
Random Walk With Continuously Smoothed

Variable Weights

Steven Prestwich

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland

s.prestwich@cs.ucc.ie

Abstract. Many current local search algorithms for SAT fall into one of
two classes. Random walk algorithms such as Walksat/SKC, Novelty+
and HWSAT are very successful but can be trapped for long periods
in deep local minima. Clause weighting algorithms such as DLM, GLS,
ESG and SAPS are good at escaping local minima but require expen-
sive smoothing phases in which all weights are updated. We show that
Walksat performance can be greatly enhanced by weighting variables
instead of clauses, giving the best known results on some benchmarks.
The new algorithm uses an efficient weight smoothing technique with no
smoothing phase.

1 Introduction

Local search algorithms have a long history in combinatorial optimization. In
recent years they have been applied to SAT problems, usually by treating them
as MAX-SAT and trying to minimise the objective function (the number of
clause violations) to zero. Local search for SAT has steadily improved and is an
active area of research.

Some local search algorithms fall into the category of random walks , which
were a significant advance over earlier successful algorithms such as GSAT [26]
and those of Gu [10]. The best-known such algorithm is Walksat [17, 25] which
has a number of variants. Walksat/G randomly selects a violated clause then
flips the variable (reassigns it from true to false or vice-versa) that minimizes
the total number of violations. Walksat/B selects flips that incur the fewest
breaks (non-violated clauses that would be violated by the flip). Both select a
random variable in the clause (a random walk move) with probability p (the
noise parameter). Walksat/SKC (Selman-Kautz-Cohen) is a version of B that
allows freebies to override the random walk heuristic. Freebies are flips that incur
no breaks, and if at least one freebie is possible from a violated clause then a
random one is always selected. HWSAT [8] is a version of G that breaks ties by
preferring the least recently flipped variable, based on a similarly modified GSAT
called HSAT [7]. Novelty and R-Novelty use similar but more complex criteria.
These were later elaborated to the Novelty+ and R-Novelty+ variants [12] that
use occasional random walk steps to avoid stagnation, and are among the most

competitive local search algorithms. In TABU search [13, 15, 17] variables that
were flipped less recently than a threshold number of flips ago (the tenure) cannot
be flipped. The tenure replaces the noise parameter of random walk algorithms.
In the Iterated Robust Tabu Search (IRoTS) algorithm [27] variables that have
not been flipped for a given period are automatically flipped to avoid stagnation.

Some problems defeat random walk algorithms, but are solved quite easily by
an alternative form of local search based on clause weighting . These algorithms
modify the objective function during search. They attach a weight to each clause
and minimize the sum of the weights of the violations. The weights are varied
dynamically, making it unlikely for the search to be trapped in local minima.
Clauses that are frequently violated tend to be assigned higher weights. An early
SAT algorithm of this form was Breakout [19] which increments violated clause
weights at local minima. A similar approach was used in the later WEIGHT
algorithm [2], and variants of GSAT increment weights at local minima [24]
or at each flip [4], and may allow weights to slowly decay [5]. The Discrete
Lagrangian Method (DLM) [34] periodically smooths the weights to reduce the
effects of out-of-date local minima, and is based on the Operations Research
technique of Lagrangian relaxation. MAX-AGE [28] is a simplified DLM with
fewer runtime parameters and new heuristics. Guided Local Search (GLSSAT)
[18] is related to DLM but differs in detail, and derives instead from work on
Neural Networks. Smooth Descent and Flood (SDF) [23] introduced the Machine
Learning technique of multiplicative weights, and was later elaborated to the
Exponentiated SubGradient (ESG) method [22]. The Scaling And Probabilistic
Smoothing (SAPS) algorithm [14] is related to ESG but uses a more efficient
smoothing mechanism. The Pure Additive Weighting Scheme (PAWS) [29] is a
version of SAPS that increases weights additively instead of multiplicatively.

