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Abstract. The accuracy of a user model usually depends erathount and
quality of information available on the user’s s&abf interest. An eye-tracker
provides data detailing where a user is lookingirduinteraction with the
system. In this paper we present a study to exgiome this information can
improve the performance of a model designed tosasges user’s tendency to
engage in a meta-cognitive behavior known as sglfa@ation.

1 Introduction

One of the key dimensions that characterizes a mmeteling problem isnodel
bandwidth[15], i.e., the amount and quality of informatiovadable to the model to
assess the user’s states of interest (e.g., kngejegloals, emotions). If a model
assesses a user's task performance (or a u$ieds states following the
classification in [15]), high bandwidth is alreadghieved through information on
task-related interface actions. However, if the elochust assess the higher level
mental statesunderlying a given behavior, high bandwidth regsiirexplicit
information on these states, which are seldom fubservable. In this case,
bandwidth can be increased through interface mésmasrthat force the user to make
the states of interest explicit (e.g., by showitigree steps used to generate a problem
solution). Unfortunately, this approach has theeptial to be highly intrusive.

In this paper, we present research on exploring tegeking as a means to
unobtrusively raise bandwidth in user models. Irtipalar, we discuss findings from
a user study that explores the usage of user® paterns to understand whether
students engage in a meta-cognitive behavior knaswself-explanation4], during
interaction with an Intelligent Learning Environniéor mathematical functions.

Retrospective analysis of eye movements has beeg lsed in Cognitive
Psychology as a tool to help understand both mardrcognitive processes (e.g., [9]),
as well as in HCI for off-line interface evaluatig¢e.g., [8]). There has also been
fairly extensive research in using eye gaze adtamative form of input to allow a
user to explicitly operate an interface (e.g.,1[8]).

There is a much smaller body of work on real-timecpssing of a user’s gaze to
interpret a user’s behavior beyond interface opmrab enable on-line adaptation of
the interaction. Some of this work uses gaze trackd help assess udaral states



such as reading performance in a system for automedding remediation [13], or
what task a user is performing independently from thdeulying application (e.g.,
reading email vs. reading a web page) [14]. Otherse explored using gaze data to
assess usenental statesuch asnterestin various elements of an interactive story
[7], or problem-solving strategids a tutoring system for algebra [6]).

Our work extends this body of research by exploifrand how eye tracking can
help assesmental stateselated to the meta-cognitive, domain-indepenchiit of
self-explanation Self-explanation is the process of explainingpheself a piece of
instructional material, and has been shown totlyréaprove learning [4]. It has also
been shown that many students tend to not self@xppontaneously. For this
reason, there has been increasing interest inidgwi®mputer-based tools that can
help students self-explain. The support providedrmst of these tools, however, is
not based on an explicit model of a student's egfflanation behavior. The
Geometry Explanation Tutor prompts students to-esgiiain every problem-solving
step in an Intelligent Learning Environment (ILEQr fgeometry [1]. Normit-SE
prompts students to self-explain everyw or incorrect problem-solving step in an
ILE for data normalization [10]. This approach istgntially intrusive, since it may
force spontaneous self-explainers to produce reshindaind unnecessary self-
explanations. In contrast, [5] proposes a framewidkt provides individualized
support for self-explanation based on an expli@te of a student’s self-explanation
needs. The model uses information on both studemivledge and reading patterns to
assess self-explanation during example studyirtgardomain of Newtonian physics.
Reading patterns are tracked vipar-man-eye-trackeinterface that forces students
to explicitly uncover the various parts of the stadexample via mouse movements.

We have been working on a similar model of selftangtion to aid the assessment
of the effectiveness of studeexploratory behavior and consequent learning in the
Adaptive Coach for Exploration (ACE) [2, 3]. ACE &n ILE designed to help
students learn about mathematical functions throingé exploration of interactive
simulations, rather than through more traditionmalbtem solving activities. Like [5],
ACE could benefit from information on student atien patterns to more reliably
assess whether a student is self-explaining thagshena observed in the interactive
simulations. However, because of the nature ofitieraction, i.e. unconstrained
exploration, we felt that it would be too intrusite use a poor-man-eye-tracker
mechanism to track user attention. Thus, we aréogrg the usage of real-time eye-
tracker data to inform our model. In the rest & gaper, we first describe ACE. We
then provide a high level description of the ACHd&nt model. Next, we illustrate a
user study that we have conducted to understand imfaamation an eye-tracker can
provide about a student’s self-explanation behavibinally, we discuss the
implications of our findings.

