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1 INTRODUCTION

Some of the most exciting developments in complexity theory in recent years

concern the complexity of interactive proof systems, defined by Goldwasser,

Micali and Rackoff (1985) and independently by Babai (1985). In this paper,

we survey results on the complexity of space bounded interactive proof systems

and their applications.

An early motivation for the study of interactive proof systems was to extend

the notion of NP as the class of problems with efficient “proofs of membership”.

Informally, a prover can convince a verifier in polynomial time that a string is

in an NP language, by presenting a witness of that fact to the verifier. Suppose

that the power of the verifier is extended so that it can flip coins and can

interact with the prover during the course of a proof. In this way, a verifier can

gather statistical evidence that an input is in a language.

As we will see, the interactive proof system model precisely captures this in-

teraction between a prover P and a verifier V . In the model, the computation

of V is probabilistic, but is typically restricted in time or space. A language

is accepted by the interactive proof system if, for all inputs in the language, V

accepts with high probability, based on the communication with the “honest”

prover P . However, on inputs not in the language, V rejects with high prob-

ability, even when communicating with a “dishonest” prover. In the general

model, V can keep its coin flips secret from the prover. An important restric-

tion is obtained by requiring that the verifier communicate all its coin flips to

the prover as it flips them. Such interactive proof systems were first studied by



Babai (1985), who labeled them Arthur-Merlin games. They are also known

as interactive proof systems with public coins, as opposed to the more general

interactive proof systems with private coins.

There have been major breakthroughs in understanding the complexity of in-

teractive proof systems. These breakthroughs have also had profound appli-

cations in diverse areas of computer science, including cryptography (zero-

knowledge interactive proofs), program checking, formal language theory, group

theory, stochastic processes, and in proving non-approximability results for NP-

complete problems.

Our goal in this paper is to provide a survey of results for space bounded inter-

active proof systems - where space, rather than time, is the primary restricted

resource of the verifier. We present bounds on the resulting complexity classes,

and describe applications of these results to computational problems in areas

such as formal language theory, stochastic processes and non-approximability of

NP-complete problems. Unlike time bounded interactive proof systems, many

fundamental problems on space bounded interactive proof systems still remain

unsolved. Our goal is to describe these problems in a unified context, and to

give the reader some insight into techniques that may be applicable to solving

them.

Our decision to focus on space bounded interactive proof systems reflects our

own biases and experience, and keeps our task within reasonable bounds. As

a result, we do not describe in depth the remarkable results on time bounded

interactive proof systems, which led to a complete characterization of both sin-

gle and multi-prover, polynomial time bounded interactive proof systems (see

for example Lund, Fortnow, Karloff and Nisan (1990), Shamir (1990) Babai,

Fortnow and Lund (1990)). For completeness, we do compare these results

with what is known about space bounded interactive proof systems. We also

omit discussion of results on other related models, such as the games against

nature of Papadimitriou (1985) (which can be thought of as interactive proof

systems with unbounded error) and the private alternating Turing machines of

Peterson and Reif (1979).

The interactive proof system model is defined in detail in Section 2. Results on

space bounded interactive proof systems and selected proofs are described in

the remaining sections. For convenience, all results are summarized in Figures

1 and 2 at the end of the paper. In the rest of this section, we highlight some

of these results and their applications.



We begin by describing informally a very simple interactive proof system (P, V ),

due to Dwork and Stockmeyer (1992), in order to make more concrete the

model of an interactive proof system when the verifier uses limited space. This

interactive proof system accepts the language Pal = {x ∈ {a, b}∗ | x = xR},

where xR denotes the string x written backwards.

On input x, the prover P repeatedly sends x to the verifier V . V performs

the following computation each time it receives a string, say w, from a prover.

First, V flips a coin. If the outcome is heads, V checks that the string w

matches the input x, by scanning the input from left to right while receiving

w. If the outcome of the coin flip is tails, V checks that w matches xR, by

scanning the input from right to left. If the check succeeds on all iterations,

the verifier accepts the input.

Note that the verifier uses O(1) space in this interactive proof system. We

call such a verifier a 2pfa, since it is essentially a probabilistic finite state

automaton with a 2-way input head. If the input x ∈ Pal, then (P, V ) accepts

with probability 1, whereas if x /∈ Pal, then on each iteration the verifier finds

a mismatch with probability at least 1/2, no matter what string the prover

sends. This is true because the verifier keeps its coin flips hidden from the

prover. Thus, (P, V ) accepts all strings in Pal with probability 1, whereas the

probability that (P ∗, V ) accepts a string not in Pal is at most 1/2k, if there are

k iterations of the above protocol.

This example does not illustrate the full power of O(1) space bounded interac-

tive proof systems. We will see that in fact, any language in DTIME(2O(n)) has

an interactive proof which is O(1) space bounded. Furthermore, any language

in DTIME(2poly(n)) has an interactive proof system which is log space bounded.

We denote the classes of languages accepted by interactive proof systems which

are O(1) and log space bounded by IP(2pfa) and IP(log-space), respectively.

The best known upper and lower bounds on these classes are as follows.

DTIME(2poly(n)) ⊆ IP(log-space) ⊆ ATIME(22poly(n)
) and

DTIME(2O(n)) ⊆ IP(2pfa) ⊆ ATIME(22O(n)
),

where DTIME and ATIME refer to deterministic and alternating time bounded

classes, respectively, and poly(n) denotes nO(1). Note that there is a large gap

between the upper and lower bounds here.

The ability of the verifier to keep its coin flips hidden from the prover is crucial

in both the Pal example and in the above bounds. If the interactive proof



system is an Arthur-Merlin game, its power is considerably weaker. We denote

by AM(2pfa) and AM(log-space) the classes of languages accepted by public

coin interactive proof systems with O(1) and log space, respectively. Also, we

denote by 2PFA the class of languages accepted by 2-way probabilistic finite

state automata with bounded error. Then,

2PFA ⊂ AM(2pfa) ⊂ AM(log-space) = P.

An example of a language separating 2PFA from AM(2pfa) is Center, the set

of strings over the alphabet {a, b} which have a b in the center. An example of

a language separating AM(2pfa) from P is Pal.

The expected time needed by a O(1) space bounded interactive proof system

to recognize a language in DTIME(2O(n)) may be double exponential in the

size of the input. It is therefore useful to consider complexity classes where

the time, as well as the space, used by the interactive proof system is limited.

In the statement of the following results, the restriction poly-time is added to

denote complexity classes where, in addition to a space bound, the number of

steps taken by the verifier is bounded by a polynomial.

IP(log-space, poly-time) = IP(poly-time) = PSPACE and

NC ⊆ AM(log-space,poly-time) ⊆ P ⊆ AM(o(log2 n)-space, poly-time).

NC denotes the class ASPACE,TIME(log n, logO(1) n). In the case of O(1) space

bounded interactive proof systems, the class IP(2pfa,poly-time) contains an

NP-complete language, and properly contains AM(2pfa). Again, Pal separates

the two classes.

Yet another possible restriction on the verifier is that it uses few random bits.

We denote the complexity classes of interactive proof systems in which the ver-

ifier uses log random bits, by adding the notation log-random-bits. Note that

the complexity classes IP(log-space,log-random-bits) and AM(log-space,log-

random-bits) are contained in IP(log-space,poly-time) and AM(log-space,poly-

time), respectively. This is because if only O(logn) random bits are used, the

verifier can flip them all at the start and behave deterministicially thereafter;

and a O(log n) space bounded computation that halts must run in polynomial

time. The following additional results indicate that the containments may be

strict.

IP(log-space,log-random-bits) = NP and

NLOG ⊆ AM(log-space,log-random-bits) ⊆ LOGCFL.



Here, NLOG is nondeterministic log space and LOGCFL is the class of lan-

guages that are log-space reducible to context free language recognition (see

Sudborough (1978)).

So far, we have described results on space bounded interactive proof systems

with additional restrictions on the time or amount of randomness used by the

verifier. We next consider more fundamental variations of the model. The

first is the multiple-prover model, where the verifier can interact with two or

more provers. The provers cannot communicate with each other during the

proof. Intuitively, it is potentially more powerful than the single prover model

because the verifier can ask overlapping sets of questions of each prover, and

use the consistency of the provers on the common questions to verify that both

are honest. We denote the class of languages accepted by interactive proof

systems with two provers and a verifier which is a 1-way probabilistic finite

state automaton, or pfa, by 2IP(pfa). This model is extremely powerful.

2IP(pfa) = Recursive languages and

2IP(pfa, poly-time) = NTIME(2poly(n)).

The other variation of the model that we consider is zero knowledge interactive

proof systems. Roughly, an interactive proof system is zero knowledge if on all

accepted inputs, the verifier can learn nothing from the proof other than the

fact that the input is in the language. For a reasonable formalization of this

notion for space bounded interactive proof systems, the following results are

known. We denote by ZKIP(2pfa) and ZKIP(log-space,poly-time) the classes

of languages which have zero knowledge interactive proof systems when the

verifier is a 2pfa or is simultaneously log space and polynomial time bounded,

respectively.

