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Abstract. Accurate prediction of pseudoknotted RNA secondary struc-
ture is an important computational challenge. Typical prediction algo-
rithms aim to find a structure with minimum free energy according to
some thermodynamic (“sum of loop energies”) model that is implicit
in the recurrences of the algorithm. However, a clear definition of what
exactly are the loops and stems in pseudoknotted structures, and their
associated energies, has been lacking.

We present a comprehensive classification of loops in pseudoknotted
RNA secondary structures. Building on an algorithm of Bader et al.
[2] we obtain a linear time algorithm for parsing a secondary structures
into its component loops.
We also give a linear time algorithm to calculate the free energy of a
pseudoknotted secondary structure. This is useful for heuristic prediction
algorithms which are widely used since (pseudoknotted) RNA secondary
structure prediction is NP-hard. Finally, we give a linear time algorithm
to test whether a secondary structure is in the class handled by Akutsu’s
algorithm [1]. Using our tests, we analyze the generality of Akutsu’s
algorithm for real biological structures.

1 Introduction

RNA molecules play diverse roles in the cell: as carriers of information, catalysts
in cellular processes, and mediators in determining the expression level of genes
[8]. The structure of an RNA molecule is often the key to its function with other
molecules. In particular, the secondary structure, which describes which bases
of an RNA molecule bond with each other, can provide much useful insight as
to the function of the molecule. If the RNA molecule is viewed as an ordered
sequence of n bases (Adenine (A), Guanine (G), Cytosine (C), and Uracil (U)),
indexed starting at 1 from the so-called 5’ end of the molecule, then its secondary
structure is a set of pairs i · j, 1 ≤ i < j ≤ n with each index in at most one pair.

Most well known are pseudoknot free secondary structures in which no base
pairs overlap - that is, there do not exist two base pairs i · j and i′ · j′ in the
structure with i < i′ < j < j′. Because of their biological importance, there has
been a huge investment in understanding the thermodynamics of pseudoknot
free secondary structure formation. For example, it is well understood that in a



pseudoknot free secondary structure, the base pairs together with unpaired bases
form hairpin loops, internal loops (of which stacked pairs and bulge loops are
special cases), external loops, or multiloops, with every unpaired base in exactly
one loop and every base pair in exactly two loops. Parameters for estimating the
free energies of such loops have been determined experimentally. The standard
thermodynamic model posits that the free energy of a pseudoknot free secondary
structure is the sum of the energies of its loops. A pseudoknot free secondary
structure can be conveniently represented as a string in dot-parenthesis format, a
generalization of a string of balanced parentheses in which matching parentheses
denote base pairs and dots denote unpaired bases. It is straightforward to parse
a pseudoknot free secondary structure represented in dot-parenthesis notation
in linear time, in order to determine its loops and calculate its free energy.
Finally, dynamic programming algorithms can find the minimum free energy
(mfe) pseudoknot free secondary structure in O(n3) time; the mfe structure is
the most stable of the possibly exponentially many structures that a molecule
may form, according to current models.

In contrast, there has been no classification of loops in pseudoknotted sec-
ondary structures, though some examples of structural motifs, such as kissing
hairpins, have been named. Since pseudoknotted secondary structure prediction
is NP-hard, several polynomial time algorithms have been proposed for pre-
dicting the mfe secondary structure from restricted classes of structures that
may contain pseudoknots. Of these, the O(n6) algorithm of Rivas and Eddy [12]
handles (i.e. finds the mfe structure from) the most general class of structures.
However, the loop types and thermodynamic model underlying the Rivas and
Eddy and other algorithms are specified only implicitly in the recurrence equa-
tions of the algorithms. There is not a one-to-one correspondence between loops
and terms in the recurrence equations, making it difficult to infer the loop types
directly from the recurrences. The underlying energy models are unclear; there
has been no algorithm to calculate the energy of a structure, and no way to
compare the quality of thermodynamic models proposed by different authors.

In this work we present the first classification of loops that arise in pseudo-
knotted secondary structures. Our classification is derived from the algorithm of
Rivas and Eddy, and allows us to formulate the thermodynamic models underly-
ing the Rivas and Eddy and other dynamic programming algorithms as sum-of-
loop-energies models. With this description, it becomes possible to evaluate the
strengths and weaknesses of current thermodynamic models for pseudoknotted
structures.