2 TheACE Open Learning Environment

ACE is an adaptive open learning environment fa domain of mathematical
functions. Open learning environments rely on tesuanption that if a learner can
freely explore the instructional material, she aaquire a deeper understanding of the



target domain. However, various studies have shimannot all students can explore
effectively on their own (e.g., [12]). Thus, ACEopides activities for students to
freely explore mathematical functions, tracks tteiploratory behavior and provides
tailored suggestions to improve this behavior wheaded.

ACE's activities are divided into units, which aalections of exercises. Figure 1
shows the main interaction window for the Plot UM{e will focus on this unit
throughout the paper because it is the most
relevant to the eye tracker research presented in
later sections. In the Plot Unit, a learner can
explore the relationship between a function’s

/ \ graph and equation by moving the graph in the
- —z -2-1| 12 a 4 5 Cartesian plane and observing how that affects

\ :12 the equation (displayed below the graph area).
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- The student can also change the equation

B parameters and see how these affect the graph.

1{:}=(x+1.7) 19 All student interface actions are used to
Fig. 1. The Plot Unit update the ACE student model, designed to

assess if a student is exploring and learning
effectively or if she needs help from ACE. For maletail on ACE’s interface and
coaching component see [2]. In the next subsectigs,describe the high level
structure of the ACE student model, and the comptnéhat allow the model to
assess self-explanation behavior.

2.1 TheACE Student M ode€l

ACE'’s student model uses a Dynamic Bayesian Netwoikssess the effectiveness
of a student’s exploratory behavior in ACE. The msdurce of evidence in the model
comes from observing students perforRelevant Exploration Casés an exercise
(e.g., changing the position of a function graphttie Plot Unit, so that it has a
positive interceptwith the x-axis; changing the equation so thahds aneven
exponent Evidence of these cases is then propagateceimtidel, together with the
current assessment of relevant student knowledgasgess higher level dimensions
of student exploration, such as exploration of eises and of general domain
concepts (e.g., the input/output relation for digfe types of functions) [2].

For a student to effectively explore a case, shetrhath perform an action and
self-explain changes that it generates in the enwirent [3]. Thus, the ACE student
model includes self-explanation as one of the factioat influence the assessment of
student exploration.

2.2 Assessing Self-Explanation in the ACE Student M odel

Assessing whether a student is spontaneously sglfieing is a typical user
modeling problem in which it is hard to achieve thigandwidth, unless we ask
students to explicitly input their self-explanationthe system. Doing so, however,
can be intrusive and annoying for those students @dn self-explain on their own.



The alternative is to gather information from sa&srdhat may provide indirect
evidence onimplicit self-explanation, i.e. self-explanation that haypgpdn the
student’s head.

Figure 2 exemplifies how we leverage these sourcd®e part of the ACE student
model that tracks implicit self-explanation. In &ig 2, nodes€asg, e,Case and
eCaseg, represent three relevant exploration cases oktreerir exercise ¢e This
model fragment corresponds to the learner havimfppeed an action corresponding
to the exploration of g€ase. Nodes representing the assessment of self-exjana
are shaded grey. As the figure shows, the two sguot information that the model
uses to assess the occurrence of implicit selfaagtlon for a given exploration case
are Stimuli to SEand SE-related-behaviorStimuli to SEis the probability that the
learner has stimuli to self-explain either from generalSE tendencgr from one of
the hintsthat ACE is designed to provide when a studenssessed to be a low self-
explainer (nodeCoach hint to SE The nodeSE-related-behaviorepresents all the
available evidence that a student is actually esfflaining the exploration case just
generated. The first version of this model thatprgposed in [3] only included time
spent on each exploration case as behavioral exeéddérhe conditional probabilities
defining the relation between time and self-explammawere based on our subjective
judgment, to represent the assumptions that (19etfeexplanation can happen if a
student switches too rapidly from one exploratiasecto the next; (2) the longer a
student dwells on a case the more likely it is i is trying to self-explain it. Time,
however, can be an ambiguous predictor. Firss, fitard to define what “too rapidly”
means for different students. Furthermore, a studsy be completely distracted
during a long interval between exploration cases.

SE-related
behavior

Knowledge

Fig. 2. The ACE student model

Thus, we chose to explore an additional sourcevafemce of self-explanation
behavior, i.e., the student’s attention pattemnmsng) the exploration of a given case.
The intuition here is that self-explanation maynbere likely if the student attends to
the parts on the interface showing the effects specific exploratory action (if the
student, for instance, switches attention fromgragph area to the equation area after
moving the graph in the Plot Unit). To unobtrugyvebtain evidence on student
attention patterns we used real-time processingyaf-tracking data. To collect
empirical data on the mapping between actual studelf-explanations, time and
attention patterns, we ran a user study, desciib#te next section.