Clause weighting algorithms are excellent at guiding local search out of local
minima by consulting the clause violation history. An interesting question is: can
we achieve a similar effect by consulting the variable flip history? This might
lead to useful new heuristics for random walk algorithms, and would have tech-
nical advantages discussed in Section 5. We shall describe new flip heuristics for
random walks that emulate clause weighting performance by maintaining vari-
able weights. Section 2 examines a simple additive heuristic for variable weights.
Section 3 describes a new smoothing technique for both clause and variable
weights that requires no smoothing phase, reducing runtime overheads. Section
4 evaluates an algorithm with smoothed variable weights. Section 5 discusses the
relative merits of variable and clause weighting, and future work.

2 Additive variable weighting

The usual rationale for clause weighting is that it escapes local minima by learn-
ing about features in that region of the search space. But recent evidence indi-
cates that this picture is flawed, and that clause weighting acts instead as a di-
versification mechanism [32]. This suggests that random walk algorithms should
be able to emulate clause weighting performance by diversifying the selection of

variables in the flip heuristic. An obvious way to do this is to prefer variables
that were not flipped recently, but this is an old idea used in several algorithms.
HSAT, HWSAT, Novelty and R-Novelty prefer least-recently flipped variables,
the latter incorporating a tabu tenure of 1 flip. Tie-breaking flip heuristics were
added to GSAT and Walksat using a first-in-first-out rule [6]. The MAX-AGE
clause weighting algorithm prefers variables that were flipped longer ago than a
threshold number of flips. TABU forbids recently-flipped variables from being se-
lected, and IRoTS additionally flips variables that have not been flipped recently.
Flip heuristics preferring variables that were not recently flipped have been well
explored, yet they do not seem to compete with clause weighting heuristics in
their ability to escape local minima.

Might variable selection be improved by importing ideas from clause weight-
ing? To explore this idea we shall attach a dynamic weight to each variable
and experiment with heuristics for updating these weights. To the best of our
knowledge this is a new approach, though variable assignment (literal) weights
have been used before. In [16] a literal weighting heuristic was proposed to com-
bine local search with the DPLL backtracking procedure. When a local search
algorithm fails to solve a problem, literals that occur most often in violated
clauses are assigned higher scores, which can be used to guide DPLL in a proof
of unsatisfiability. In [35] a variant of Walksat for SAT (and MAX-SAT) weights
literals by analysing local minima during short runs. The aim is to estimate
the frequency of each assignment in (optimal) solutions, called pseudo-backbone

frequencies . These frequencies are used as weights in longer runs to guide initial
variable assignments, flip selection and violated clause selection. Some versions
of Guided Local Search also weight variable assignments, though not GLSSAT.

As a first experiment we add a new tie-breaking heuristic to Walksat/SKC:
select flip variables as usual, but break ties (among non-freebies) by preferring
the variable that has been flipped least often in the search so far; break further
ties randomly. Thus the weight of a variable is the number of times it has been
flipped, and we select variables with minimal weight as long as this does not
conflict with the SKC flip heuristic. We shall evaluate a C implementation of
the new algorithm, which we call VW1. Other algorithms used for comparison
are implemented in the UBCSAT system [30]. All experiments are performed on
a Dell 2.4 GHz Pentium 4 with SuSE Linux 9.1 kernel 2.6.

2.1 Experiments on ternary chains

The ternary chain problem Tk studied in [21, 33] contains clauses

v1 v2 v1 ∧ v2 → v3 . . . vk−2 ∧ vk−1 → vk

and has a single solution in which all variables are true. This highly artificial
problem can be solved in linear time by unit propagation, as in DPLL back-
tracking or hybrid local search algorithms such as Saturn [20] and UnitWalk
[11], and quite quickly by clause weighting (see below). Its interest lies in the
fact that random walks solve Tk in a number of flips that is exponential in k.

Chain problems are intended to simulate the chains of variable dependency that
occur in some highly-structured, real-world problems, and to guide the design of
new local search techniques. One such technique is a preprocessing method for
adding a small number of redundant clauses [33], which makes chain and other
problems much easier to solve.