ZKIP(2pfa) ⊂ IP(2pfa).

In fact, Pal is an example of a language in IP(2pfa) but not in ZKIP(2pfa).

IP(log-space,poly-time) = ZKIP(log-space,poly-time).

To conclude this section, we give some examples of applications of results

on space bounded interactive proof systems to other computational problems.

Most of these applications are discussed in more detail in future sections.

We first cite two examples of undecidability results that follow from results

on O(1) space bounded interactive proof systems. Condon and Lipton (1989)



applied a result on “weak” interactive proof systems, which are O(1) space

bounded, to show that the emptiness problem for 1-way probabilistic finite state

automata with unbounded error probability is undecidable, a problem that had

been open since the late 60’s (see Theorem 3). Feige and Shamir (1989) applied

results on space bounded multiple prover interactive proof systems to prove that

a game-theoretic problem proposed by Reif (1984) is undecidable. Roughly

the problem is to decide if, in a game from a certain class of “reasonable” 2-

player games of incomplete information, a given player has a strategy which is

expected to win.

The first application of interactive proof systems to non-approximability results

for NP-complete problems arose from the study of space bounded interactive

proof systems. Condon (1991) showed that a variation of the word problem

for matrices, called the “max word problem for matrices” is NP-complete and

furthermore, that the corresponding optimization problem cannot be approx-

imated within any constant factor, unless P = NP. The result also has appli-

cations to the emptiness problem for 1-way probabilistic finite state automata

with unbounded error.

A nice application to problems in automata theory is due to Dwork and Stock-

meyer (1989). They showed that 2pfa’s that are restricted to run in expected

polynomial time and have bounded error accept exactly the regular languages.

The techniques used to prove this were derived from their work on O(1) space

bounded verifiers.

A final application is in the area of bounding the rate of convergence of stochas-

tic processes. In studying space bounded interactive proof systems, Condon

and Lipton (1989) obtained tight bounds on the rate of convergence of certain

classes of discrete time-varying Markov chains to their absorbing states. A

time-varying Markov chain is a sequence of random variables over a finite state

space, with the following property. For all positive integers i, a transition ma-

trix Pi determines the value of the (i+1)st random variable, given the value of

the ith random variable. Let M be the family of n-state time-varying Markov

chains such that the matrices Pk are all from some finite set of stochastic ma-

trices, say {A, B}. We assume that all the entries of A and B are rational, of

the form p/q where p and q are integers, p ≤ q ≤ 2n. A special case of the

results of Condon and Lipton on time-varying Markov chains can be stated

simply as follows. Suppose that for all chains M in M, n is a halting state

which is eventually reached from the initial state with probability 1. Then the

expected time to reach the halting state n is 22Θ(n)
. A well known result for



stationary Markov chains under similar conditions is that the expected time to

reach a halting state n is 2Θ(n).

The rest of the paper is organized as follows. We first define precisely the

model of an interactive proof system and related complexity classes. In Sections

3 and 4, we present results on log space bounded interactive proof systems

with private and public coins, respectively. We consider O(1) space bounded

interactive proof systems in Section 5. We give an overview of some of the

proofs of these results. We note that the results of Sections 3 and 4 can be

extended to other space bounds s(n) = Ω(log n) and the results of Section

5 can be extended to sublogarithmic space bounds. Finally, two variations

on the model – multiple prover interactive proof systems and zero knowledge

interactive proof systems are considered in Section 6, and known results are

stated without proof. Some open problems are discussed in the concluding

section.

2 DEFINITIONS

In this section, we describe the interactive proof system model. The definitions

we use here are probably closest to those of Dwork and Stockmeyer (1992),

although many alternative, equivalent definitions can be found in the literature

(Babai and Moran (1988), Condon (1989), Goldwasser, Micali, Rackoff (1985)).

An interactive proof system consists of a prover P and a verifier V . The verifier

is a probabilistic Turing machine with a 2-way, read-only input tape, a read-

write work tape and a source of random bits. The states of the verifier are

partitioned into reading and communication states. In addition, the Turing

machine has a special communication cell that allows the verifier and prover to

communicate.

A transition function describes the one-step transitions of the verifier. When-

ever the verifier is in a reading state, the transition function of the verifier

determines the next configuration of the verifier, based on the symbol under

the tape heads, the state and possibly the outcome of an unbiased coin toss.

Whenever the verifier is in a communication state, the next configuration is

determined as follows. Associated with each communication state is a symbol;

without loss of generality we assume that the set of such symbols is {0, 1}.

When in communication state c, the verifier writes the symbol associated with

c in the communication cell and in response, the prover writes a symbol in the

cell. Based on the state and the symbol written by the prover, the verifier’s

transition function defines the next state of the verifier.



The prover P is specified by a prover transition function. This function deter-

mines what communication symbol is written by the prover in response to a

symbol of the verifier, based on the input and the sequence of all past commu-

nication symbols written by the verifier. Without loss of generality we assume

that all symbols written by the prover in the communication cell are from

the set {a, b} and that the input alphabet is Σ. Thus the prover’s transition

function is a mapping from Σ∗ × {0, 1}∗ to {a, b}.

The probability that (P, V ) accepts (rejects) x is the limit as k → ∞ of the

probability, (taken over all coin tosses of the verifier), that (P, V ) reaches the

accepting (rejecting) state on x in k steps. The probability that (P, V ) halts is

defined to be the probability that (P, V ) accepts or rejects. The prover-verifier

pair (P, V ) is an interactive proof system for L with error probability ε < 1/2

if

1. for all x ∈ L, the probability that (P, V ) accepts x is > 1 − ε,

2. for all x 6∈ L, and all provers P ∗, the probability that (P ∗, V )

rejects x is > 1 − ε.

In the paper, we assume that ε = 1/4, unless otherwise specified. In most of

the results of this paper (except for those in which the number of random bits

is limited), the constant ε can be replaced by any function of the form 1/2O(n).

A different, weaker, definition of language acceptance for space bounded inter-

active proof systems obtained by replacing condition 2 above by the following.

2′. for all x 6∈ L and all provers P ∗, the probability that (P ∗, V )

accepts x is ≤ ε.

For most complexity classes, the definitions are equivalent. A notable exception

is the class of languages accepted by interactive proof systems which are O(1)

space bounded. In this case, we use the notation weak-IP(2pfa) to refer to the

class of languages accepted by interactive proof systems with respect to the

weaker definition, that is, with condition 2′ instead of condition 2. Condon and

Lipton (1989) showed that the class weak-IP(2pfa) contains all the recursively

enumerable languages. We discuss this class further in Section 4.

In many of the interactive proof systems that we describe, the roles of the

prover and verifier are typically to send strings to each other, and informally



we say that “the verifier sends a string w to the prover”, or “the verifier receives

a string w from the prover”. This can be made precise in our model of a single

communication cell, as follows. Suppose the verifier wishes to send a string

w = w1w2 . . . wk to the prover, where for all i, wi ∈ {0, 1}. To do this, the

verifier can write w11w2 . . . 1wk0 in the communication cell. The prover can

recognize the end of the string by the appearance of a 0 at an even numbered

position. In a similar fashion, the prover can send a string over {a, b}∗ to the

verifier.

Just as for Turing machines, a configuration of the verifier of an interactive proof

system for a fixed input is a tuple containing an encoding of the work tapes,

the positions of the tape heads on the input and work tapes of the verifier,

and the state and the contents of the communication cell. A configuration that

contains a communication state is called a communication configuration, and

one which contains a reading state is called a reading configuration.

Two well-studied special cases of the general definition of interactive proof

systems represent two extremes; one in which the verifier sends the prover

complete information about its current configuration and the other in which the

verifier sends the prover no information. In an Arthur-Merlin game, whenever

the verifier flips a coin, the outcome is written in the communication cell. From

this, a prover has complete information about the computation of the verifier.

In this case, we can make certain simplifying assumptions about the prover

P , namely that the response of P depends only on the input x and current

configuration of V , and not on the complete sequence of symbols written by

V in the communication cell (Condon, 1989 shows why such an assumption

can be made without loss of generality). We say in this case that the prover

P uses a Markov strategy. At the other extreme is a oneway interactive proof

system, where the verifier sends no information to the prover. In this model,

the verifier simply writes the same symbol in the communication cell whenever

it needs another symbol from the prover. In this case, the prover can be simply

represented as an infinite string over the alphabet {a, b}, where the ith symbol

of the string is the symbol written by the prover in the communication cell the

ith time that the verifier enters a communication state.

The notion of a single-prover interactive proof system was generalized to two

and more provers by Ben-Or, Goldwasser, Kilian and Wigderson (1988). In a

2-prover interactive proof system, two provers interact with the verifier, but

the provers cannot communicate with each other during the proof. We discuss

this model in Section 6.



