few data points for the
third questionnaire, we did not include it in this analysis.

Experience and Knowledge.
Looking at Figures 3(a) and 3(b), it seems to be the case that

when looking only at the subjects with a positive difference, ex-
perience has an influence on the results (Section 4.1.1 and 4.1.2).
However, we did not find a significant difference statistically that
supported this hypothesis, which may be due to a lack of data after
filtering those subjects whose results show a difference less than or
equal to zero.

Different Knowledge for Different Question Types.
To see if there are differences in the knowledge about certain

questions, we looked at all incorrect and correct answers separately,
aggregating them by the type of question (i.e., type hierarchy (Q1),
parameter type (Q2), called-by- (Q3), or calling-relationships (Q4).
We found that there is no significant difference in the results based
on the particular question that subjects were asked. Even though
several subjects suggested that some question types were particu-
larly difficult during the interviews, we can not find any quantitative
support for these observations.

DOI Consistency.
Over all subjects, the mean of the DOI values for the elements

in each group (low, medium, high) were in a close range. This re-
sult holds for the data from all three interaction intervals. Thus,
even though subjects differ in the systems on which they are work-
ing and their tasks, the range of DOI values is similar. No matter
which subject we consider, if we take the 20% of elements with

 1

 10

 100

 1000

 1 10 100 1000

S
el

ec
ts

 +
 E

di
ts

Recency

Correct

(a) Correct

 1

 10

 100

 1000

 1 10 100 1000

S
el

ec
ts

 +
 E

di
ts

Recency

Incorrect

(b) Incorrect

Figure 4: Selects+Edits versus Recency

highest, medium or lowest DOI for a certain interaction interval
(e.g., 20000 events), the DOI values for the set of elements are in
a similar range.

Programming Intensity.
The number of interactions per day per subject ranged from 1850

to 8550. A reasonable assumption might be that the more a subject
programs in a day, the better the subject would know the code.
However, we do not see any significant impact on the results despite
this large difference.

5. QUALITATIVE RESULTS
We were able to interview in-person thirteen of the nineteen

subjects after each had completed the questionnaire portion of the
study.9 Each interview took between five and thirty minutes de-
pending upon the time available from the subject. We also received
some data in response to email from subjects S1, S6 and S7.

Each interview started with some general questions (see Table 1),
followed by a variety of questions based on a subject’s response to
previous questions.

In this section, we present this qualitative data, describing where
it corroborates, how it explains, and where it differs from the quan-
titative data.

Table 1: General Interview Questions
1 Do you think that the correctness of your answers reflects

what you know about those elements?
2 Do you think there are some elements for which you should

have known the correct answer and/or are there some ele-
ments where you are surprised that you knew the correct
answer?

3 Why do you think you knew more about the elements that
were answered correctly than about the other elements?

4 What kind of knowledge do you think you keep most in
your mind over a long and/or short period of time?

9Interviews were conducted with S4, S5, S9, S11, S14, S15, S17,
S18, S19, S20, S22, S24, and S33.

5.1 Subjects’ View of the Results
We wanted to know whether the results of our study reflect what

a subject believes he or she knows about the elements asked about
in the questionnaires. To investigate this issue, we showed each
subject a list of the program elements that appeared in all of the
questionnaires that the subject had completed; this list indicated
for which of the elements the subject answered the question(s) cor-
rectly. We then asked the subject if the split between elements for
which he or she answered questions correctly and those answered
incorrectly reflects what he or she knows about the elements. We
then went over each element, asking the subject whether the cor-
rectness of the answer surprised him or her.

Overall, eleven of the sixteen subjects (69%) whom we inter-
viewed stated that the correct versus incorrect answers represented
“fairly well” what each subject knew about the code and in one
case, was “exactly” what the subject knew [S20]. Two subjects
(12%) stated that the first and second questionnaire was fairly re-
flective but the third questionnaire was not. Three subjects [S5,
S19, S33] (19%) stated that she or he should have known the cor-
rect answer to some elements because she or he wrote the code.
These three subjects also expressed surprise about having a correct
answer to several elements.