Why is this problem so hard for random walk? A random walk algorithm
selects a variable from a violated clause v̄i ∨ v̄i+1 ∨ vi+2. In a violated clause all
literals are false so vi = vi+1 = T while vi+2 = F . An unbiased random walk
selects a variable randomly from these three, so it is twice as likely to flip a
variable from true to false than vice-versa. The problem has a single solution in
which all variables take the value true, so it is twice as likely to move away from
the solution as toward it. (See [33] for a detailed analysis of this and related
problems.)

Figure 1 compares VW1 with five other local search algorithms on ternary
chains. Each point is the median number of flips over 1000 runs. Optimal values
of the SKC, HWSAT and VW1 random walk parameter p are used (found by
trying values 0.1–1.0 in steps of 0.1), similarly for the Novelty+ probability
parameter used to choose between variables in a clause, and the SAPS smoothing
parameter ρ. Novelty+ sets the random walk parameter p to a default value of
0.01. SAPS performance is reported to be robust under different values of its
other parameters, and a reactive version called RSAPS varies only ρ [14]. TABU
was used with a fixed tabu tenure of 10.

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120 140 160 180 200

fli
ps

K

SKC
NOV+

HWSAT
TABU
SAPS
VW1

Fig. 1. Local search algorithms on ternary chain problems

The graphs show that most algorithms scale exponentially. However, VW1
scales polynomially: on a log-log plot (not shown) its graph is a straight line.
SAPS also scales polynomially for k up to approximately 100, after which it scales

exponentially. It is unclear why this occurs, but we conjecture that multiplica-
tive weights cause small floating-point errors that erase long-term information.
HWSAT and TABU use simpler forms of memory and scale only slightly better
than Novelty+, which scales slightly better than SKC. Surprisingly, increasing
the tabu tenure did not improve TABU. These problems seem to require a par-
ticular form of long-term memory currently provided only by clause and variable
weighting.

We propose ternary chains as a benchmark for clause and variable weighting
algorithms, and other techniques designed to escape local minima. However, it is
a very artificial problem so we will also evaluate variable weighting on common
SAT benchmarks.

2.2 Experiments on SAT benchmarks

Next we compare SKC, Novelty+ and SAPS with VW1 on other problems.
Figure 2 shows results on selected SAT benchmark problems from the SATLib
repository.1 The figures shown are numbers of flips, taking medians over 100 runs.
Again optimal parameter values are used, and in these experiments we tune both
the ρ and α SAPS parameters using α values {1.1, 1.3, 2.0, 3.0}. Figures greater
than 107 flips are denoted by —.

– The AIM benchmarks [1] are random 3-SAT problems modified to be very
hard for random walk. They can be solved with polynomial preprocessing
so they are not intrinsically hard. Each instance i is denoted by aimn-r-i,
meaning that it has n variables and clause/variable ratio r. We use satisfiable
instances with clause-variable ratios of 2.0, which are known to be partic-
ularly hard for Walksat-style algorithms. Variable weighting greatly boosts
SKC performance so that VW1 outperforms SKC and Novelty+, though not
SAPS.

– On logistics planning problems VW1 lies between SKC and Novelty+ in
performance, and SAPS is again the best algorithm.

– On Blocks World (bw) planning problems VW1 is the best algorithm.
– On All-Interval Series (ais) problems VW1 is similar to SKC, beating Nov-

elty+ but beaten by SAPS.
– On large random 3-SAT problems (f) VW1 is the worst algorithm.

These results show that guiding random walks by variable weighting can greatly
boost random walk performance, though not on all problems. Our next step is
to import another important technique from clause weighting: smoothing.