By extending an algorithm of Bader et al. [2], it is possible to parse a given
secondary structure into its component loops in linear time. We present two
applications of this parsing algorithm. First, we show how to calculate the free
energy of a pseudoknotted secondary structure in linear time. This can be use-
ful in heuristic algorithms, which hold promise since pseudoknotted secondary
structure prediction is NP-hard [11].

The second application of our parsing algorithm is in assessing the trade-off
between generality and running time of dynamic programming algorithms for



RNA secondary structure prediction. Each dynamic programming algorithm in
the literature only predicts structures from a restricted class. Usually, the more
general the class, the higher the running time of the algorithm. An outstanding
challenge is to design efficient dynamic programming algorithms that can predict
biologically important structures. For example, Akutsu [1] proposed an algorithm
that runs in O(n5) time, can in theory handle more secondary structures than the
O(n5) algorithm of Dirks and Pierce [9], though less than the O(n6) algorithm of
Rivas and Eddy. As another example, Uemura [14] proposed an algorithm that
runs in O(n5) time, similar to Akutsu’s algorithm in time complexity, but in
theory handle more secondary structures than Akutsu’s algorithm, though it is
much more harder to understand and analyse. Let U, A, D&P, and R&E denote
the classes of structures handled by the Uemura, Akutsu, Dirks and Pierce, and
Rivas and Eddy algorithms, respectively. The question we address is: does A
contain more biologically meaningful structures than does D&P and perhaps as
many as U and/or R&E?

To help answer this question, we apply the parsing algorithm to give linear
time test for membership in class A. In previous work [7], we obtained linear time
tests for membership in the D&P and R&E classes. We provide a comparison of
all four algorithms on a set of 1439 biological structures; the result shows that
exactly 2 of the structures are in class A but not in class D&P.

The paper is organized as follows. In Sec. 2, we define what is a closed region
in an RNA secondary structure. (The parsing algorithm, based on an algorithm
of Bader et al. [2], is not shown due to the lack of space). In Sect. 3 we present our
loops classification and our algorithm for enumerating the loops of a secondary
structure. We briefly describe how to calculate the free energy of a secondary
structure in Sect. 4. Our algorithm for testing membership in Akutsu’s class is
in Sect. 5, and conclusions are in Sect. 6.

We should note that some details of the algorithms and most of the details
of the proofs are eliminated in this extended abstract.

2 Closed Regions

Here we first introduce closed regions of a secondary structure, which are impor-
tant throughout the paper. Examples are shown in Fig. 1, where a secondary
structure is represented as an arc diagram, in which base indices are shown as
vertices on a straight line (backbone), ordered from the 5′ end, and arcs (always
above the straight line) indicate base pairs. Intuitively, a closed region is a “min-
imal” set of contiguous base indices - corresponding to a region of the line - with
the property that no arcs leave the region and there is at least one arc in the
region. The definitions in this and the following sections are with respect to a
fixed non-empty secondary structure R for an RNA sequence of length n.

We denote the set of indices i, i + 1, ..., j by [i; j] and call this set a region if
i ≤ j. We say that region [i; j] is weakly closed if it contains at least one base
pair and for all base pairs i′ · j′ of R, i′ ∈ [i; j] if and only if j′ ∈ [i; j]. We say
that [i; j] is closed, and write i; j, if either (i) i = 1 and j = n or (ii) [i; j] is
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Fig. 1. Arc diagram representation of an RNA secondary structure R. (a) [1; 46],
[38; 45], and [47; 61] are closed regions. [48; 60] is weakly closed but it is not closed
as [48; 52] is weakly closed. [38; 45] is a pseudoknotted closed region. 38.43 and 40.45
are its external base pairs, and 38 and 45 are its left and right borders respectively.
38.43, 39.42, 40.45 and 41.44 are all pseudoknotted pairs and 38, 39, ..., 45 are all pseu-
doknotted bases. (b) [48; 52] and [54; 60] are disjoint closed regions and both are nested
in [47; 61]. (c) [8; 10]∪ [36; 46] is a band of pseudoknotted closed region [1; 46], and 8.46
and 10.36 are the band’s outer and inner closing pairs. [8; 10] and [36; 46] are the band’s
regions, and 8 and 46 are the left and the right border of the band. 8.46, 9.37 and 10.36
span the band. (d) 47.61 is a multiloop external base pair with (48, 52) and (54, 60)
as tuples. (1, 46) and (47, 61) are the tuples of an external loop. (e) [1; 46] is a pseu-
doknotted loop with bands [1; 2]∪ [6; 7], [3; 3]∪ [20; 20], [4; 5]∪ [11; 12], [8; 10] ∪ [36; 46]
and [13; 19] ∪ [34; 35]. [21; 33] is the closed region nested in [1; 46]. (f) 1.7 and 2.6 are
the external and internal base pairs of an interior-pseudoknotted loop. (g) 8.46 is the
external base pair of a multi-pseudoknotted loop with (9, 37) and (38, 45) as tuples.
(h) [38; 45] is an in-Band loop, [21; 33] is an out-Band loop, and 8.46 is the external
base pair of a span-Band loop (multi-pseudoknotted loop).

