
UIST 2002 - 1 - Mighty Mouse

The “Mighty Mouse” Multi-Screen Collaboration Tool
Kellogg S. Booth, Brian D. Fisher, Chi Jui Raymond Lin, and Ritchie Argue

Department of Computer Science
University of British Columbia

Vancouver, BC, V6T 1Z4, Canada
E-mail: {ksbooth, fisher, rlin, ritchie}@cs.ubc.ca

ABSTRACT
Many computers provide seamless support for multiple
display screens, but there are few cross-platform tools for
collaborative use of multiple computers in a shared display
environment. We describe a novel approach, tailored
specifically for face-to-face collaboration, in which
multiple heterogeneous computers (usually laptops) are
viewed simultaneously (usually via projectors) by people
working together using a variety of applications running on
various platforms. Mighty Mouse is built on top of VNC, a
virtual networking protocol that allows local display and
interaction with remote computers. Mighty Mouse is a
single display groupware tool. All participants view
common displays, so Mighty Mouse uses only the remote
input capability of VNC. But Mighty Mouse enhances
VNC with various features to support flexible movement
across the various platforms, “floor control” to facilitate
smooth collaboration, and enhanced customization features
to accommodate different user, platform, and application
preferences in a relatively seamless manner.

KEYWORDS: collaboration, cut-and-paste, keyboard
mappings, low-fidelity prototyping, single display
groupware, virtual network computing.

INTRODUCTION
Many personal computers have fully integrated support for
multiple display screens, both as separate screens and as
tiled screens where the mouse moves seamlessly from
screen-to-screen and windows may be split across screens
as if they formed a single large display surface. Platform
specific tools, such as Timbuktu for the Macintosh and
more recently Windows [5], allow users on one computer
(the controller or home) to interact with applications
running on another (the controllee or target). This is
accomplished by mirroring the controllee’s display on the
screen of the controller and forwarding keyboard and
mouse events from the controller to the application running
on the controllee. The X Windows system [4] has a client-
server model in which the display and its associated input
devices (keyboard and mouse) are separated from the host
platform on which an application is running (a special case
being when the two are the same). More recently, cross-

platform protocols, most notably VNC, Virtual Network
Computing developed at AT&T [6], provide a capability
similar to Timbuktu that allows heterogeneous
controller/controllee pairings and, for at least the x2vnc
implementation of the VNC protocol [1], the ability to
control multiple heterogeneous controllees in sequence.

Our work builds on these previous ideas and uses VNC’s
network protocol as well as the VNC server on the
controllee to handle all of the interactions with the host
operating system and applications running under it. What
we change is the client, especially the user interface on the
controller, and the ability to control and adapt for multiple
controllees.

A primary reason for changing the user interface is our
focus on single display groupware [7], which has
traditionally considered multiple users sharing a single
screen displayed by a single computer, but which we
enlarge to multiple users sharing multiple screens each
displayed by a different computer. Timbuktu, X Windows,
and VNC largely address the problem of a user not being
co-located with the machine on which a computation is
performed. Single display groupware addresses the problem
of multiple co-located users sharing a single computer and
display. We address the problem of multiple co-located
users collaborating on tasks that are supported by
applications running on multiple computers each with its
own display, but with all of the displays visually shared by
all of the users.

AN ILLUSTRATIVE EXAMPLE AND USAGE SCENARIO
To illustrate many of the basic features we want to provide,
we briefly consider the example of a meeting held in a
small boardroom. Each participant has brought a laptop
computer to the meeting, many of them with documents
that will be discussed and modified over the course of the
meeting. One or more LCD projectors are on the table
connected to some (probably not all) of the laptops. Over
the course of the meeting, typical activities might include
discussion and revision of a spreadsheet containing a
proposed budget, the drafting of a document describing the
decisions made at the meeting, and consultation of other
documents on one or more of the laptops or on the web.

Without special tools, a typical experience is that users will
move around the room from laptop to laptop as they take
turns modifying or viewing the documents. Sometimes they

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!



UIST 2002 - 2 - Mighty Mouse

will move documents from one machine to another, and at
times they may re-cable the projectors so that everyone in
the room can see the particular document under discussion.
Especially in this last case one often sees a person
physically move to the laptop on which the document is
hosted to assume temporary ownership of the document and
the application that manages it.