3 Phased and continuous smoothing

Smoothing techniques for clause weighting algorithms considerably improve per-
formance. Smoothing can be adapted to variable weights, but current clause

1 http://www.cs.ubc.ca/˜hoos/SATLIB/

instance SKC Novelty+ SAPS VW1

aim50-2.0-1 71933 318514 669 5510
aim50-2.0-2 10727 10338 520 4858
aim50-2.0-3 89040 361853 885 4684
aim50-2.0-4 57098 69040 603 5863
aim100-2.0-1 — — 4423 324847
aim100-2.0-2 — — 4898 221535
aim100-2.0-3 — — 2878 95709
aim100-2.0-4 — — 5044 175616
aim200-2.0-1 — — 488547 —
aim200-2.0-2 — — 181770 3655956
aim200-2.0-3 — — 298473 —
aim200-2.0-4 — — 506329 —

logistics.a 64866 46385 6288 36144
logistics.b 88186 54102 5472 25369
logistics.c 104610 81732 7578 37341
logistics.d 425746 117649 33781 183611

bw large.a 14459 5114 2208 8085
bw large.b 422723 100830 24649 87843
bw large.c 8154220 3631196 1904852 582056
bw large.d — 5093099 3807160 630464

ais6 891 5388 331 984
ais8 19306 123949 3996 18661
ais10 106752 1523002 18228 101157
ais12 1219293 — 141211 816645

f600 130625 65476 38159 148749
f1000 491262 360709 243377 939022
f2000 2536333 4086895 2849808 —

Fig. 2. Additive variable weighting on SAT benchmarks

weighting schemes use expensive smoothing phases in which all weights are ad-
justed to reduce the differences between them. As the number of clauses is of-
ten large, this is a significant overhead. We propose a cheaper method with no
smoothing phase that can be used for clause or variable weighting.

Smoothing reduces the effect of the earlier search history, placing more em-
phasis on recent events and adapting the search heuristics to the current search
space topology. Our smoothing technique does this as follows. Associate with
each variable v a weight wv , initialised to 0 and updated each time v is flipped
according to the formula:

wv ← (1− s)(wv + 1) + s× t

where t denotes time (measured as the number of flips since the start of the
search) and a parameter 0 ≤ s ≤ 1 controls smoothing. Setting s = 1 causes
variables to forget their flip history: only a variable’s most recent flip has an
effect on its weight. Using weights for tie-breaking we obtain an HWSAT-like
heuristic. Conversely s = 0 causes wv to behave like a simple counter as in VW1,
so that every move in the history has an equal effect. Choosing s between 0 and 1
interpolates between these two extremes, causing older events to have smaller but
non-zero effects. We call this continuous smoothing because smoothing occurs
as weights are updated, without the need for smoothing phases. It also requires
only the single s parameter, though when integrating it into a search algorithm
in Section 4 we find a further parameter necessary.

To compare phased and continuous smoothing we simulate the evolution of
weights during search. In this simulation there are three variables v1, v2, v3 that
are flipped during search. The search is divided into three parts. In the first part
v1 is flipped in 2

3
of the iterations and v2 in the remaining 1

3
, so variables are

flipped in the order v1, v1, v2, v1, v1, v2 . . . In the second part the same is true of
v2 and v3 respectively, and in the third part of v3 and v1. The simulation shows
what happens when variables change from being frequently flipped to rarely
flipped, and vice-versa. We use a simple phased weighting method in which
weights are increased additively by 1, and smoothed multiplicatively every 50
iterations by 0.8. We compare this with continuous smoothing using s = 0.02.
The simulations are shown in Figures 3 and 4. The results are qualitatively
similar: both methods adjust weight rankings to new situations in almost the
same way, though the actual values are different.

Care must be taken when implementing continuous smoothing: if we use
integer arithmetic then overflow may occur, though this only occurs on long
runs because all weights are bounded above by the number of flips in the search
so far. Floating-point arithmetic can be used for long runs, but as weights become
very large the term wv + 1 becomes indistinguishable from wv . A solution is to
periodically scale all integer weights down by some factor, similar to a smoothing
phase; but whereas phased smoothing typically occurs after a few tens of flips,
integer weights (and the flip counter) need not be rescaled more often than
every few million flips. Alternatively weights could be implemented using infinite-
precision integer arithmetic.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

w
ei

gh
ts

iterations

Fig. 3. Phased smoothing

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

w
ei

gh
ts

iterations

Fig. 4. Continuous smoothing

The same method may be applied to clause weighting. At each local minimum
we update the weight of each violated clause using the above formula. These
weights may then be used as in other clause weighting algorithms. However, in
this paper we test only variable weighting.