weakly closed and for all l with i < l < j, [i; l] and [l; j] are not weakly closed
(Fig. 1(a)).

Let i; j′. If i′ and j are such that i.j and i′.j′ then we say that i.j and i′.j′ are
the external base pairs of [i; j′]. If i.j′ then the region has just one external base
pair; otherwise we call [i; j] a pseudoknotted closed region. We also refer to
i and j′ as [i; j′]’s left and right borders respectively.

Pair i.j is pseudoknotted if there exists i′.j′ with i < i′ < j < j′ or
i′ < i < j′ < j. We also refer to i and j as pseudoknotted base indices.

2.1 Closed Regions Tree

Let i; j and i′; j′ with i < i′. If j < i′ we say that [i; j] and [i′; j′] are disjoint ;
otherwise we say that [i′; j′] is nested in [i; j] (Fig. 1(b)).

We say that closed region [i′; j′] is a child of closed region [i; j] if [i′; j′] is
nested in [i; j] and is not nested in any closed region [i′′; j′′] with i < i′′. We say
that [i; j] and [i′; j′] are siblings if they are children of the same closed region
and i 6= i′. So the closed regions form a tree structure.

A tree T (R) in which the children of a node are ordered is called the closed
regions tree of R if: (i) there is a 1-1 correspondence between nodes of the tree
and closed regions of R, and (ii) if node V corresponds to closed region C then
V is the parent of all the nodes whose corresponding closed regions are nested in
C. The children of each node are ordered by the left index of the closed region.

Building on an algorithm by Bader et al. [2], parsing algorithm (not shown)
builds the closed region tree in linear time. (Details will be in full paper - omitted
in this extended abstract)



3 Loops

In this section we describe the loops that comprise a pseudoknotted secondary
structure, and how these can be enumerated in linear time. Models underlying
the algorithm of Rivas and Eddy [12] and the algorithm of Dirks and Pierce
[9] can be expressed by sum of the loops that we describe here. We need one
important definition, that of a band.

3.1 Bands

Loosely speaking, a band is a pseudoknotted stem, which may contain internal
loops or multi loops (Fig. 1(c)). We next define a band formally.

Let i2.j2 be a pseudoknotted base pair. We say that i2.j2 is directly banded
in i1.j1 if (i) i1 ≤ i2 < j2 ≤ j1, and (ii) [i1+1, i2−1] and [j2+1, j1−1] are weakly
closed. Note that the “is directly banded in” relation is reflexive. We let “are
banded” be the symmetric and transitive closure of the “is directly banded in”
relation. Let B be an equivalence class under the “are banded” relation. That
is, B is a set of base pairs such that every two base pairs in B are banded and
every base pair in B is pseudoknotted. B has outer and inner closing base pairs
i1 · j1 and i′1 · j

′
1 respectively, such that for every base pair i.j in B, i1 ≤ i ≤ i′1

and j′1 ≤ j ≤ j1. Note that i1 · j1 may equal i′1 · j
′
1.

We call the union of two non-overlapping regions a gapped region. A gapped
region [i1; i

′
1]∪ [j′1; j1] is a band if for some equivalence class B, i1 · j1 and i′1 · j

′
1

are the closing pairs of B. We refer to i1 and j1 as the left and the right border
of the band respectively (Fig. 1(c)).

We refer to [i1; i
′
1] and [j′1; j1] as the band regions, which have borders i1, i′1

and j′1, j1 respectively. Closed region i; j is contained in band [i1; i
′
1] ∪ [j′1; j1], if

and only if i; j is in a band region - that is, i, j ∈ [i1; i
′
1] or i, j ∈ [j′1; j1] - and

there is no p, q with p; q, p < i < j < q, such that p, q ∈ [i1; i
′
1] or p, q ∈ [j′1; j1].