With the software we have developed, and with modest
assumptions on additional hardware support, scenarios for
the meeting could be quite different. First, we assume that
all of the laptops can be connected via a network, either
through cables or wireless. Increasingly this is the case,
often with the network part of the building infrastructure,
but if not, a small networking hub or wireless base station is
affordable, portable, and compatible with most recent
laptops. If we further assume that there are video switches
connecting the many laptops to the smaller set of
projectors, it is possible to dynamically choose which
subset of the laptop displays will be visible to everyone at
the meeting. This can be done manually, or under computer
control if more expensive video switches are used. Again,
these capabilities are becoming available in some
conference rooms and we can expect that with the growing
popularity of LCD screens and digital video standards, they
will become increasingly present as standard features in
many settings.

What then remains is to provide software support that will
permit any user to interact with any application running on
any of the laptops over the course of the meeting, and to do
this in a way that naturally supports both the individual
users and the group of users. This is what Mighty Mouse
does. At the end of this TechNote we will describe some
other ways in which it can be used, but for now we
concentrate on the collaborative meeting scenario, which is
an example of single display groupware but with multiple
heterogeneous platforms.

The term “single display groupware” originally meant
literally a single screen, but the fundamental issues are
those that arise through the visual sharing of the screen, and
the collaborative and often simultaneous interaction of
multiple users with the application(s) whose information is
being displayed. We generalize this to multiple displays.
We can think of this as simply being a much larger virtual
display made up of the individual displays. But we restrict
ourselves to the case where users interact sequentially with
a single application and leave for another discussion the
problem of simultaneous interaction with an application.
We discuss this last point a bit in the final section of this
TechNote.

IMPLEMENTATION
Our current implementation of Mighty Mouse uses the
VNC protocol. The VNC server (on the controllee) and a
new VNC client (on the controller) are used. The software
has been modified to support multiple pairs of controllers

and controllees, and floor control support has been added.
We describe each of these features and give brief comments
on their implementation where appropriate. As with similar
systems, the basic operation on the controller is that mouse
and keyboard events are captured by Mighty Mouse
(adapting the VNC client for each platform) and either re-
directed to the controllee or left for the host platform’s O/S
to handle normally (the “idle” state).

(a) Spatial metaphor for implicit switching
At any instant, a controller is either idle or is connected to a
single controllee. There is a configurable spatial
arrangement similar to what is provided on the Macintosh
and other platforms for multiple display screens. Mouse
movement on the controller causes a corresponding
movement of the cursor on the controllee screen. If the
cursor moves off the left boundary of the controllee screen
the connection to that controllee is broken and a new one is
established with the screen that is logically to the left.
Similarly, movement off the right, top, or bottom switches
connections to those screens.

The cross-platform version supports only left-right implicit
switching, but an earlier prototype demonstrated the
effectiveness of fully 2D implicit switching. We have not
used this in the current version for two reasons. The first is
that it is generally a good idea to block cursor movement
beyond whichever edge holds the menu bar or similar GUI
features. This is because these features are generally not
targeted directly, but rely on “clipping” at the edge of the
screen to “grab” the mouse cursor for faster access to the
menu bar. If a full 2D spatial layout is allowed this cannot
be supported. The second reason is that the control panel
layout (see (b) below) is currently a linear strip and we did
not want to take up a lot of screen real estate on the
controller with a more general 2D icon. We do support a
circular layout, so the leftmost display is logically to the
right of the rightmost.

One existing implementation of the VNC protocol,
x2vnc, also supports multiple connections and a spatial
metaphor for implicit switching for X Windows clients [1].

(b) Dynamic keyboard and mouse mappings
Different platforms have different keyboards, especially for
the special function and modifier keys. The VNC protocol
already provides for automatic key and modifier mappings
between the controller and the controllee. We are extending
these to include mouse click mappings to accommodate
differences between one-, two-, and three- button mice. We
are also making the mappings dynamic as a function of the
controller and the controllee platform types, the user, and
the application. Our current implementation requires
manual selection of application-specific mappings (see (c)
below).

(c) Control panel for explicit switching
It is not always desirable to have to move the cursor to a



UIST 2002 - 3 - Mighty Mouse

new screen when the focus of activity changes. Especially
when there are intermediate screens, this leads to tedious
mouse movement and possibly disruptive behavior on the
intermediate screens as they are captured and then released
by the controller as it moves to the final target screen. For
this reason we have added a control panel that resides on
the screen of the controller (Figure 1). This permits explicit
switching between controllees and also provides a
convenient mechanism for managing key mappings.