4 A new local search algorithm

We now describe and evaluate a new local search algorithm called VW2, com-
bining continuously smoothed variable weights with heuristics based on Walk-
sat/SKC. The VW2 algorithm is shown in Figure 5 and is identical to SKC
except for its flip heuristic. Instead of using weights for tie-breaking we use
them to adjust the break counts as follows. From a random violated clause we
select the variable v with minimum score bv + b(wv −M) where bv is the break
count of v, wv is the current weight of v, M is the current mean weight, and c

is a new parameter (c ≥ 0 and usually c < 1). Ties are broken randomly. VW2
has three parameters p, s, c but we shall only explore a fraction of the parameter
space using p values {0.05, 0.1, 0.2, 0.3, 0.4}, s values {10−1, 10−2, 10−3} and c

values {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}.
Figure 6 shows results for VW2 on the same benchmarks as in Figure 2 except

for the smaller AIM problems, plus two hard graph colouring benchmarks. They
are almost uniformly better than those for VW1, and we now compare them
to our SKC, Novelty+ and SAPS results in Figure 2; also to published results,
where available, for the clause weighting algorithms DLM and MAX-AGE from
[28] and SAPS and PAWS from [14, 29] (all using medians over 100 runs).

– On the AIM problems VW2 beats SKC, Novelty+ and SAPS.
– On the logistics planning problems VW2 is beaten by SAPS but beats SKC

and Novelty+.
– On the Blocks World planning problems VW2 beats SKC, Novelty+, SAPS,

PAWS, DLM and MAX-AGE.
– On the AIS problems VW2 beats SKC and Novelty+, and is comparable to

SAPS.

initialise all variables to randomly selected truth values

initialise all variable weights to 0

repeat until no clause is violated

(randomly select a violated clause C

if C contains freebie variables

randomly flip one of them

else with probability p

flip a variable in C chosen randomly

else with probability 1-p

flip a variable in C chosen by the new heuristic

update and smooth the weight of the flipped variable

)

Fig. 5. The VW2 algorithm

– On the random 3-SAT problems (f) VW2 beats SKC, Novelty+ and (on the
largest problem) SAPS, but is beaten by DLM and MAX-AGE.

– On the graph colouring (g) VW2 beats SAPS but is beaten by PAWS, DLM
and MAX-AGE.

The results are clearly competitive with those for current random walk and clause
weighting algorithms, and the blocks world planning results are (as far as we
know) the best reported. VW2 currently takes an order of magnitude more flips
than the best algorithms on 16-bit parity learning problems, but clause weighting
algorithms have undergone several generations of development and we hope to
emulate their success in future work. We also hope to improve its robustness
under different parameter values, following techniques already developed for the
Walksat noise parameter.

We now compare flip rates for VW2 and SAPS. SAPS has a more efficient
smoothing algorithm than most clause weighting algorithms, but continuous
smoothing scales better to large problems. For example on the 600-variable ran-
dom 3-SAT benchmark the ratio of the VW2 flip rate to that of SAPS is 1.62;
on the 1000-variable benchmark it is 1.73; and on the 2000-variable benchmark
it is 2.13. Similarly on the Blocks World planning problems the ratio is 1.75 for
problem (a), 2.26 for problem (b), 2.80 for problem (c), and 2.99 for problem
(d). This is despite the fact that the UBCSAT implementation is generally more
efficient than ours. For example on the 600-variable random 3-SAT problem its
version of Novelty+ performs roughly 1.42 more flips per second than VW2, on
the 1000-variable problem the ratio is 1.78, and on the 2000-variable problem
it is 1.94. Similarly on blocks world planning problem (a) the ratio is 1.37, on
problem (b) 1.29, on problem (c) 2.10 and on problem (d) 2.95. Combining the
implementation techniques of the UBCSAT system with continuous smoothing
should yield very scalable algorithms.