5.2 Subjects’ View on Their Knowledge
In the interviews, we also asked what kind of knowledge a sub-

ject thought she had about the program elements and what the
subject thought about the questions. Most subjects [S1, S4, S7,
S14, S18, S19, S22, S24, S33] (56%) responded that he or she
would know what a particular method asked about does, but that
the questions in the questionnaires were too detailed. Three sub-
jects [S14, S18, S33] stated he or she would know the flow of con-
trol in the program, but he or she would not necessarily know the
direct calls, only that there was some collaboration between two el-
ements. As one subject stated, “remembering finer details isn’t my
strong point” [S19].

5.3 Influence of Authorship and Editing
All subjects stated that he or she knows more about elements he

or she authored. When we asked the subjects about the questions
they answered correctly, they mostly stated those elements were the
ones they had authored. As one subject [20] explained,

when you write your own code you follow your own
patterns so it is easier to know afterwards, [...], you can
tell how you would have done it.

Two of the subjects each further stated that most of her correct
answers occurred for code she wrote recently [S1, S14]. One sub-
ject [S15] said that authoring the (Java) classes would probably
cause one to know those classes better for one to two months. An-
other subject [S1] stated the opposite, saying,

I would say that global knowledge of the system is
maintained over a longer period of time but the specifics
of each method implementation deteriorates quite quickly
[...] if I was asked the same questions now [2.5 weeks
afterwards], I would get most of them wrong.

Overall, there was a large discrepancy about the period of time
that subjects thought they would know about code that he or she
authored from three months [S22] to one and a half to two years
ago [S5, S11]. These latter two subjects each noted that his knowl-
edge was dependent on how long it took him to write the code—the
longer the authoring time the better the knowledge—and whether
he was actively maintaining the code. Several subjects each noted
that he or she has to “work with code [continuously] otherwise I
forget after a while [1 month]” [S18] or as subject S7 stated,

Areas that require adjustments as features develop and
new scenarios get fleshed out are the areas I know best.
Areas that hardly change once initially written are ar-
eas I have trouble recalling.

Often, if the code was not authored by the subject, the subject
would know the code only if it was visited shortly before the ques-
tionnaire [S20, S22]. One subject thought that if the code was vis-
ited longer ago than 24 hours before the questionnaire, the chance
of getting the correct answer decreased [S11].

5.4 Influence of Code Stability
The stability of the code also has an influence on how long a sub-

ject knows about the program elements. Both subjects S11 and S5
were authoring code at a low level of the system; this code needed
to be robust and does not change often. These two subjects each
felt they had good knowledge of the code one and a half years after
the code’s creation. Other subjects, who were working on code that
was changed more frequently, stated that they would not know their
code more than a couple of months.

5.5 Influence of Program Elements
Several subjects [S1, S7, S9, S11, S15, S19, S22] (43%) each

mentioned that he knew more about elements that played a more
important role in the code. For instance, if a class was a hub of an
API, the subjects [S1, S11, S22] would know the correct answers
to questions posed, whereas internal code was less known. Another
subject [S15] mentioned that you have to understand crucial meth-
ods to know what is going on, so you spend more time on them.
Subjects also stated that they would know the abstract classes on
the top of the type hierarchy or the root super class in general but
they did not know about intermediate classes [S9, S19]. Further-
more, if a class was part of a test, it seemed not to be as important
and therefore not to be known as well as other code [S7].

An interesting factor was also the size and simplicity of classes.
Several subjects agreed that it is easier to know and remember
smaller classes because the “structure is easier to understand” [S4,
S14, S22, S24]. However, another subject stated that he did not
know the answer to a question because the class was very small so
he forgot quickly [S20].

5.6 Influence of Tasks
When we interviewed subjects about the elements, they would

often refer to a set of elements as a task or talk about a general task.
One subject even remembered the overall tasks three weeks after
the actual questionnaire [S11].