Base pair i.j spans band [i1; i
′
1] ∪ [j′1; j1] if i1 ≤ i ≤ i′1 and j′1 ≤ j ≤ j1.

We say that [i1; i
′
1] ∪ [j′1; j1] is a band of closed region [i; j] if i ≤ i1 ≤ j1 ≤ j

and there is no p; q with i < p ≤ i1 < j1 ≤ q < j.

Lemma 1. Let i1.j1, i2.j2, ...., in.jn , i1 < i2 < ... < in, be the base pairs that
span band [i1; i

′
1] ∪ [j′1; j1]. Then jn < .... < j2 < j1.

3.2 Loop Types

Our definitions of hairpin and interior loops are standard for pseudoknot free
structures so we do not include them here. The definitions of multiloop and
external loop are generalized (Fig. 1(d)):

Multiloop: contains an external base pair i.j and k tuples (i1, j1), (i2, j2), ...,
(ik, jk), for some k ≥ 1, along with the bases in [i + 1; j − 1]−∪[il; jl], 1 ≤ l ≤ k
all of which must be unpaired, where il; jl, 1 ≤ l ≤ k, i < i1 < j1 < i2 < j2 <
... < ik < jk < j. Also, if il.jl, 1 ≤ l ≤ k, then k should be at least 2.



External loop: contains k > 0 tuples (i1, j1), (i2, j2), ..., (ik, jk) along with
the bases in [1; n] − ∪1≤l≤k[il; jl], all of which must be unpaired, where il; jl,
1 ≤ l ≤ k, and i1 < j1 < i2 < j2 < ... < ik < jk.

We next introduce further types of elementary structures which are the con-
sequence of having pseudoknotted base pairs and pseudoknotted regions.

Pseudoknotted loop: Let [i; j′] be a pseudoknotted closed region. Let the
bands of [i; j′] be: [i1; i

′
1]∪[j′1; j1], [i2; i

′
2]∪[j′2; j2], ..., [im; i′m]∪[j′m; jm]. Let [p1; q1],

[p2; q2], ..., [pk; qk] be children of [i; j′] which are nested in [i; j]−(∪m
l=1

[il; i
′
l]∪

m
l=1

[j′l ; jl]). The pseudoknotted loop corresponding to [i; j′] is the set: {(il, jl), (i
′
l, j

′
l)|1 ≤

l ≤ m} ∪ {(pl, ql)|1 ≤ l ≤ k}, along with the bases in: [i; j′] − ∪k
l=1

[pl; ql] −
∪m

l=1
[il; i

′
l] − ∪m

l=1
[j′l ; jl] all of which must be unpaired (Fig. 1(e)).

Interior-pseudoknotted loop: contains two base pairs i.j and i′.j′ where i <
i′ < j′ < j, along with the bases in [i+1, i′− 1]∪ [j′ +1, j− 1] all of which must
be unpaired. Moreover, there is a band [bi; bi′] ∪ [bj′; bj] such that bi ≤ i < bi′

and bj′ < j ≤ bj. We refer to i.j and i′.j′ as the interior-pseudoknotted loop
external and internal base pairs respectively (Fig. 1(f)).

Multi-pseudoknotted loops: contains an external base pair i.j and k tuples
(i1, j1), (i2, j2), ..., (ik, jk), for some k > 1, along with the bases in [i + 1; j −
1] − ∪1≤l≤k[il; jl], all of which must be unpaired, where (i) there is a band
[bi; bi′] ∪ [bj′; bj] such that bi ≤ i < bi′ and bj′ < j ≤ bj, (ii) il; jl, for all
1 ≤ l ≤ k except for exactly one tuple (il0 , jl0) for which il0 ; jl0 is not true (i.e
[il0 ; jl0 ] is not a closed region) and il0 .jl0 spans the band (bi ≤ il0 ≤ bi′ and
bj′ ≤ jl0 ≤ bj), and (iii) i < i1 < j1 < i2 < j2 < ... < ik < jk < j (Fig. 1(g)).

3.3 Enumerating Loops

We can enumerate the loops of a secondary structure in linear time. Each loop
is fully specified by its list of tuples; thus an enumeration algorithm should list
the tuples of each loop, with the external tuple first and the others in order.