We next describe the resource bounds considered in the paper. An interactive

proof system (P, V ) is s(n) space bounded if on any input of length n, for

all P ∗, the number of work tape cells read by V is at most s(n), during the

computation of (P ∗, V ). If the number of work tape cells used by the verifier is

O(1), the verifier is a probabilistic 2-way finite state automaton, or 2pfa. We

say that (P, V ) is t(n) time bounded if on any input of length n, for all P ∗,

the expected number of steps taken by the verifier during the computation of

(P ∗, V ) is at most t(n). We consider expected time, rather than worst case

time, because we will consider interactive proof systems which are O(1) space

bounded, and expected time is a more natural definition in this case. A third

bound we consider is a limit on the number of random bits used by the verifier.

We say that (P, V ) uses r(n) random bits if on any input of length n, for all

provers P ∗, the number of random bits used by V during the computation of

(P ∗, V ) is at most r(n).

2.1 Notation

As we stated earlier, we use IP and AM to refer to interactive proof systems with

private or public coins, respectively. We use oneway-IP to denote oneway inter-

active proof systems. Thus, IP(<restrictions>) is the class of languages which

have interactive proof systems with restrictions denoted by <restrictions>. The

most common restrictions we consider are: (i) log-space, (ii) 2pfa, (iii) poly-

time and (iv) log-random-bits, which mean that the interactive proof system

(i) is O(logn) space bounded (ii) is O(1) space bounded, (iii) is polynomial

time bounded and (iv) uses O(log n) random bits, respectively. Thus, IP(log-

space,poly-time) is the class of languages accepted by interactive proof systems

with private coins, which are simultaneously O(log n) space bounded and poly-

nomial time bounded. Also, oneway-IP(log-space, log-random-bits) is the class

of languages accepted by oneway interactive proof systems which are simulta-

neously O(log n) space bounded, and use O(logn) random bits. In Section 6,

we also consider interactive proof systems which are O(1) space bounded, and

in addition, the verifier can read its input only in one direction. In this case, we

say that the verifier is a pfa. Then, AM(pfa) is the class of languages accepted

by Arthur-Merlin games, or public coin interactive proof systems, where the

verifier is a pfa.

2.2 Other Complexity Classes and Related Work

We refer to the alternating Turing machines of Chandra, Kozen and Stock-

meyer (1981) widely in the paper, and so we give a brief description here. An

alternating Turing machine is a generalization of a nondeterministic Turing ma-

chine, with both existential and universal states. The roles of these states with



respect to language acceptance is specified using a computation tree as follows.

The nodes of a computation tree of an alternating Turing machine on an input

w are labeled by configurations. The root is labeled by the initial configuration

of the machine on x, and leaves are labeled by halting configurations. Each

internal node labeled by a universal configuration has one child labeled by each

possible configuration that is reachable in one step. Each internal node labeled

by an existential configuration has exactly one child, labeled by some configu-

ration reachable in one step. The tree is accepting if the tree is finite and all

leaves are labeled with accepting configurations. The input w is accepted by

the machine if there is an accepting computation tree corresponding to w.

An alternating Turing machine is t(n) time bounded, or s(n) space bounded,

if on all accepted inputs of length n, there is an accepting computation tree of

height ≤ t(n), or whose nodes are labeled by configurations of length ≤ s(n)

respectively. We assume that the input can be accessed by writing an address

on a special index tape, so that sublinear time bounds give rise to meaningful

complexity classes.

We let ATIME(t(n)) and ASPACE(s(n)) denote the class of problems which

are accepted by O(t(n)) time bounded and O(s(n)) space bounded alternat-

ing Turing machines, respectively. Also, the class of languages accepted by

alternating Turing machines which are simultaneously O(s(n)) space bounded

and O(t(n)) time bounded is denoted by ASPACE,TIME(s(n), t(n)). Chandra,

Kozen and Stockmeyer (1981) showed that ATIME(poly(n)) = PSPACE and

ASPACE(log n) = P. We will also consider the complexity class NC (Cook,

1979) of problems which have logO(1) n time algorithms on a PRAM (parallel

random access machine) with a polynomial number of processors. Ruzzo (1981)

showed that NC = ASPACE,TIME(log n, logO(1) n).

For completeness, we next discuss results on polynomial time bounded, single

prover interactive proof systems. Although a detailed treatment of these results

are beyond the scope of this paper, we will compare them with the results on

space bounded interactive proof systems presented in this paper (see Figure

1). We denote by IP(poly-time) and AM(poly-time) the classes of languages

accepted by polynomial time bounded interactive proof systems with private

and public coins, respectively.

It is not too hard to see from the definitions that NP ⊆ AM(poly-time) ⊆

IP(poly-time) ⊆ PSPACE (see Condon, 1989). Goldwasser and Sipser (1989)

showed that IP(poly-time) = AM(poly-time). Lund, Fortnow, Karloff and



Nisan (1990) found an interactive proof system for the permanent function,

which is hard for the class #P of Valiant (1979) and thus hard for the poly-

nomial time hierarchy, PH, by a result of Toda (1991). Thus they showed that

any language in PH is in IP(poly-time). Their proof uses a result of Lipton

(1991) that the permanent of square matrices over a finite field is random self-

reducible. Lipton’s proof is based on the construction of Beaver and Feigen-

baum (1990) of “instance hiding schemes” for arbitrary Boolean functions.

Building on this work, Shamir (1990) showed that all languages in PSPACE

have interactive proof systems. Similar techniques have been used to obtain

results on the power of multiple prover interactive proof systems, which we

discuss in Section 6, most notably the result of Babai, Fortnow and Lund

(1991) that any language in nondeterministic exponential time is accepted by

a polynomial time bounded, two-prover, interactive proof system.

There has been much other work on polynomial time bounded interactive proof

systems with various restrictions on the prover and verifier, other than space.

We mention two examples here, which are closely related to results in this pa-

per. Condon and Ladner (1992) introduce a variation of the model of interactive

proof system, in which the power of the prover is restricted and study resulting

complexity classes, including a model in which the verifier is log space bounded.

Arora and Safra (1992) and Arora, Lund, Motwani, Sudan and Szegedy (1992)

considered a model in which the verifier can only use a limited number of sym-

bols received from the prover in its computation. Their techniques show that

any language in NP can be accepted by a polynomial time bounded interac-

tive proof system, which uses O(logn) random bits and in which the verifier

uses only O(1) (randomly chosen) symbols received from the prover in its com-

putation. This result was used to show that, unless P=NP, the problem of

approximating the size of the largest clique in a graph is NP-complete. Earlier

results on the hardness of approximating the clique number were proved by

Feige, Goldwasser, Lovasz, Safra and Szegedy (1991). The proofs of Arora et

al. also build on previous work of Babai, Fortnow, Levin and Szegedy (1991)

on checking computations and of Babai, Fortnow and Lund (1991) on multiple

prover interactive proof systems.

3 LOG SPACE; PRIVATE COINS

In this section, we consider the power of interactive proof systems with no time

bounds, in which the verifier is O(log n) space bounded. The main results of

this section show that

DTIME(2poly(n)) ⊆ IP(log-space) ⊆ ATIME(22poly(n)
).



The lower bound on IP(log-space) was proved by Condon (1991b) and indepen-

dently by Dwork and Stockmeyer (1989). The proof is based on the following

idea: a computation of a polynomial space bounded alternating machine is

repeatedly sent by the prover to the verifier and the verifier probabilistically

checks for errors in the computation. If none are found, and all computations

end in an accepting state, the verifier accepts the input. It is interesting to

note in the proof that the interactive proof system requires double exponen-

tial expected time on accepted inputs, so it appears that even with O(log n)

space bounded verifiers, interactive proof systems can run “usefully” for double

exponential time.

The upper bound was proved by Condon and Lipton (1989) and requires a

proof that interactive proof systems must halt with high probability in double

exponential time. The proof of this exploits a close relationship between space

bounded interactive proof systems and families of time varying Markov chains,

and in fact has applications in the theory of time-varying Markov chains.

The lower and upper bounds on IP(log-space) are presented in Theorems 1

and 2. Following this, we briefly discuss the complexity of log space bounded

interactive proof systems, when there are additional resource bounds on the

verifier, such as time and randomness. Applications of these results to the

non-approximability of NP-complete problems are discussed at the end of this

section.

Theorem 1 DTIME(2poly(n)) ⊆ IP(log-space).

Proof: To build up to the proof, we first describe why NP is contained

in IP(log-space). Suppose that L is accepted by a nondeterministic Turing

machine M in polynomial time. On input x of length n, the prover sends a

computation, or sequence of configurations of M on x, to the verifier. The

verifier checks that the computation ends in an accepting computation. The

verifier also checks that the computation is valid, namely that it starts in the

initial configuration and that the (i + 1)st configuration follows from the ith

configuration according to the rules of M . However, this check cannot be done

deterministically in O(logn) space. Instead, the verifier chooses one symbol,

say the jth symbol, from each configuration, uniformly at random. (Without

loss of generality, we can assume that the length of a configuration is a power

of 2, to make this possible.) Then V checks that symbol j is correct. Using

standard encodings of configurations, this can be done using O(log n) space,

by storing only the index j and a constant number of symbols from the ith



configuration. If the prover sends an invalid computation, the verifier detects

that it is invalid with probability at least 1/poly(n). To reduce the error, the

verifier repeats the above protocol polynomially many times and accepts if and

only if no computation is found to be invalid. Note that the above argument

actually shows that NP ⊆ oneway-IP(log-space,poly-time), since the verifier

never sends information to the prover.