Some subjects identified the kind of tasks undertaken over the
period of the questionnaire as a reason for not having a lot of cor-
rect answers. From one [S11], “I was into code all over this place
trying to thread through some of the stuff I was working on”. An-
other [S33] explained that he fixed a lot of small bugs and explored
a lot of code very briefly that he has not written and therefore he did
not know the answers. Yet another [S9] explained that he worked
on crosscutting changes in other people’s code. When working
on other people’s code, subjects described that they were focusing
more on getting it to work than understanding how it works [S14,
S15, S19]. One [S1] also noted that if the task was to create a new
feature, she knew the code more than if it was a refactoring task.

5.7 Influence of Short-term Activity
Similarly to the overall task, the activity undertaken to complete

a task in the short-term with just a small subset of elements influ-
enced knowledge of the elements. For instance, one subject [S11]
said,

It depends upon what you are doing, if you are fixing
a bug you are concentrating directly in there but if you
are just adding an extra parameter to pass it through
to something deeper you don’t know a whole lot about
what’s going on in there.

For nine subjects [S4, S9, S14, S15, S19, S20, S22, S24, S33]
(56%), debugging activity heavily influenced the subjects responses
to the questionnaires because elements appeared in the question-
naire as a result of activity stepping through the elements repeat-
edly during debugging. This activity was intense but did not con-
sider the structure or functionality of the element. For instance,
one subject [S24] described that the debugging influenced her third
questionnaire substantially as most of the elements asked about in
that questionnaire were the result of debug steps but were not rep-
resentative of elements she was working with. A similar situation
occurred when going through lists of search results.

5.8 Influence of the IDE
Integrated development environments, such as Eclipse, provide

substantial support to find structural information about code. Four
subjects [S6, S14, S15, S22] each stated that he relies heavily on
these structural determination tools, “I live by the call hierarchy
view” [S22]. These subjects also noted that the presence of these
tools likely causes them to remember less about the kinds of infor-
mation that can be retrieved fairly easily and quickly [S15],

in a VI text editor I would probably know more about
the actual calls but in Eclipse I have the JDT support
to help me.

Although our questionnaires provided access to some tools, for
finding types and methods, the lack of access to all tools created
a “disconnect feeling” [S14] to the code.

5.9 Influence of Code Patterns
Patterns in code facilitate knowledge for some subjects [S11,

S22]. As one [S22] stated, “I know what this method does because
it always does the same for each class it is in”. When showing
one correct element to one subject [S11], she was surprised to have
known the answer, but once she thought about it she said, “I did

not know this well [but] that’s our pattern for writing some of the
tests”. This situation also arose for another subject [S7] who stated
that “a lot of our method signatures contain common data structures
which are easy to recall [patterns]” [S7]. These common patterns
are similar to clichés [11].

6. DISCUSSION
We begin a discussion of our study with a summary of results.

We then discuss what kind of knowledge matters and how we gauge
knowledge. Finally, we present how these results might be applied
to improve the effectiveness of programmers through improved tool
support.

6.1 Summary of Results
The quantitative data provides evidence that the activity described

by the degree of interest (DOI) function is a useful indicator of a
programmer’s knowledge about the structure of code. Our analysis
also shows that splitting the DOI into the components of frequency
of access and recency of access does not provide results that are sta-
tistically significant. Although our results show that DOI is a good
model for indicating structural knowledge, our study cannot tell us
at what threshold value DOI indicates this kind of knowledge.

The qualitative information we gained through interviews sug-
gests that additional factors should be used to augment DOI to gain
a better indicator of program structure knowledge from activity:

Authorship A programmer knows more about program elements
he or she authored.

Authorship Duration The more time and effort a programmer spends
creating an element, the better the programmer’s knowledge
about the element.

Code Stability The fewer changes that are made to the code, the
longer the programmer has knowledge about it.

Code Patterns The more code patterns that are used and reused,
the easier it is for a programmer to infer knowledge about
those elements.