Each node (closed region) of the tree corresponds to a hairpin loop, internal
loop, multiloop, external loop, or pseudoknotted loop. A simple traversal of the
tree suffices to enumerate such loops: when visiting a node, its closed region and
the closed regions of its children (in order) are the needed tuples.

However, interior- and multi-pseudoknotted loops are not closed as their
external base pair is pseudoknotted and spans a band. To enumerate these types
of loops, two steps are needed:

Band finding: For each pseudoknotted closed region, construct the list of its
bands regions, ordered by the left border index.

Loop finding: Identify all multi-pseudoknotted and interior-pseudoknotted loops,
which are “nested” in the bands of the structure.

Algorithm 1 finds the bands of a pseudoknotted closed region [i; j] of structure
R. Loop finding is somewhat similar (details omitted).

Let L be a linked list representation of a secondary structure R for a strand
of length n. In this representation, list elements are the base indices, with bidi-



rectional links between adjacent elements and additionally bidirectional links
between paired indices. In this algorithm, bp(i) denotes j if i.j or j.i, and 0 if i
is unpaired. Algorithm 1 takes as input a sublist BL of L starting from index
i to index j, in which unpaired base indices, and base indices corresponding to
nested closed regions, are removed. Sublist BL can be generated using the closed
region tree in time proportional to the number of closed regions that are nested
in [i; j]. Thus, BL is a linked list representation of spanning band base pairs
in i; j. Inspired by Lemma 1, Algorithm 1 scans list BL from left to right to
identify bands and their region’s borders.

algorithm Band-Finding
input: BL, a linked list representation of spanning band base pairs in [i; j]
output: ordered linked list of band regions in [i; j]
1 bi := i;
2 repeat
3 bj := bp(bi); // bi.bj is the outer closing pair of a band, B

4 b′i := bi;
5 b′j := bj ;
7 while Next(b′i, BL) = bp(Prev(b′j , BL)) do
8 b′i := Next(b′i, BL);
9 b′j := Prev(b′j , BL);
// b′i.b

′

j is the inner closing pair of the band B So B = [bi; b
′

i] ∪ [b′j ; bj ] is a band of i; j
10 Add-Band-Region(BL, bi, b

′

i);
11 Add-Band-Region(BL, b′j , bj);
12 bi :=Next-leftBase(b′i, BL);
13until bi = j + 1;
14 return BL

Algorithm 1: Find bands of a pseudoknotted closed region.

Next(b′i, BL) returns the index right after b′i in BL and Prev(b′j, BL) returns
the index right before b′j in BL. Next-leftBase(b′i, BL) returns l, the first index
after b′i in BL for which bp(l) > l. l.bp(l) will be the outer closing pair of the
next band.

Add-Band-Region(BL, b, b′) (i) replaces index b in BL with a list element
containing the band region borders (b and b′) and (ii) removes from BL all other
base indices that lie within the region [b; b′]. At the end, BL is an ordered list
of band regions.

By traversing the closed regions tree and applying the above algorithm to
each pseudoknotted closed region, all lists of band regions can be constructed in
time linear in the number of base pairs in R.



4 Energy Model

In the standard thermodynamic model for pseudoknot free secondary structures,
the energy of a loop is a function of (i) loop type, (ii) an ordered list of its base
pairs or tuples, (iii) the bases forming each base pair, and (iv) the bases in the
loop (if any) that are adjacent to each base pair. The energy of a secondary
structure is then calculated by summing the free energy of its component loops.

For pseudoknotted structures, the standard thermodynamic model is ex-
tended so that the energy of a loop depends additionally on (v) the location
status of the loop, which shows its position relative to pseudoknotted loops in
the structure. The location status can be one of the following (Fig. 1(h)).

span-Band: Interior-pseudoknotted and multi- pseudoknotted loops are called
span-Band loops, since their external base pair spans a band.

Each of the remaining loop types corresponds to a closed region. Suppose that
such a loop, L, with corresponding closed region [iL; jL], is a child of pseudo-
knotted closed region [i; j]. Then L can have one of the following two location
statuses:

in-Band: If [iL; jL] is contained in a band region of [i; j], then L is an in-Band
loop.

out-Band: Otherwise L is an out-Band loop.

standard: Loops that are not of the three types above are called standard loops.
Such loops do not span bands and are not children of pseudoknotted loops.