This idea can be extended to show that DTIME(22poly(n)
) is contained in IP(log-

space). The following argument is essentially due to Dwork and Stockmeyer

(1992). Recall that ASPACE(poly(n)) = DTIME(2poly(n)); thus it is sufficient

to show that ASPACE(poly(n)) is contained in IP(log-space). In this case,

the verifier must determine that on input x, there is an accepting subtree of

some alternating Turing machine M on input x. We assume that every leaf

of the tree has depth exponential in the input length, and thus the tree has

22poly(n)
leaves. The prover sends the verifier computations, corresponding to

paths in the computation tree, and the verifier tests just as above that each

computation is valid and that the final configuration is accepting. The verifier

sends the prover random coins, to direct the choice of the path taken by the

prover at universal nodes of the tree. The verifier accepts if and only if all com-

putations are valid and end in an accepting configuration. 22p(n)
computations

must be sent by the prover to the verifier, for some polynomial p(n), in order

to ensure that with high probability, all paths of the computation subtree are

checked.

However, V cannot count to 22p(n)
in log space. Thus, we extend the description

of V , to ensures that the expected number of computations V receives from P

is 22p(n)
, for some polynomial p(n). To do this, V performs a “halt test” each

time it receives a computation from P . V flips a polynomial number of coins

for each configuration received from P , and halts in an accepting state at the

end of the computation if all coin flips are heads. Since there are exponentially

many configurations in a computation, this ensures that the probability that

V halts at the end of a given configuration is 1/22poly(n)
.

This completes our informal description of (P, V ). To prove that (P, V ) accepts

L, it must be shown that given an input x 6∈ L, (P ∗, V ), rejects x with high

probability, where P ∗ is any prover. To see why this is true, note that if the

prover P ∗ sends V an infinite computation, there must be infinitely many i

such that the (i+1)st configuration does not follow from the ith configuration.

In this case, V will reject with probability 1. Also, if P ∗ sends V an invalid

computation, V is more likely to find an error than to halt as a result of the



halt test. 2

Theorem 2 (i) IP(log-space) ⊆ ATIME(22poly(n)
) and

(ii) oneway-IP(log-space) ⊆ NTIME(22poly(n)
).

Proof: We describe only the proof that oneway-IP(log-space) is contained

in NTIME(22poly(n)
). The proof that IP(log-space) ⊆ ATIME(22poly(n)

) is a

generalization using similar techniques. Suppose that L is a language in the

class oneway-IP(log-space), where L is accepted by (P, V ). To further simplify

the presentation here, we assume that on inputs not in L, (P ∗, V ) halts with

probability 1 for all provers P ∗. (We do not know if this assumption can be

made without loss of generality, but the proof is similar in the case that (P ∗, V )

halts with probability > 1/2.)

The key to the proof is to show that if an input x of length n is not in L,

then for all P ∗, (P ∗, V ) reaches a rejecting state with high probability in time

22poly(n)
. To prove this, we need the following notation. Let m be the number of

communication configurations of V on x, that is, the number of configurations

in which the verifier is in a communication state. Number them 1, . . . , m, and

without loss of generality assume that 1 is the initial configuration and that m

is a unique rejecting configuration. For communication configurations i and j,

let p(i, j, a) be the probability that from configuration i, if the prover’s response

is a, the next communication configuration reached (eventually) is j. Define

p(i, j, b) similarly, replacing a by b. Note that these probabilities are completely

determined by x, i, j, a, b and the transition function of V , and hence can be

computed in polynomial time. In fact, these probabilities are rational numbers

of the form p/q where p ≤ q ≤ 2m+1. The proof of this is very similar to

a proof of Gill (1977) on the transition probabilities of log n space bounded

probabilistic Turing machines. Finally let A and B be the m × m matrices

whose ijth entries are p(i, j, a) and p(i, j, b), respectively.

Since the interactive proof system is oneway, each prover P ∗ corresponds to an

infinite string σ1σ2 . . . , σi . . . where each σi ∈ {a, b}. Suppose that at some time

t, the computation of (P ∗, V ) has reached communication configuration I. We

claim that with probability > 0, a halting (accepting or rejecting) configuration

is reached within the next 2m communication configurations. Suppose not. For

0 ≤ l ≤ 2m, let Sl be the set of communication configurations reachable from I

after receiving l further symbols from the prover. By the pigeon-hole principle,

since each Si ⊆ {1, . . . , m}, Sj = Sk for some 0 ≤ j < k ≤ 2m. Then, if



P ∗∗ is the prover corresponding to the sequence σ1 . . . σt+j(σt+j+1 . . . σt+k)
∗,

the computation of (P ∗∗, V ) does not halt with probability 1, contradicting our

assumption that on all provers, the computation halts with probability 1.

Thus, with probability > 0, a halting configuration is reached within 2poly(n)

steps, if it has not been reached already. In fact, since the probabilities p(i, j, a)

and p(i, j, b) are bounded below by 1/2poly(n), the probability of halting is at

least 1/22poly(n)
. It is straightforward to conclude from this that with probabil-

ity > 1/2, a halting configuration is reached in t(n) = 22poly(n)
steps. Since

x 6∈ L, then with probability > 1/4, the rejecting configuration has been

reached.

We can now describe a simple nondeterministic algorithm for L, that runs

in 22poly(n)
time. On an input of length n, nondeterministically guess a string

σ1 . . . σt(n). This string represents the first t(n) symbols of the strategy of a

prover of the interactive proof system. Next, compute the product M1 . . .Mt(n),

where Mi is A or B if σi is a or b, respectively. Let p be the (1, m)th entry of

this product. Recall that the mth configuration is the rejecting configuration.

Hence, p is the probability that (P ∗, V ) rejects after V has received t(n) symbols

from P ∗, where P ∗ is the prover corresponding to the string σ1 . . . σt(n). If

p > 1/4, reject, else accept. 2

The previous theorem should be contrasted with the following result of Lipton,

which shows that with respect to the weak definition, interactive proof systems

are extremely powerful.

Theorem 3 Any recursively enumerable language L is in weak-IP(2pfa).

The proof of this theorem generalizes a result of Frievalds (1981), who showed

that the emptiness problem for 2-way probabilistic finite state machines is

undecidable. As an application of this result, Lipton showed also that the

emptiness problem for 1-way probabilistic finite state machines is undecidable.

We now turn to complexity classes where the time as well as the space is limited.

If a log space bounded interactive proof system has the additional restriction

that the time is polynomially bounded, the following results are known.

Theorem 4 (i) PSPACE = IP(log-space,poly-time) and

(ii) NP = oneway-IP(log-space, poly-time).



Proof: The proof of (i) follows from the fact that PSPACE = IP(poly-time)

(1991) and that IP(poly-time) = IP(log-space,poly-time). The latter can be

proved using essentially the same techniques that were developed in Theorem

1; the proof can be found in Condon (1991b) and was independently proved by

Rompel.

We give a brief description of the proof of (ii). Note that we actually showed

in Theorem 1 that NP ⊆ oneway-IP(log-space, poly-time). To prove the other

direction of (ii), we reduce the problem of deciding if a string is in L, where

L is accepted by a oneway interactive proof system (P, V ), which is log space

bounded, to the following problem, which is easily seen to be in NP.

The max word problem for matrices is: given a tuple (S, v, w, k, c), where S

is a set of m × m matrices, v and w are m-vectors, k is an integer and c is

a constant, is there a way to select a sequence of k matrices M1, . . . , Mk (not

necessarily distinct) from S in such a way that the product vM1 . . .Mkw
T is

greater than c? All entries of the matrices and the vectors, as well as the bound

c, are rational numbers expressed in binary and k is an integer, expressed in

unary notation.

Given x, we reduce the problem of deciding if x ∈ L to the max word problem

for matrices as follows. In the reduction, k is polynomially bounded in |x| and

S consists of two matrices A and B are the matrices defined in Theorem 2.