Figure 1. The control panel, showing the drop-down
menu for setting keyboard mappings, with the home
button second from the left.

The control panel has an iconic button for each target
machine and a special button for the home (controller)
machine, which is located within the control panel
according to its logical spatial relationship with the
controllees. The icons indicate the type of the operating
system: Macintosh, Windows, Linux/Unix, or home. Home
is not identified by its type, but instead is differentiated by
it being the controller. Background color provides state
information (which of the buttons is the current controllee)
and a drop-down menu at the bottom of each button allows
various key mappings to be selected.

When the controller is idle, the control panel functions like
any other widget on the desktop. Clicking on one of the
buttons initiates a connection to that controllee using the
currently selected key mapping. If the drop-down menu is
activated, the current key mapping can be examined (see
Figure 1) and the selection changed; this does not activate a
connection. When Mighty Mouse is first launched, a user
might configure the key mappings for each connection. We
have not provided a customization facility, but an obvious
extension would be to specify default key mappings in a
user-defined configuration file.

When the controller is not idle, mouse and keyboard events
are forwarded to the controllee. The control panel on the
controller is not accessible. A mouse-down event with a
special meta-key combination returns to the idle state with
the cursor centered on the icon of the just-released
controllee. This is configurable, but in our prototype the
meta-key combination is CTRL-SHIFT-ALT. At that point
a user can click on a different icon to explicitly switch to a
new controllee, adjust the key mappings and click again on
the same controllee, or resume normal activity on the host
controller.

(d) Consistent apparent mouse speed
Differences in mouse gain across platforms and varying
screen resolutions can cause apparent changes in velocity
during implicit switching. We have experimented with
various techniques for adjusting the mouse gain. These
scale mouse movements so that visually continuous
velocities are perceived by the user. This requires that some
state information regarding fractional cursor position be
maintained, similar to what is done in Bresenham’s
algorithm for digital line drawing.

(e) Smart cut-and-paste
The x2vnc implementation supports a basic cross-
platform cut-and-paste operation, but only for text. This is
invoked using the Edit menu on the frame of the window
on the controller screen in which the mirror of the
controllee is displayed. Mighty Mouse does not mirror the
controllee’s display because of our assumption that all of
the displays are visible, so there is no frame and hence no
Edit menu. We could add this to the control panel, but we
have not done so. We have, however, prototyped a number
of extensions to handle a limited range of more advanced
cut-and-paste mechanisms.

When both platforms support a desktop metaphor, standard
drag-and-drop operations or cut-and-paste from the desktop
and folders are possible. The semantics would be an
implicit ftp operation from one machine to another. When
the target machine (or window) is a command line
interface, alternate semantics need to be used. Drag-and-
drop could still imply an ftp operation to the current
directory associated with the command line window. More
elaborate mechanisms might include configurable
mappings that launch applications that are registered for
various file types. We have experimented with a number of
these ideas, but have not implemented them as yet.

(f) Floor control for collaborative usage
When only a single user is switching between a number of
controllees, Mighty Mouse provides essentially the same
functionality that x2vnc provides but across all platforms
(x2vnc is an X Windows client). Users can of course
sequentially assume control of various controllees, with all
others remaining in the idle state working on just their
home machines. But fluid collaboration requires that
multiple simultaneous connections be supported.

To achieve this, Mighty Mouse includes a floor control
mechanism that oversees the management of connections.
We assume that there is always a set of mutually exclusive
pairwise connections, with every machine being exactly
one of in-the-idle-state, a controller, or a controllee. This
assumption precludes multiple users from simultaneous
access to an application on a single machine. Our belief is
that, while clearly desirable, this is still not easy to provide
because many popular applications are not fully
collaboration-aware. We have thus concentrated on the
low-hanging fruit and for now make the assumption of only



UIST 2002 - 4 - Mighty Mouse

one-to-one connections.

Current floor control is very simple. Any machine in the
idle state is available as a controllee to any controller that
selects it, either implicitly or explicitly. A machine that is
currently a controller or a controllee cannot be selected.
This means that implicit selection through the spatial
metaphor is ignored when a controller moves logically
across the screen of a controller or a controllee. We expect
to replace this with a more elaborate protocol based on our
earlier analysis of the give-and-take paradigm for using
multiple mice in single display groupware [2,3].