4.1 Energy Calculation

It is straightforward to extend the loop enumeration algorithm so that the loop’s
type and location status is output in addition to its list of tuples. For example,
the type of a loop corresponding to a closed region can be determined from the
number and types of its children (e.g. if the closed region is not pseudoknotted
and has no children, it must be a hairpin loop; if it has one child which is not
a pseudoknotted closed region then it must be an internal loop). The location
status of a loop can be determined using additionally the ordered list of band
regions of its parent (if any). Then the free energy of the structure can be
calculated by adding up the free energy of all loops.

4.2 Discussion

In the Rivas-Eddy model [12], the energy of a loop is exactly as in the standard
model (for pseudoknot free structures) if the loop does not span a band. The
standard model is generalized in the case of multiloops, which may now contain
pseudoknotted regions, as follows: the energy is of the form a + bu + ch + dm,
where a, b, c, and d are constants independent of the loop, u is the number of
unpaired bases of the loop, h is the number of tuples (i, j) of the multiloop with
i · j ∈ R, and m is the number of tuples (i, j) of the multiloop with i · j 6∈ R.



For multi-pseudoknotted loops, the constants a, b, c, d are replaced by distinct
constants a′, b′, c′, d′. In contrast, in the D&P model [9], the energy of a multiloop
and multi-pseudoknotted loop are calculated using the same constants. In both
models, the energy of a pseudoloop is the sum of terms, with one term depending
on the total number of unpaired bases, one term per tuple of the pseudoloop,
and one term that depends on the location status of the pseudoloop; however the
dependence on the location status is different for both models. An interesting
direction for future work would be to establish which method is most biologically
plausible (neither paper provides justification for their choice of model).

The notion of what is a multiloop in the Rivas-Eddy is perhaps unnaturally
restrictive. An (artificially small) example lies in the structure {1 ·4, 2 ·9, 3 ·5, 6 ·
8, 7 · 10}. Here, the base pairs 2 · 9, 3 · 5, and 6 · 8 could be considered to form
a “multiloop”, but it is not recognized as such by the Rivas-Eddy algorithm,
and thus also not by our classification. (We note that the Dirks-Pierce model,
being less general, does not handle such loops.) We expect that the Rivas-Eddy
algorithm could be reformulated to assign multiloop energies to such loops.

5 Akutsu’s Structure Class

Akutsu’s dynamic programming algorithms for RNA secondary structure predic-
tion handles a restricted class of pseudoknotted RNA structures, called secondary
structures with recursive pseudoknots [1]. We present a concise characterization
of the class of structures Akutsu’s algorithm can handle.

In this section, we will represent secondary structures as patterns, in which
information about unpaired bases and base indices is lost but the pattern of
nesting or overlaps among base pairs is preserved. To define patterns precisely,
we use ε to denote the empty string and Nn to denote the natural numbers
between 1 and n (inclusive).

Patterns: A string P (of even length) over some alphabet Σ is a pattern, if
every symbol of Σ occurs either exactly twice, or not at all, in P . We say that
secondary structure R for a strand of length n corresponds to pattern P if there
exists a mapping m : Nn → Σ ∪ {ε} with the following properties: (i) if i.j ∈ R
then m(i) ∈ Σ and m(i) = m(j), (ii) if i.j and j.i /∈ R for all j ∈ Nn, then
m(i) = ε, and (iii) P = m(1)m(2)...m(n).

We refer to the index of the first and the second occurrence of any symbol σ
in P by L(P, σ) and R(P, σ) respectively (L for Left and R for Right). When
P is understood, we use L(σ) and R(σ). For example, pattern P = abccdebaed
corresponds to the closed region [21; 33] in Fig. 1, and L(a) = 1 and R(a) = 8.

In what follows, let P be a pattern of size 2n over an alphabet Σ of size n.

5.1 Definitions

Definition 1. Our definition: P is a simplest pseudoknot if and only if either:

B1: P = a1a1 (for some a1), or



B2: Either P = a1aiP1aia1P2 or P = a1P1aia1aiP2, where a1P1a1P2 is a sim-
plest pseudoknot.

P is a B&C simple pseudoknot if and only if either it is a simplest pseudoknot
or for some a1, ai, . . . ar ∈ Σ it is equal to a1P1a1ai ai+1 . . . arar . . . ai+1aiP2,
where a1P1a1P2 is a simplest pseudoknot.

Theorem 1. B&C simple pseudoknot is equivalent to Akutsu’s definition of sim-
ple pseudoknot.