Thus, the entries of A and B are the transition probabilities of the V between

communication configurations, with respect to the two possible symbols a and

b that V can receive from the prover. (Recall that these matrices can be

constructed in polynomial time). The constant c = 1/2, and the vectors v

and w are such that all entries are 0, except that entry 1 of v is 1, where

again 1 is the number of the initial configuration, and entry m − 1 of w is 1,

where m − 1 is the number of the unique accepting configuration. Then, the

value vM1 . . .Mkw
T is the probability that V accepts when the prover sends

the string σ1 . . . σk, where σi = a if Mi = A and σi = b if Mi = B. 2

As a consequence of this proof that the max word problem for matrices is NP-

complete, we can conclude that in fact, the problem cannot be approximated by

any constant factor, unless NP=P. To our knowledge, this is the first example

of the use of interactive proof systems to prove a non-approximability result for

an NP-complete problem. Also, this result on the complexity of the max word

problem has applications in the theory of probabilistic finite state automata,

rational series and k-regular sequences. We describe one of these applications



briefly. We consider probabilistic finite state automata (pfa’s) with rational

transition probabilities, as defined in Paz (1971). Suppose we define the k-

emptiness problem for pfa’s as follows. Given a pfa and a number k, expressed

in unary notation, does the pfa reject every string of length ≤ k? By a simple

reduction from the max word problem, we prove that the k-emptiness problem

for pfa’s is complete for co-NP. Moreover, unless NP=P, it is not possible to

approximate the maximum probability that a string of length n is accepted by

a pfa.

In the last result of this section, we consider the complexity classes resulting

when the verifier is restricted to log space and log random bits.

Theorem 5 NP = oneway-IP(log-space, log-random-bits) = IP(log-space, log-

random-bits).

The proof that NP ⊆ oneway-IP(log-space, log-random-bits) can be found in

Condon and Ladner (1988). The main technique of the proof is due to Lipton

(1991). Briefly, it is possible to efficiently reduce the problem of testing if a

Boolean formula is satisfiable to that of testing if two multi-sets are equal.

Lipton described a test for equality of two multisets using very few random

bits and limited space, by comparing a short fingerprint of each multiset. The

proof that IP(log-space,log-random-bits) ⊆ NP is fairly straightforward.

4 LOG SPACE; PUBLIC COINS

The results of this section show that if space is restricted, interactive proof

systems with public coins are significantly less powerful than those with private

coins.

The first main theorem of this section, Theorem 6, due to Condon (1989), shows

that in fact, AM(log-space) = P. One direction of the proof is based on the

fact that when coins are public, a space bounded interactive proof system can

be modeled as a Markov decision process, and the probability of reaching an

absorbing state of such a process can be computed using linear programming.

We then consider the class AM(log-space,poly-time). From Theorem 6, it im-

mediately follows that NLOG ⊆ AM(log-space,poly-time) ⊆ P. By cleverly

adapting the techniques of Lund et al. (1990) and Shamir (1990) to space

bounded interactive proof systems, Fortnow and Lund (1991) improved the

lower bound of NLOG to show that NC ⊆ AM(log-space,poly-time). Even

more, they showed that P ⊆ AM( log2 n

log log n
-space, poly-time). We present their



techniques in Theorem 7. Thus, “slightly more” than log space is sufficient

for a public coin, polynomial time bounded interactive proof system to rec-

ognize all languages in P. It is an intriguing open question whether in fact

AM(log-space,poly-time) = P.

Theorem 6 AM(log-space) = P.

Proof: We show that AM(log-space) ⊆ P. Let L ∈ AM(log-space), and sup-

pose that L is accepted by (P, V ). We can assume without loss of generality

that for all provers P ∗, (P ∗, V ) halts with probability 1 on all inputs. (Roughly,

this is because the verifier V can be modified to flip p(n) coins after each step

for some polynomial p and reject if all are heads. In this way, with exponen-

tially small probability at each original step, the computation halts, and so

eventually halts with probability 1. If the polynomial p is sufficiently large, the

probability of halting because of this coin-flipping test is so small that it does

not significantly affect the error probability).

Fix an input x, and number the configurations of V on x so that the initial

configuration is numbered 1. For each i, define p(i) to be the maximum prob-

ability of reaching an accepting configuration from configuration numbered i,

maximized over all provers which use a Markov strategy. (Recall from Section

2 that it is sufficient to consider Markov strategies in a public coins interactive

proof system). To determine whether x is accepted by (P, V ) for some P , it is

sufficient to determine whether p(1) > 1/2. If p(1) < 1/2, then on all Markov

provers P ∗, the probability that (P ∗, V ) accepts x is < 1/2, and so x is not in

L. If p(1) > 1/2, then x must be in L.

Thus, to prove that AM(log-space) is in P , it is sufficient to show that the values

p(i) for all i can be computed in polynomial time. The proof relies on the fact

that the probabilities p(i) satisfy the following equations. If i is an accepting

or rejecting configuration, then p(i) is 1 or 0, respectively. Otherwise, suppose

that j and k (j may equal k) are the configurations reachable from i in one

step of the verifier. Then if i is a reading configuration, p(i) = 1/2(p(j)+p(k))

and if i is a communication configuration, p(i) = max{p(j), p(k)}. Intuitively,

this is because, at a reading configuration, where a random move is made, the

probability of eventually accepting is the average of the probabilities of accept-

ing from the configurations reachable in one step, whereas at a communication

configuration, the probability of eventually accepting is the maximum of the

probabilities of accepting, taken over the two possible responses of the prover.



A precise justification can be found in Condon (1989), and is based on results

of Howard (1960) on Markov decision processes.

Derman (1972) showed that the values p(i) which satisfy the above equations

are the unique solution to the following linear programming problem. Let m

be the number of configurations of v on x. Minimize
∑m

l=1 p(l), subject to the

constraints

p(i) ≥ p(j), if i is a communication configuration

from which j and k are reachable in one step

p(i) ≥ 1/2(p(j) + p(k)), if i is a reading configuration

from which j and k are reachable in one step

p(i) = 0, if i is a rejecting configuration

p(i) = 1, if i is an accepting configuration

p(i) ≥ 0, 1 ≤ i ≤ m.

Since the linear programming problem is in P (Khachiyan (1979)), the values

p(i) can be computed in polynomial time, completing the proof.

The other direction, that P ⊆ AM(log-space), is proved by simulating an alter-

nating machine which is log space bounded by an Arthur-Merlin game which is

log space bounded. The Arthur-Merlin game has exponential expected running

time. 2

4.1 Log Space and Polynomial Time

From Theorem 6, it follows that AM(log-space,poly-time) ⊆ P. This was also

shown by Fortnow (1989), who also showed that NLOG ⊆ AM(log-space,poly-

time). However, it is open whether AM(log-space, poly-time) = P. In Theorem

8, we describe the techniques of Fortnow and Lund (1991), which shed light on

this question. They show how an alternating machine can be simulated by an

Arthur Merlin game, with only a modest increase in the time and space used.

ASPACE,TIME(s(n), t(n)) ⊆

∩ε>0 AM( s(n) log t(n)
log s(n)

-space, (s2(n)t(n) + n log n)sε(n) log2 t(n)-time).

The proof illustrates how the techniques of “arithmetizing” Boolean formulas

can be applied to gain insight to space bounded interactive proof systems. From

this and well known relationships between alternating machine classes and P

and NC, the following results are obtained.

Theorem 7 (i) NC ⊆ AM(log-space, poly-time), and



(ii) P ⊆ AM( log2 n

log log n
-space, poly-time).

We will describe the proof of a slightly different result, which is simpler to

present than the above result of Fortnow and Lund, but which illustrates all of

the important techniques.

Theorem 8

ASPACE,TIME(s(n), t(n)) ⊆

AM(s(n) log t(n)-space,(s2(n)t(n) + n log n) log2 t(n)-time).

Proof: Lund and Fortnow show that if L ∈ ASPACE, TIME(s(n), t(n)),

then L is accepted by an alternating Turing machine M that uses O(s(n))

space, O(t(n)) time and has the following additional properties. M uses one

tape, and alternates between existential and universal states at each step, with

two possible transitions at each step.

Let φi(I, x) be a Boolean predicate which is true if and only if on input x,

there is an accepting subtree of M on x which is rooted at I and has depth 2i.

Input x is accepted by M if and only if φN(I0, x) is true, where I0 is the initial

configuration and 2N is the running time of M on x. Because of the properties

of M , φi(I, x) has a nice inductive definition.

φi(I, x) =















g(I), if i = 0,

∃z1 ∈ {0, 1}∀z2 ∈ {0, 1}∃I ′ ∈ {0, 1}k−2 :

f(I, z1, z2, I
′) ∧ φi−1(I

′, x), otherwise.

Here, k − 2 is the length of a binary encoding of a configuration of M on x,

and f(I, z1, z2, I
′), is a predicate over {∧,∨, ¯} which is true if and only if M

on input x moves from existential configuration I to existential configuration

I ′, when the existential and universal choices in the next two moves are z1 and

z2, respectively. Similarly, g(I) is a predicate over {∧,∨, ¯ } which is true if

and only if I is an accepting configuration.

The next step is to define an arithmetic formula Ai(I, x) such that for all i,

φi(I, x) is true if and only if Ai(I, x) = 1 and φi(I, x) is false if and only if

Ai(I, x) = 0. Ai(I, x) has the form

Ai(I, x) =















G(I), if i = 0,
∐

z1∈{0,1}

∏

z2∈{0,1}

∑

I′∈{0,1}k−2

F (I, z1, z2, I
′) · Ai−1(I

′, x), otherwise.