A SINGLE-USER SCENARIO
The discussion so far has focused on Mighty Mouse as a
collaborative tool. The original impetus was to support just
a single user, especially the situation in which one person is
using two or more heterogeneous computers. An extreme
scenario of this might be an office equipped with
Macintosh, Windows, and Linux/Unix platforms each being
used for specific tasks. Shared file systems mounted on all
of the platforms would make data interchange easy, but a
user would still have to switch back and forth from one
keyboard and mouse set to another as activities moved from
machine to machine. Just as in the collaborative case, our
assumption is that the multiple monitors will all be visible
to the user, so the main problem is seamless switching from
machine to machine in a manner that mimics a multi-
display system.

Before implementing Mighty Mouse we built a number of
low-fidelity prototypes, mostly using video techniques to
simulate various usage scenarios. The most elaborate of
these used three computers (one Macintosh, one Windows,
and one Unix) each driving LCD projectors displayed side-
by-side on large wall-mounted screens. We simulated a
variety of features illustrative of the mechanisms for
switching between platforms/screens, “smart” cut-and-
paste, and mode control. A single video camera captured
the activity on the three large screens, which appeared in
the video as if they were three desktop monitors placed
side-by-side. The computers were not networked together.
Instead, we had a different person operating each of them
working in concert to provide the illusion of functional
software. When one person moved the cursor to the left
edge of her screen, the person to her left began moving his
cursor from the right edge of his screen as if it were a
continuation. This low-fidelity prototyping allowed us to
test alternative designs with different scenarios before we
began implementation.

From this iterative approach emerged a design for the
prototype. We implemented two single-user versions of the
design. One operated across both Windows and Linux/Unix
platforms; the other was specific to the Macintosh. After
additional testing and refinement of the design, we moved
to the implementation of the full cross-platform version. At

the same time we enhanced the design to include additional
features for collaboration (multiple simultaneous
controllers and controllees, as well as floor control
mechanisms) and we adopted the VNC protocol as the basis
for our implementation.

DISCUSSION, CONCLUSIONS, AND FUTURE WORK
There are a number of ways in which the current
implementation can be extended. Certainly more elaborate
floor control mechanisms could be added. These need to be
evaluated by user testing in realistic settings. Adding
controllers for PDAs or other hand-held devices would
substantially increase the usefulness of Mighty Mouse. In
the collaborative board room scenario, not everyone is
likely to have a laptop, but they may have PDAs or other
pen-based devices. More automatic keyboard mappings
might be possible, especially if the controllees can provide
information about the application that is running (not
always easy to do if background tasks are running).

The video clip that accompanies this TechNote illustrates
the Mighty Mouse control panel and the spatial metaphor
developed in the low-fidelity prototypes.

ACKNOWLEDGEMENTS
The Natural Sciences and Engineering Research Council of
Canada provided funding for this work.

REFERENCES
1. Hubinette, F. (2002). x2vnc 1.31 (home page).

www.hubbe.net/~hubbe/x2vnc.html

2. Inkpen, K., Booth, K.S., Gribble, S.D., and Klawe,
M.M. (1995). Give and take: Children collaborating on
one computer. Proc. of ACM CHI ‘95 (May 7-11), pp.
258-259.

3. Inkpen, K.M., Booth, K.S., Klawe, M.M., and
McGrenere, J. (1996). Turn-taking protocols for
mouse-driven collaborative environments. Graphics
Interface ‘97 (May), pp. 138-145.

4. Jones, O. (1989). Introduction to the X window system.
Prentice-Hall, Inc. Englewood Cliffs, NJ 07632, pp.
234-241.

5. Netopia (2002). Timbuktu (home page).
www.netopia.com/en-
us/software/products/tb2/

6. Richardson, T., Stafford-Fraser, Q., Wood, K.R., and
Hopper, A. (1998). Virtual network computing. IEEE
Internet Computing, Vol.2 No.1 (Jan/Feb), pp. 33-38.

7. Stewart, J., Bederson, B.B, and Druin, A. (1999).
Single display groupware: A model for co-present
collaboration. Proc. of CHI ‘99, pp. 286-293