Therefore, in what follows, we will simply refer to simple pseudoknots.
The following definition is derived from Akutsu [1].

Definition 2. Pattern P is a recursive pseudoknot if and only if P is a simple
pseudoknot or P = P1P2P

′
1 where P2 is a nonempty simple pseudoknot and

P1P
′
1 is a recursive pseudoknot.
We say that an RNA secondary structure R is a secondary structure with

recursive pseudoknots or conveniently recursive pseudoknot structure if its cor-
responding pattern P is a recursive pseudoknot.

Assume that C is the closed region corresponding to node V and C1, . . ., Cm are
the closed regions correspond to the children of V . Then we say that the pattern
corresponding to C also corresponds to node V . Also, C′ = C −∪m

i=1Ci is called
the private region corresponding to V and we refer to the pattern corresponding
to C′ as the private pattern of V .

Theorem 2. R is an Akutsu (i.e. recursive pseudoknot) structure if and only if
all of the private patterns corresponding to the nodes in T (R) are simple pseu-
doknots.

5.2 Akutsu Tests

Our algorithm for testing whether a pattern P is a simple pseudoknot has two
steps. In the first step it deals with the aiai+1 . . . arar . . . ai+1ai subpattern and
removes it from P , making the pattern a simplest pseudoknot. This can be done
in linear time by scanning the symbols of P , starting from the symbol after the
second occurrence of a1, and removing the subpattern aiai+1 . . . arar . . . ai+1ai

if any.
Next the algorithm determines if P is a simplest pseudoknot, building on

both cases in the definition of simplest pseudoknot. We define two simplify op-
erations according to B2: (i) a1aiS1aia1S2 is converted to a1S1a1S2, and (ii)
a1S1aia1aiS2 is converted to a1S1a1S2. We define one more operation, final op-
eration, according to B1: (iii) a1a1 is converted to ε. In these cases we say that
a simple/final operation is applicable to a1.

The linear time algorithm for testing whether the pattern P is a simplest
pseudoknot (1) applies one of the simplify operations, i or ii, on the first sym-
bol, a1, if applicable, repeatedly (2) does the final operation, iii, on a1 if it is
applicable. (3) return true if the pattern is empty and false otherwise.



Thus, using Theorem 2, to test whether a secondary structure R is an Akutsu
(i.e. recursive pseudoknot) structure, it is sufficient to check whether the pri-
vate pattern corresponding to each node of T (R) is a simple pseudoknot. It is
straightforward to generate the private pattern for all nodes in linear time; thus
the overall algorithm is a linear time algorithm.

5.3 Classification of Biological Structures

Condon et al. [7] provide linear time algorithms to test if an input structure is in
the R&E and D&P classes. To compare the generality of Akutus’s algorithm with
those of R&E and D&P, we applied our algorithms for membership in Akutsu’s
recursive class along with those of Condon et al.[7] to classify biological structures
from several sources [3, 10, 6, 4, 5, 13, 15]. As results show (Table 1), exactly 2 of
the structures are in class A but not in class D&P.

6 Conclusions

In this work we present a precise definition of the structural elements in a sec-
ondary structure, and a comprehensive way to classify the type of loops that
arise in pseudoknotted structure. Based on an algorithm of Bader et al. [2],
we also introduced a linear time algorithm to parse a pseudoknotted secondary
structure to its component loops, and to calculate its the free energy. Finally,
we applied our algorithm to compare the generality of Akutsu’s algorithm with
those of Dirks and Pierce and Rivas and Eddy on a large test set of biological
structures.

Our work can be continued in future in several directions. First, heuristic
algorithms commonly use a procedure to calculate the free energy for a given
sequence and structure. Incorporating our linear time free energy calculation
algorithm into heuristic algorithms may cause improvements in their efficiency.
Second, it would be interesting to investigate the structures which are in Akutsu’s
class but not in D&P class. Third, there is no linear time characterization of
Uemura’s [14] algorithm and having one makes it possible to figure out about the
differences between Uemura’s class of structures and other classes of structures
(A, D&P, and R&E). Fourth, the parsing algorithm can be used to analyse
known biological RNA structures, in order to find out what structures occur more
frequently in biology. Finally, it would be useful to refine the thermodynamic
model presented in this paper, to obtain mfe predictions of better quality.

Acknowledgement: We would like to thank Satoshi Kobyashi for his useful
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