Here,
∐

a∈{0,1} σ(a) = σ(0) + σ(1) − σ(0)σ(1).

The functions F and G are arithmetic formulas obtained from f and g with

the following properties. F (I, z1, z2, I
′) is either 0 or 1 and is 1 if and only if

f(I, z1, z2, I
′) is true. Similarly, G(I) is either 0 or 1 and is 1 if and only if g(I) is

true. F and G are obtained from the Boolean functions f and g by the following

inductive rules. If a is a variable, then the corresponding function A is a. If A

and B are the arithmetic functions obtained from Boolean expressions a and b,

then AB, 1 − (1 − A)(1 − B) and 1 − A are the arithmetic functions obtained

from a∧b, a∨b and ā, respectively. If f and g are suitably expressed as Boolean

functions (details omitted), then F has size O(s2(n)), depth O(log s(n)) and

constant degree, and G has size O(n log n), depth O(log n) and has constant

degree.

The verifier checks that AN (I0, x) = 1 inductively, by reducing the problem of

verifying that Ai(I, x) = β to the problem of verifying that Ai−1(I
′, x) = β ′.

When i = 0, Ai(I, x) is evaluated by computing G(I). All calculations are done

over the field Z/pZ, for some prime p.

To describe this reduction, we introduce the following notation. Suppose that

Ai(I, x) = Q
(1)
z1∈{0,1}Q

(2)
z2∈{0,1} . . . Q

(k)
zk∈{0,1}F (I, z1, . . . , zk)Ai−1(z3, . . . , zk, x).

Here, the vector (z3, . . . , zk) corresponds to I ′ and each Q(j) is from the set

{
∏

,
∐

,
∑

}. Given numbers r1, . . . , rk ∈ Z/pZ, for 1 ≤ j ≤ k let Pj(zj) be the

function
Q

(j+1)
zj+1∈{0,1} . . . Q

(k)
zk∈{0,1}F (I, r1, . . . , rj−1, zj, . . . , zk)

Ai−1(r3, . . . , rj−1, zj, . . . , zk, x).

Note that Pj(zj) is a univariate polynomial in zj which has constant degree.

Then the following protocol of the verifier V reduces the problem of verifying

that Ai(I, x) = β to the problem of verifying that Ai−1(I
′, x) = β ′.

1. Choose a sequence r1, . . . , rk of values in Z/pZ independently and uni-

formly at random. Let j = 1.

2. Receive from the prover a polynomial fj(zj) ∈ Z/pZ[zj]. (The prover P

is defined so that fj(zj) = Pj(zj) mod p.)

3. If j > 1, check that Q
(j)
zj∈{0,1}fj(zj) = fj−1(rj−1) mod p and if j = 1, that

Q
(1)
z1∈{0,1}f1(z1) = β mod p.



4. If the check fails, halt and reject. Otherwise if j < k, send rj to the

prover, set j = j + 1, and repeat the protocol from step 2. If j = k, let

β ′ = fk(rk)/F (I, z1, . . . , zk) mod p and let I ′ = r3, . . . , rk.

The protocol is such that if Ai(I, x) = β mod p then Ai−1(I
′, x) = β ′ mod p.

However, if Ai(I, x) 6= β mod p then the probability that Ai−1(I
′, x) 6= β ′ is

high, regardless of what the prover sends to V .

The key to the proof of this second property is that for all j ≥ 1, if the

polynomial fj(zj) sent by the prover to the verifier is not equal to Pj(zj), then

with high probability, fj(rj) 6= Pj(rj). To see this, note that if two polynomials

of constant degree are not equal, they agree at at most a constant number of

points. Hence, the probability that they agree at a point rj chosen randomly

and uniformly from Z/pZ is O(1/p). There are k = Θ(s(n)) iterations of the

above protocol for a given i, and the protocol is repeated Θ(t(n)) times, since

N = Θ(t(n)). Hence if p = Θ(s(n)t(n)), the error probability of the protocol

is small.

The space needed is dominated by the space to store k = O(s(n)) elements

r1, . . . , rk of Z/pZ, each of which has length O(log p) = O(log t(n)). Hence

the space is O(s(n) log t(n)). We next consider the time needed by (P, V ).

The time to execute the above protocol is dominated by the time to execute

step 4, where an arithmetic formula F of size O(s2(n)) must be evaluated.

This requires O(s2(n)) additions and multiplications over the field Z/pZ, and

each of these operations can be done in O(log2 p) steps. The protocol is ex-

ecuted N = O(t(n)) times; hence the total time required for the protocol is

O(t(n)s2(n) log2 p). Once the protocol has been executed N times, G is evalu-

ated, which takes time O(n log n log2 p). Since p = Θ(s(n)t(n)), it follows that

log p = O(log t(n)), the total time is O((t(n)s2(n) + n log n) log2 t(n)). 2

Finally, we consider public coin interactive proof systems with log space and log

random bits. The following relationships were proved by Condon and Ladner

(1988).

Theorem 9 NLOG ⊆ AM(log-space, log-random-bits) ⊆ LOGCFL.

The left containment is immediate.

The proof that AM(log-space, log-random-bits) ⊆ LOGCFL, uses the equiv-

alence of LOGCFL and the class of languages accepted by nondeterministic



pushdown automata which have O(log n) auxiliary storage and run in polyno-

mial time (1978), and describes how a computation tree, which represents all

of the computations of an interactive proof system (P, V ), can be traversed

using the pushdown store. This is possible with only O(log n) auxiliary space

since the number of branching points in the tree is O(log n), due to the limited

number of random bits used by the verifier. When traversing a path, only the

direction at the branching points taken so far, and the current configuration

need be stored. For more details, see Condon and Ladner (1992).

5 CONSTANT SPACE

Dwork and Stockmeyer (1992) have proved a number of strong results about

the power of interactive proof systems with constant space bounded verifiers. In

this restricted setting, they have obtained separation results that are not pos-

sible for polynomial time, or even log space bounded interactive proof systems.

For example, we will see in Section 5.1 that AM(2pfa,poly-time) is properly

contained in IP(2pfa, poly-time). The techniques used to obtain these results

laid the foundations for new results on the power of probabilistic finite state

automata. Dwork and Stockmeyer (1989) showed that 2-way probabilistic fi-

nite state automata with bounded error, that run in polynomial expected time,

accept exactly the regular languages.

We describe the results on constant space bounded interactive proof systems

in two sections, one for private coins and the other for public coins. In the

constant space bounded model, we assume that the input is presented on a

finite tape, with endmarkers # at both ends of the input.

5.1 Private Coins

In the introduction, we saw that the language Pal, of strings that read the

same backwards as forwards, is in the class IP(2pfa,poly-time). The following

theorem shows that languages much more complex than Pal have interactive

proof systems which are O(1) space bounded, if more than polynomial time is

allowed.

Theorem 10 DTIME(2O(n)) ⊆ IP(2pfa) ⊆ ATIME(22O(n)
).

The lower bound is due to Dwork and Stockmeyer (1992) and the upper bound

to Condon and Lipton (1989). The proof of the lower bound is similar to

that of Theorem 1. In this case, on input x, the prover sends the verifier the

computation of a linear space bounded alternating Turing machine, and the

verifier must check that the computation is valid. One of the main differences



between this proof and that of Theorem 1 is in the way that the verifier checks

that the jth symbol of the (i + 1)st configuration of the computation follows

correctly from the ith configuration. In Theorem 1, V stores j, but this is not

possible here since the verifier has only O(1) space. Instead, when receiving the

computation from the prover, the verifier uses the input as a “ruler”, in order to

locate the jth symbol of the (i +1)st configuration in the string obtained from

the prover, starting from the j symbol of the ith configuration. This is possible

since the length of a configuration is linear in the length of the input. Another

difference is that it is no longer possible to choose j uniformly at random. It

turns out that an alternative simple method, which favors symbols early in the

computation, suffices for the correctness of the protocol.

The next theorem, proved using similar techniques, shows that IP(2pfa,poly-

time) is also quite powerful.

Theorem 11 AM(O(n)-space,poly-time) ⊆ IP(2pfa,poly-time).

Thus, IP(2pfa,poly-time) contains an NP-complete language. Also, AM(2pfa)

⊆ AM(O(n)-space,poly-time), and hence in IP(2pfa,poly-time). The proof that

AM(2pfa) ⊆ AM(O(n)-space,poly-time) is similar to the proof of Theorem 6,

except instead of using linear programming to compute the values p(i), they

are sent by the prover to the verifier.

5.2 Public Coins

We now consider Arthur-Merlin games which are O(1) space bounded. In

Theorem 12, we describe the result of Dwork and Stockmeyer that this class

does not contain Pal. It follows that AM(2pfa) is properly contained in P and

also that AM(2pfa) is properly contained in IP(2pfa, poly-time). In addition,

we state other results of Dwork and Stockmeyer, which show that AM(2pfa)

contains languages that are neither in AM(2pfa, poly-time) nor in 2PFA.