Role The more important the role of an element in the program,
the better the knowledge about it.

Task Locality The more a programmer must interact with other
programmers’ code, the less DOI corresponds to knowledge.

Work Experience The higher the professional work experience
of the programmer, the better DOI corresponds with knowl-
edge.

Activity Short-term kinds of activity influence the DOI values of
elements and can skew the correlation between activity and
knowledge; for instance, when debugging.

Some of this information is easier to factor into a model of ac-
tivity than other information. For example, authorship information
can be easily gained through a link to the source revision reposi-
tory. Similarly, task locality might be determined through source
repository information. On the other hand, the role of an element
may be more difficult to determine reliably.

6.2 What Knowledge Matters?
For our study, we only looked at one particular kind of knowl-

edge — detailed structural knowledge of the source. We argue that
focusing on detailed structural knowledge is a reasonable starting
point for investigating knowledge as it is possible to check the cor-
rectness of answers objectively. We provided the participants ac-
cess to only limited tooling to help answer the questions. We argue
this constraint is a reasonable starting point to try to distinguish
knowledge from tool expertise. We gained access to some infor-
mation about other kinds of knowledge through the interviews con-
ducted with the subjects. Our study is clearly preliminary; much
more investigation is needed to gain an understanding of how and
what programmers know about the source code and systems with
which they work.

6.3 Gauging Knowledge
Our questionnaire contained questions about four different types

of information: type hierarchy, type parameters, inter- and intra-
class relations. We settled on these question types after a pretesting
phase in which we asked several software developers which ques-
tions they thought would represent code-level knowledge. Knowl-
edge might be better gauged by including a question type about the
“flow of control” as stated by several subjects. However, we chose
not to use such a question type as it is not possible to verify answers
to such a question automatically.

6.4 Using Activity as a Knowledge Indicator
The results of our study help provide a foundation for current

approaches to expertise recommenders, which suggest who has ex-
pertise in particular parts of the program. Most of these approaches
(e.g., Expertise Recommender [7], EEL [8] and Expertise Browser [9])
make recommendations based on commits to source code reposito-
ries. As programmers in our study commented that authorship of
code is a significant factor in their knowledge of the code, existing
expertise recommenders build on a solid foundation.

The results of our study also suggest ways to augment exist-
ing expertise recommenders. For instance, activity traces might
be used to account for other means of gaining knowledge of code
other than authorship. The results also suggest that recent change
and initial authorship should be weighed higher than changes made
between those two points when ranking expertise.

As another example, models of individual programmer’s knowl-
edge of a source code base could be aggregated to the team level to
suggest pro-actively who should be coordinating with each other.
Cateldo and Herbsleb, for instance, showed that congruence be-
tween who should be coordinating and who actually did reduced
the resolution time of modification requests to a software system [5].

7. THREATS TO VALIDITY
The validity of our results is threatened by several factors. A pri-

mary threat to the validity of our study is the number of subjects.
In particular, for the second and third questionnaire, the number of
subjects that completed the questionnaire is small, possibly skew-
ing the results as we begin to look at a much smaller set of pro-
grammers.

The validity of our results is also threatened by undertaking the
study in situ rather than in a laboratory. In situ, there are many vari-
ables for which we cannot account, such as the type of work being
performed by the subject. This lack of control shows up in sev-
eral ways in our results. For example, for subject S24, the number
of correct answers for low and high changed substantially over the
three questionnaires (Figure 3) because of the nature of her activity

during the different periods. As another example, subject S5, who
had substantially more correct answers for the low DOI elements in
the second and third questionnaire than for the high DOI elements,
stated that for these questionnaires, there were more elements that
were written by him in the low DOI elements than in the high DOI
elements. Since he stated he believed he knew everything he wrote,
this provides a possible explanation for his results for these ques-
tionnaires.