instance p s c flips sec

aim200-2.0-1 0.05 0.01 0.001 121735 0.087
aim200-2.0-2 0.05 0.01 0.001 55128 0.040
aim200-2.0-3 0.05 0.01 0.001 66884 0.046
aim200-2.0-4 0.05 0.01 0.001 83576 0.060

logistics.a 0.05 0.1 0.001 13114 0.027
logistics.b 0.05 0.1 0.001 14559 0.034
logistics.c 0.05 0.01 0.001 17734 0.046
logistics.d 0.05 0.01 0.0001 87817 0.21

bw large.a 0.2 0.01 0.001 5854 0.012
bw large.b 0.2 0.01 0.0001 73994 0.26
bw large.c 0.2 0.01 0.00001 508254 3.17
bw large.d 0.2 0.01 0.000001 570471 5.56

ais6 0.1 0.001 0.1 891 0.0015
ais8 0.1 0.001 0.1 5485 0.013
ais10 0.1 0.001 0.01 27356 0.076
ais12 0.1 0.01 0.001 135394 0.54

f600 0.4 0.1 0.000001 68040 0.10
f1000 0.4 0.1 0.000001 272392 0.53
f2000 0.4 0.1 0.000001 969650 3.05

g125.17 0.2 0.1 0.000001 1820914 29.8
g250.29 0.2 0.1 0.000001 1508571 96.3

Fig. 6. Smoothed variable weighting on SAT benchmarks

5 Discussion

It was recently conjectured that clause weighting works as a form of diversifica-
tion [32]. We showed that an alternative diversification technique called variable

weighting , based on variable flip histories, can emulate clause weighting per-
formance. This contributes to the understanding of local search heuristics by
supporting the conjecture. It also provides an alternative to clause weighting for
problems with deep local minima, and is a promising source of new local search
heuristics. We also introduced an efficient new continuous smoothing technique
for variable weights, which we will test on clause weights in future work.

An advantage of variable weighting is that at each search step only one weight
is adjusted, whereas an unbounded (though typically small) number of clause
weights may need to be updated at a local minimum. Another advantage is
that variable weighting is amenable to lifting [9], a technique for compressing
a large set of clauses into a single formula via quantification. Lifted clauses are
not represented explicitly so dynamically changing weights cannot be assigned
to them, but variables can be dynamically weighted. Thus we can achieve clause
weighting-like performance on extremely large problems. Variable weighting may
also be better suited than clause weighting to weighted MAX-SAT, though this
remains to be tested. One of the best local search algorithms on MAX-SAT is
currently SAPS [31] and the authors speculate that it will also perform well on

weighted MAX-SAT, but note that there are several ways of combining the static
clause weights of the problem with the dynamic clause weights of the algorithm.
This may be easier with our approach because the static clause weights can be
treated separately from the dynamic variable weights.

Finally, a note on completeness. Some local search algorithms have a weak
form of completeness called probabilistic asymptotic completeness (PAC), mean-
ing that as time tends to infinity the probability of finding a solution tends to
one [12]. Does VW2 possess this property? A drawback of freebies is that they
make PAC hard to prove, and it is still an open question for SKC except for the
special case of 2-SAT [3]. But SKC appears to behave empirically like a PAC
algorithm so a proof may eventually be found. Any such proof is likely to reason
on freebies and random walk moves alone. VW2 differs from SKC only in its
other moves, so we conjecture that VW2 is PAC if and only if SKC is. PAC
seems to be less of an issue in clause weighting research, though an inefficient
PAC version of Breakout is described in [19].

Acknowledgment

Thanks to the anonymous referees for helpful comments. This material is based
in part upon works supported by the Science Foundation Ireland under Grant
No. 00/PI.1/C075.

References

1. Y. Asahiro, K. Iwama, E. Miyano. Random Generation of Test Instances with Con-
trolled Attributes. In D. S. Johnson, M. A. Trick (eds), Cliques, Coloring and Satisfi-

ability: Second Implementation Challenge, DIMACS Series in Discrete Mathematics

and Theoretical Computer Science vol. 26, American Mathematical Society 1996, pp.
127–154.