Theorem 12 Pal 6∈ AM(2pfa).

Proof: Suppose to the contrary that (P, V ) is a public coin interactive proof

system which is O(1) space bounded and accepts Pal. To simplify the proof,

we assume that for all P ∗, (P ∗, V ) halts with probability 1 and that the com-

putation ends with the input head at the right end of the tape. Only slight

modifications to the following proof are necessary when these conditions are

not satisfied. There are three main steps to the proof: (i) we define a notion

of “closeness” of two strings; (ii) we argue that for sufficiently large m, there



are two distinct strings wi and wj of length m which are close and (iii) we

show that for some P ∗, (P ∗, V ) accepts wjw
R
i with probability greater than

1/2, achieving a contradiction.

To define closeness, we need the following notation, which describes the possible

conditions in which a sub-computation of (P, V ) can start or end on the string

w, when the input is wwR. Define a starting condition to be a pair (q, η),

where q is a state of M and η ∈ {Left,Right}; intuitively it means that the

computation of (P, V ) is started in state q at the end of w denoted by η.

Similarly, a pair (q, η) denotes a stopping condition, intuitively that the head

of V falls off the η end of w with V in state q. Let p(w, a, b) be the probability

that on the computation of (P, V ) on input wwR, the stopping condition is b,

given that the starting condition is a. Note that p(w, a, b) depends on P and

hence indirectly on the fact that w is followed by wR on the input tape.

We say two numbers x and y are β-close for β > 1 if (a) x = 0 if and only

if y = 0 and (b) if x > 0 and y > 0, then 1/β ≤ x/y ≤ β. Also, two strings

wi and wj are β-close if for all a, b, p(wi, a, b) and p(wj, a, b) are β-close. This

completes (i), the definition of closeness.

We next outline a proof of (ii), that given any constant β > 1, for sufficiently

large m, there is a pair of strings wi, wj, both of length m, which are β-close.

Let d be the number of pairs (a, b) where a is a starting condition and b is

a stopping condition. Note that there is a set S of strings of length m such

that |S| ≥ 2m−d, and for all pairs (a, b), either p(w, a, b) > 0 for all w ∈ S, or

p(w, a, b) = 0 for all w ∈ S. Moreover, if w is of length m and p(w, a, b) 6= 0,

then it can be shown that p(w, a, b) ≥ 1/cm for some constant c. Hence the

range in which p(w, a, b) lies is [1/cm, 1]. From this, a pigeon-hole argument

can be used to show that for sufficiently large m, two of the 2m−d strings of S

are β-close. Let these be wi and wj.

We finally describe the proof of (iii), that there is a prover P ∗ such that (P ∗, V )

accepts wjw
R
i with probability > 1/2. P ∗ is the prover which, when V ’s head

is in the string #wj, responds to V as if the input is wjw
R
j , and when V ’s

head is in the string wR
i #, responds to V as if the input is wiw

R
i . It remains

to show that the probability that (P ∗, V ) accepts wjw
R
i is at least 1/2. To do

this, we show that the probability that (P ∗, V ) accepts wjw
R
i is within some

small constant of the probability that (P, V ) accepts wiw
R
i . The computations

of (P ∗, V ) on wiw
R
i and on wjw

R
i are modeled as Markov chains Hi and Hj,

respectively, which have the same number of states. Both chains have special



initial, accept and reject states, and in addition, have two states (q, l), l = 1, 2

for each state q of V . State (q, 1) of Hi means that the verifier is in state q

with the head at the right end of wi, and state (q, 2) means that the verifier is

in state q with the head at the left end of wR
i . The initial state of Hi means

that the verifier is in its initial state with the head under the left endmarker

#, and the accept and reject states mean that the verifier has halted in an

accepting or rejecting state, respectively. The probability transitions between

these states model the computation of (P, V ) on wiw
R
i . Hj is defined similarly,

except that the state (q, 1) of Hj means that the verifier is in state q with the

head at the right end of wj. Because wi and wj are β-close, and because P and

P ∗ are the same on the right half of the strings wiw
R
i and wjw

R
i , these Markov

chains satisfy the property that the transition probabilities between any two

states are β-close.

A result of Leighton and Rivest (1986) shows that if two Markov chains satisfy

this property, then the probabilities of reaching the accept states of both chains

are β2s-close, where s is the number of states in the Markov chains. Thus, the

probability that wiw
R
j is accepted is at least β−2s times the probability that

wiw
R
i is accepted, which is at least β−2s3/4. For sufficiently large m, we can

choose β so that this is greater than 1/2, completing the proof of (iii). 2

The argument in the above theorem was generalized by Dwork and Stockmeyer

to prove the following theorem, which can be used to identify other languages

that are not in AM(2pfa).

Theorem 13 Let L ⊆ Σ∗. Suppose there is an infinite set I of positive integers

and, for each m ∈ I, sets Wm = {w1, w2, . . . , wN(m)},

Um = {u1, u2, . . . , uN(m)}, and Vm = {v1, v2, . . . , vN(m)} of words such that

1. |w| ≤ m for all w ∈ Wm,

2. for every integer k there is an mk such that N(m) ≥ mk for all m ∈ I

with m ≥ mk, and

3. for all 1 ≤ i, j ≤ N(m), ujwivj ∈ L if and only if i = j.

Then L 6∈ AM(2pfa).

Similar techniques can be used to separate the classes 2PFA and AM(2pfa,poly-

time) from AM(2pfa), leading to the following results.



Theorem 14 (i) 2PFA ⊂ AM(2pfa),

(ii) AM(2pfa,poly-time) ⊂ AM(2pfa) and

(iii) 2PFA 6⊂ AM(2pfa,poly-time).

The language Upal = {anbn | n ≥ 0} is an example of a language in 2PFA

but not in AM(2pfa,poly-time). Frievalds (1981) showed that Upal is in the

class 2PFA. The language Center = {wbx | w, x ∈ {a, b}∗ and |w| = |x|} is an

example of a language in the class AM(2pfa) but is not in either of the classes

AM(2pfa,poly-time) or 2PFA. The proof that Center is in AM(2pfa) is a simple

generalization of Frievalds’ proof that Upal is in the class 2PFA. (In this case,

the prover is needed to direct the verifier to the center of the string.)

The proofs that Center and Upal are not in AM(2pfa,poly-time) and that

Center is not in 2PFA are refinements of the techniques used to prove Theorems

12 and 13.

6 VARIATIONS ON THE MODEL

Applications in cryptography, distributed computation and other fields have

prompted studies of variations of the model of interactive proof systems which

we have considered so far. We describe two of these variations here, and state

without proof known results for the models. We consider multiple provers in

Section 6.1. Feige and Shamir (1989) and independently Condon and Lipton

(1989) showed that, even when the verifier is a probabilistic finite state au-

tomaton with a 1-way input head, there is a 2-prover interactive proof system

which can accept any recursive language.

Zero knowledge interactive proof systems are described in Section 6.2 and both

positive and negative results about the existence of zero knowledge interac-

tive proof systems for certain languages are presented. Unlike many results

on polynomial time bounded interactive proof systems, these results are not

based on any unproven assumptions. Results on log space bounded zero knowl-

edge interactive proof systems are due to Kilian (1988) and on constant space

bounded interactive proof systems are due to Dwork and Stockmeyer (1992).

6.1 Multiple Provers

The multiple prover model, in which the verifier interacts with k ≥ 2 provers,

P1, . . . , Pk, was first introduced by Ben-Or, Goldwasser, Kilian and Wigderson

(1988). It is natural to ask whether multiple provers increases the power of



the model. The answer appears to be “yes” when the interactive proof system

is polynomial time bounded, since Babai, Fortnow and Lund (1991) showed

that polynomial time bounded, 2-prover interactive proof systems accept all

languages in nondeterministic exponential time. We will see in this section

that, also in the case of log space bounded verifiers, the answer is a resounding

“yes”.

In the multiple prover model, the verifier has k communication cells, and the

communication states of the verifier are partitioned into k groups. Whenever

the verifier’s state is a communication state in the ith group, the next con-

figuration is determined by communicating with the ith prover via the ith

communication cell, as in the single-prover model. Each prover Pi is speci-

fied by a prover transition function from Σ∗ × {0, 1}∗ to {a, b}. Pi(x, b1 . . . bj)

is the response of prover Pi on input x, when the verifier has just sent bj to

the prover, and b1, . . . , bj−1 is the sequence of all past communication symbols

written by the verifier in the ith communication cell. Language acceptance is

defined in a similar manner to language acceptance for single prover interac-

tive proof systems, with (P1, . . . , Pk, V ) replacing (P, V ) and (P ∗
1 , . . . , P ∗

k , V )

replacing (P ∗, V ).

In what follows, we restrict our attention to 2-prover interactive proof systems.