The validity of our results are also threatened by measuring ac-
tivity with the source only through the programmer’s interaction
with the development environment. We chose to monitor the IDE
because it is a common tool used by all programmers. Other forms
of activity, such as design meetings, are much more difficult to
monitor and to conceive of using as a basis for subsequent tools.
Although our monitoring of the IDE was extensive, it was aimed at
certain mechanisms that provide good coverage of textual editing,
selections, and so on. Our monitoring misses interactions through
graphical editors which some of the subjects may have been using.
In these cases, the DOI values we assigned would not be repre-
sentative of the actual interaction and activity of the subject with
the source. The interviews we conducted with the subjects did not
highlight any of these issues as seriously compromising the study.

8. CONCLUSION
All too often in software engineering, processes and tools are

proposed to enhance the effectiveness of software developers that
make tacit assumptions about the nature of software development
work. For instance, there is a tacit assumption in the work on exper-
tise recommenders that authorship is a strong determinant in who
knows what about a system’s source code. In this paper, we present
the results of a study about whether the interaction of a programmer
with source code indicates which parts of the source code the pro-
grammer knows. In this study, a programmer’s knowledge about
source is gauged by his or her ability to answer questions about
the structure of the source with limited tool support. In our study
of nineteen professional Java programmers, we found that the fre-
quency and recency of interaction of a programmer with parts of
the source does indicate which parts of the source a programmer
knows. We also found through interviews of the programmers a
number of other factors to consider including in a model of knowl-
edge based on activity, such as authorship, the role of the source
in the system, and the programmer’s task. This information can be
used to argue the assumptions underlying some tools intended to
improve software development, such as expertise recommenders,
and can be used to enhance the tools developed in the future, such
as IDE views tailored to an individual programmer based on their
experience with the source.

9. ACKNOWLEDGMENTS
This work was supported by IBM, the IBM Ottawa Center for

Advanced Studies and NSERC. We thank all the study subjects for
their participation and Terry Hon and Jelena Sirovljević for their
reviews.

10. REFERENCES
[1] E. M. Altmann. Near-term memory in programming: a

simulation-based analysis.International Journal of Human
Computer Studies, 54(2):189–210, 2001.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? InICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 361–370, 2006.

[3] L. M. Berlin. Beyond program understanding: A look at
programming expertise in industry. In C. R. C. Jean
C. Scholtz and J. C. Spohrer, editors,Proc. of the Fifth
Workshop on Empirical Studies of Programmers, pages
6–25, 1993.

[4] N. R. Carlson, W. Buskist, M. E. Enzle, and C. D. Heth.
Psychology: the Science of Behaviour. 2005.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley. Identification of coordination requirements:
implications for the design of collaboration and awareness
tools. InCSCW ’06: Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative
work, pages 353–362, 2006.

[6] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. InSIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, pages
1–11, 2006.

[7] D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. InCSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages
231–240, 2000.

[8] S. Minto and G. C. Murphy. Recommending emergent
teams. InProc. of the International Workshop on Mining
Software Repositories (MSR), 2007.

[9] A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. InICSE ’02:
Proceedings of the 24th International Conference on
Software Engineering, pages 503–512, 2002.

[10] G. C. Murphy, M. Kersten, and L. Findlater. How are java
software developers using the eclipse ide?IEEE Software,
23(4):76–83, 2006.

[11] C. Rich and R. C. Waters. The programmer’s apprentice: A
research overview.Computer, 21(11):10–25, 1988.

[12] S. E. Sim and R. C. Holt. The ramp-up problem in software
projects: a case study of how software immigrants naturalize.
In ICSE ’98: Proceedings of the 20th international
conference on Software engineering, pages 361–370, 1998.

[13] E. Soloway and K. Ehrlich. Empirical studies of
programming knowledge.IEEE Trans. Software Eng.,
10(5):595–609, 1984.

[14] A. von Mayrhauser and A. M. Vans. Comprehension
processes during large scale maintenance. InProc. of 16th
International Conference on Software Engineering, pages
39–48, 1994.