2. B. Cha, K. Iwama. Performance Test of Local Search Algorithms Using New Types
of Random CNF Formulas. Proceedings of the Fourteenth International Joint Con-

ference on Artificial Intelligence, Morgan Kaufmann 1995, pp. 304–310.
3. J. Culberson, I. P. Gent, H. H. Hoos. On the Probabilistic Approximate Com-

pleteness of WalkSAT for 2-SAT. Technical Report APES-15a-2000, APES Research
Group, 2000.

4. J. Frank. Weighting for GODOT: Learning Heuristics for GSAT. Proceedings of

the Thirteenth National Conference on Artificial Intelligence, MIT Press, 1996, pp.
338–343.

5. J. Frank. Learning Short-Term Weights for GSAT. Proceedings of the Fifteenth In-

ternational Joint Conference on Artificial Intelligence, Morgan Kaufmann, 1997, pp.
384–389.

6. A. S. Fukunaga. Variable-Selection Heuristics in Local Search for SAT. Proceedings

of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative

Applications of Artificial Intelligence Conference, 1997, pp. 275–280.
7. I. P. Gent, T. Walsh. Towards an Understanding of Hill-Climbing Procedures for

SAT. Proceedings of the Eleventh National Conference on Artificial Intelligence,
AAAI Press, 1993, pp. 28–33.

8. I. P. Gent, T. Walsh. Unsatisfied Variables in Local Search. J. Hallam (ed.), Hybrid

Problems, Hybrid Solutions, IOS Press, Amsterdam, The Netherlands, 1995, pp. 73–
85.

9. M. L. Ginsberg, A. J. Parkes. Satisfiability Algorithms and Finite Quantification.
Seventh International Conference on Principles of Knowledge Representation and

Reasoning , Morgan Kaufmann, 2000, pp. 690–701.
10. J. Gu. Efficient Local Search for Very Large-Scale Satisfiability Problems. Sigart

Bulletin vol. 3, no. 1, 1992, pp. 8–12.
11. E. A. Hirsch, A. Kojevnikov. Solving Boolean Satisfiability Using Local Search

Guided by Unit Clause Elimination. Seventh International Conference on Principles

and Practice of Constraint Programming, Lecture Notes in Computer Science vol.
2239, Springer, 2001, pp. 605–609.

12. H. H. Hoos. On the Run-Time Behaviour of Stochastic Local Search Algorithms.
Sixteenth National Conference on Artificial Intelligence, AAAI Press, 1999, pp. 661–
666.

13. W. Huang, D. Zhang, H. Wang. An Algorithm Based on Tabu Search for Satisfia-
bility Problem. Journal of Computer Science and Technology vol. 17 no. 3, Editorial
Universitaria de Buenos Aires, 2002, pp. 340–346.

14. F. Hutter, D. A. D. Tompkins, H. H. Hoos. Scaling and Probabilistic Smoothing:
Efficient Dynamic Local Search for SAT. Eighth International Conference on Prin-

ciples and Practice of Constraint Programming, Lecture Notes in Computer Science

vol. 2470, Springer, 2002, pp. 233–248.
15. B. Mazure, L. Säıs, É. Grégoire. Tabu Search for SAT. Proceedings of the Fourteenth

National Conference on Artificial Intelligence, 1997, pp. 281–285.
16. B. Mazure, L. Säıs, É. Grégoire. Boosting Complete Techniques Thanks to Local

Search. Annals of Mathematics and Artificial Intelligence vol. 22, 1998, pp. 309–322.
17. D. A. McAllester, B. Selman, H. A. Kautz. Evidence for Invariants in Local Search.

Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Ap-

plications of Artificial Intelligence Conference, AAAI Press / MIT Press 1997, pp.
321–326.

18. P. Mills, E. P. K. Tsang. Guided Local Search for Solving SAT and Weighted
MAX-SAT Problems. Journal of Automated Reasoning, Special Issue on Satisfiability

Problems, Kluwer, Vol.24, 2000, pp. 205–223.
19. P. Morris. The Breakout Method for Escaping from Local Minima. Proceedings

of the Eleventh National Conference on Artificial Intelligence, AAAI Press / MIT
Press, 1993, pp. 40–45.