The results below are also true for k-prover interactive proof systems, for any

constant k. We denote by 2IP(<restrictions>) the class of languages which

have 2-prover interactive proof systems with the the restrictions denoted by

<restrictions>.

The first result states that the class of languages accepted by multi-prover

interactive proof systems is exactly the recursive languages, even when the

verifier is a pfa, or a 1-way probabilistic finite state automaton.

Theorem 15 2IP(pfa) is exactly the set of recursive languages.

This result was proved by Feige and Shamir (1989) and independently by Con-

don and Lipton (1989). The proof of Feige and Shamir actually proves some-

thing stronger - that the result is true even if the verifier acts synchronously,

which means that the verifier communicates with each prover at regular inter-

vals. This can be formalized by requiring that the verifier communicates with

prover Pi at step t if and only if t = i mod k. The main technique introduced

in their proof is a method whereby the verifier can simulate a Turing machine

computation, using the provers to “store” the contents of the tape. Roughly,



this is done by giving each prover random information about the tape contents.

This information is meaningless to a single prover, but by combining the in-

formation of both provers, the verifier can reconstruct the tape cells whenever

necessary.

Feige and Shamir extended their technique to show that when the verifier is

a pfa, and is simultaneously polynomially time bounded, then 2IP(pfa,poly-

time) = 2IP(poly-time). Combining this with the result of Babai, Fortnow and

Lund (1991) that 2IP(poly-time) = NTIME(2poly(n)), the following theorem is

obtained.

Theorem 16 2IP(pfa,poly-time) = NTIME(2poly(n)).

A variation of the multi-prover model, called the noisy oracle model, was pro-

posed by Feige, Shamir and Tennenholtz (1988). The paper of Feige and Shamir

(1989) also contains results on the complexity of the noisy oracle model when

space is restricted.

6.2 Zero Knowledge

Informally, a zero knowledge interactive proof system for a language L is one

in which, on input x ∈ L, a verifier can learn nothing from the prover P ,

other than the fact that x ∈ L. The notion of a zero knowledge interactive

proof system was first introduced by Goldwasser, Micali and Rackoff (1985) for

polynomial time bounded interactive proof systems. The notion has been cen-

tral to much recent work in cryptography, and also has interesting applications

in distributed computing (see for example Feige, Fiat and Shamir (1987) and

Goldreich, Micali and Wigderson (1986).

However, many of the results on polynomial time zero-knowledge interactive

proof systems are based on unproven assumptions. Because of this, Dwork

and Stockmeyer (1992) and later Kilian (1988) studied space bounded zero

knowledge interactive proof systems, with the goal of proving, without using

any unproven assumptions, both positive and negative results on the existence

of zero knowledge interactive proof systems for certain languages.

Formalizing the intuitive notion of zero knowledge, especially that of “learning

nothing” from the prover, is no easy task. The example of the language Pal =

{x | x = xR}, introduced in Section 1, gives some insight to the difficulty.

We saw there an interactive proof system (P, V ) for Pal in which the prover

P simply sends the input repeatedly to the verifier. This seems to be a zero



knowledge interactive proof system, since the verifier is obtaining nothing from

the prover that it does not already “know”. However, Dwork and Stockmeyer

argue intuitively that it is not a zero knowledge interactive proof system, as

follows. Let A be the set of all strings that are double palindromes, that is,

a string x is in A if and only if x = wwR and w is also a palindrome. Let

B = Pal−A. Techniques similar to those of Theorem 12 show that no 2pfa can

separate A from B. However, there is a 2pfa V ∗ such that (P, V ∗) can separate

A from B. In order to check if the second half of the input is a palindrome, the

verifier can perform the following computation, as it receives the input from

the prover. Starting at the left end of the tape, V ∗ moves its head two steps

to the right for every symbol it receives from P , until the right end of the tape

is reached. At this point, if the input is wwR, P has finished sending w and is

ready to send wR to V ∗. Now, V ∗ can test if w = wR.

Dwork and Stockmeyer proposed a definition of zero knowledge, based on the

following notion of separating sets. We say (P, V ) separates sets A, B ⊆ Σ∗

with A∩B = 0/ if for all x ∈ A, the probability that (P, V ) accepts x is at least

3/4 and for all x ∈ B, the probability that (P, V ) accepts x is at most 3/4.

Similarly, we can define what it means for a 2pfa, M to separate two sets. Let V

be a class of verifier machines and let (0/,V) be the subset of machines in V that

do not communicate with the prover. Let (P, V ) be an interactive proof system

for the language L where V ∈ V. Then (P, V ) is a recognition zero knowledge

interactive proof system for L with V verifiers if, for any V ∗ ∈ V and any A, B ⊆

L with A ∩ B = 0 such that (P, V ∗) separates A and B, there is an MV ∗ ∈

(0/,V) such that MV ∗ separates A and B. We denote by ZKIP(<restrictions>)

the class of languages which have recognition zero knowledge interactive proof

systems with the restrictions denoted by <restrictions>. With this definition,

Dwork and Stockmeyer proved the following results.

Theorem 17 Pal and the graph isomorphism problem are not in ZKIP(2pfa).

We have already seen that interactive proof systems do exist for these lan-

guages. Dwork and Stockmeyer also prove a positive result for a restricted

class of verifiers. A sweeping-2pfa is a 2pfa which, on any input, only switches

the direction of head movement when at the left or right end of the input.

Theorem 18 The language Upal = {anbn | n ≥ 0} is in ZKIP(sweeping-2pfa,

poly-time).



The proof of this result is quite intricate, and uses deep results from the theory

of Markov chains. The theorem is not vacuous, as Greenberg and Weiss (1986)

showed that Upal is not accepted by any automaton which runs in polynomial

expected time.

Kilian (1988) studied zero knowledge interactive proof systems with verifiers

which are simultaneously log space bounded and polynomially time bounded.

He proposed a stronger definition of zero knowledge than that of Dwork and

Stockmeyer, and proved the following result.

Theorem 19 IP(log-space, poly-time) = ZKIP(log-space,poly-time).

The techniques of Kilian are quite different from those of Dwork and Stock-

meyer, and involve tools from communication complexity and cryptography.

7 OPEN PROBLEMS

In the preceding sections, we have mentioned numerous unsolved problems on

the complexity of space bounded interactive proof systems. We discuss some

of these further here.

• There is a large gap between the best known upper and lower bounds for

IP(2pfa). The best known lower bound is deterministic exponential time and

the best known upper bound is alternating double exponential time. Can either

of these bounds be improved?

One way to improve these bounds is suggested by the structure of interactive

proof systems for languages in DTIME(2poly(n)), as described in Theorem 1.

All known interactive proof systems with a log space bounded verifier have the

property that on any input, the verifier and prover iterate a double exponential

number of times a protocol that takes only exponential time. We call such

an interactive proof system periodic. It would be interesting to find a non-

periodic interactive proof system that accepts languages not known to be in

DTIME(2poly(n)). Alternatively, a proof that all languages accepted by log

space interactive proof systems are also accepted by periodic interactive proof

systems would imply better bounds for IP(log-space).

• Dwork and Stockmeyer (1992) asked the following question. Is AM(2pfa,poly-

time) equal to the class of regular languages?

Dwork and Stockmeyer show that there is a pair of sets A and B which can be



separated by an Arthur-Merlin game which is polynomial time bounded and

O(1) space bounded, but which cannot be separated by 2pfa. The sets are

defined as follows. Let U be the set of words of the form x#k where k = 2|x|.

Then, A is the set of x#k ∈ U such that x ∈ Center and B is the set of

x#k ∈ U such that x 6∈ Center. However, the set U is not in AM(2pfa,poly-

time), which makes it difficult to extend this separation problem to show that

AM(2pfa,poly-time) accepts a non-regular language.

• The work of Fortnow and Lund (1991) motivates the question: is AM(log-

space, poly-time) = P? Their result that P is contained in AM(o(log2 n)-space,

poly-time) leads one to conjecture that perhaps the answer to the above open

question is yes. However, it is not clear that their techniques can be extended

to prove this. A positive answer to the question might imply that Markov

decision processes can be evaluated by new polynomial time algorithms that

do not involve linear programming techniques.

• From Section 6, it appears that questions on the complexity of space bounded

multiple prover interactive proof systems are completely resolved. However,

one intriguing question remains. What languages are in the class oneway-

2IP(2pfa)? The best bounds we know are (i) any language in nondeterministic

linear space is in oneway-2IP(2pfa) and (ii) oneway-2IP(2pfa) is contained in

the class of recursive languages. This is a rather large gap, and one of these

bounds can surely be improved.

• Finally, can other nonapproximability results, such as the result on the max

word problem presented in Section 3, be obtained from further study of space

bounded interactive proof systems?
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Figure 1: Results on log space bounded interactive proof systems. Each class

is contained in the one above it. No containments are known to be proper.
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Figure 2: Results on constant space bounded interactive proof systems. Solid

arrows denote proper containments, and dotted arrows denote containments

which are not known to be proper.