20. S. D. Prestwich. Incomplete Dynamic Backtracking for Linear Pseudo-Boolean
Problems. Annals of Operations Research vol. 130, 2004, pp. 57–73.

21. S. D. Prestwich. SAT Problems With Chains of Dependent Variables. Discrete

Applied Mathematics vol. 3037, Elsevier, 2002, pp. 1-22.
22. D. Schuurmans, F. Southey, R. C. Holte. The Exponentiated Subgradient Algo-

rithm for Heuristic Boolean Programming. Proceedings of the Seventeenth Interna-

tional Joint Conference on Artificial Intelligence, Morgan Kaufmann, 2001, pp. 334–
341.

23. D. Schuurmans, F. Southey. Local Search Characteristics of Incomplete SAT Proce-
dures. Proceedings of the Seventeenth National Conference on Artificial Intelligence,
AAAI Press, 2000, pp. 297–302.

24. B. Selman, H. A. Kautz. Domain-Independent Extensions to GSAT: Solving Large
Structured Satisfiability Problems. Proceedings of the Thirteenth International Joint

Conference on Artificial Intelligence, 1993, pp. 290–295.

25. B. Selman, H. A. Kautz, B. Cohen. Noise Strategies for Improving Local Search.
Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI
Press, 1994, pp. 337–343.

26. B. Selman, H. Levesque, D. Mitchell. A New Method for Solving Hard Satisfiability
Problems. Proceedings of the Tenth National Conference on Artificial Intelligence,
MIT Press, 1992, pp. 440–446.

27. K. Smyth, H. H. Hoos, T. Stützle. Iterated Robust Tabu Search for MAX-SAT.
Proceedings of the Sixteenth Canadian Conference on Artificial Intelligence, Lecture

Notes in Computer Science vol. 2671, Springer Verlag, 2003, pp. 129–144.
28. J. R. Thornton, W. Pullan, J. Terry. Towards Fewer Parameters for Clause Weight-

ing SAT Algorithms. Proceedings of the Fifteenth Australian Joint Conference on Ar-

tificial Intelligence, Lecture Notes in Artificial Intelligence vol. 2557, Springer-Verlag,
2002, pp. 569–578.

29. J. R. Thornton, D. N. Pham, S. Bain, V. Ferreira Jr. Additive versus Multiplicative
Clause Weighting for SAT. Proceedings of the Nineteenth National Conference on

Artificial Intelligence, San Jose, California, 2004, pp. 191–196.
30. D. A. D. Tompkins, H. H. Hoos. UBCSAT: An Implementation and Experimen-

tation Environment for SLS Algorithms for SAT and MAX-SAT. Proceedings of the

Seventh International Conference on Theory and Applications of Satisfiability Test-

ing , 2004, pp. 37–46.
31. D. A. D. Tompkins, H. H. Hoos. Scaling and Probabilistic Smoothing: Dynamic Lo-

cal Search for Unweighted MAX-SAT. Proceedings of the Sixteenth Canadian Confer-

ence on Artificial Intelligence, Lecture Notes in Computer Science vol. 2671, Springer,
2003, pp. 145–159.

32. D. A. D. Tompkins, H. H. Hoos. Warped Landscapes and Random Acts of SAT
Solving. Proceedings of the Eighth International Symposium on Artificial Intelligence

and Mathematics, 2004 (to appear).
33. W. Wei, B. Selman. Accelerating Random Walks. Proceedings of the Eighth Inter-

national Conference on Principles and Practice of Constraint Programming, Lecture

Notes in Computer Science vol. 2470, Springer, 2002, pp. 216–232.
34. Z. Wu, B. W. Wah. An Efficient Global-Search Strategy in Discrete Lagrangian

Methods for Solving Hard Satisfiability Problems. Proceedings of the Seventeenth

National Conference on Artificial Intelligence, AAAI Press, 2000, pp. 310–315.
35. W. Zhang, A. Rangan, M. Looks. Backbone Guided Local Search for Maximum

Satisfiability. Eighteenth International Joint Conference on Artificial Intelligence,
2003, pp. 1179–1186.