3  User Study

In this study, we collected data from 18 studesiagi ACE while their gaze was
tracked by an Eyelink | eye-tracker, developed ByF®search Ltd., Canada. This is
a fairly intrusive head mounted eye tracker, thatuged because it was available to
us through the psychology department at the Uniyersf British Columbia.
However, the same data could be easily obtainenitfir a completely non-intrusive
remote eye-tracker, consisting of a small camerigtwhkits on top of the monitor or
on some other flat surface (e.g. IView X Red froem§&Motoric Instruments, USA).

All the study participants were non-science uniigrstudents (i.e. students that
had not taken high school calculus or first-yeallege math). Each participant
received a brief introduction to ACE and instrunsao try and verbalize all his/her
thought processes while using the system. The qggaatit then went through a
calibration phase with the eye tracker, and finaBgd the system for as much time as
needed to go through all the units. This variednfrd0 minutes to close to an hour.
All the student exploration cases were logged (B&6tal), along with raw data from
the eye tracker, as well as complete video andoadatia of the interaction.

3.1 Dataanalysis

To understand how attention patterns and time gplomation case relate to self-
explanation, we needed to obtain from the studg gaints on actual explicit positive
and negative self-explanation episodes. (Here, atieg self-explanation” indicates
situations in which students did not self-explaiat situations in which students self-
explained incorrectly, consistent with the origidafinition of self-explanation [6]. )

We had two observers analyze the recorded auditoqgols in search of such
episodes, and then create the link between thealvegisodes and the corresponding
exploration cases in the log files. This turnedtoube a much more laborious process
than expected, due to two factors.

First, we quickly realized that not all verbal emles could be unambiguously
classified as positive or negative self-explanatiohhis is not surprising because,
although there has been extensive research on edmstitutes self-explanation in
various problem solving domains (e.g., Newtonibggics, statistics, geometry), ours
is the first attempt to understand self-explanation an exploratory learning
environment for mathematical functions. We tackleid problem by having the two
observers independently label a subset of the awdim, then compare their
classifications, possibly reconcile them and dewigketailed coding scheme based on
this discussion. The coding scheme was then usedalyze the rest of the data, and
only episodes on which the coders fully agreed wesed in the rest of the analysis
(the intercoder reliability was 93% in this phask).the coding scheme, students
utterances were classified as self-explanatiohdf/texpressed a conclusion about a
domain-specific principle related to the exploratfyocess (e.g.when | increase the
coefficient here, the line gets stee€peegardless of correctness, or if they predicted
the result of an action just before it occurredy.(€'putting a negative sign here will
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Fig. 3. Sample gaze shift Fig. 4. ROC curve for time as a filter for
self-explanation

turn the curve upside-down It is assumed here that if a student predietsresult of
an action, she will watch to see if she is right &inus self-explairafter the action.
Simply narrating the outcome of each action oné¢mjfipened (e.g.tHis number just
changed to a3, or isolated statements of confusion (e.¢ygdn’t understant) were
not considered self-explanation. However, tentatieeplanations followed by
expressions of confusion were coded as self-exptana

The second factor that increased the complexitgadh analysis was difficulty in
determining which action each coded utterance sporded to. The observers at first
assumed that subjects’ utterances always pertameghatever exploratory action
they had just taken. However, while analyzing tide® data they realized that this
was not always the case, particularly for users simwved great reluctance to think
aloud. These learners had to be repeatedly pronipteithe observers to speak, so
some of the conclusions they shared weren't reaabdtiey spoke, but related to self
explanation that occurred a few minutes earliee ®hservers solved this problem by
looking at every coded episode and matching itdaorresponding action. Thirteen
coded episodes were discarded because the matcdmisguous.

While both parts of the above coding process reduit the elimination of data
points, the factor that had the greatest impadheramount of data that we could get
from the study was students’ willingness to vermliheir thoughts. We found that a
number of students were incapable or unwilling Himk aloud, even if they were
periodically reminded to do so. Without such véidadions, the coders could not tell
whether a student had self-explained or not. Thulisthe 567 exploration cases
recorded in the log files for all students, only9ldould be classified in terms of
associated self-explanation.

Once positive and negative self-explanation episogere identified and mapped
onto specific exploration cases, we proceeded &tyam the correspondence between
these episodes, gaze information, and time studiensted to each case.

Raw eye tracker data was parsed by a pattern @etedgorithm we developed to
detect switches of attention (“gaze shifts”) amaéimg graph panel, the equation area,
and any other non-conspicuous areas in the Pldt Baiwe mentioned earlier, these
are the gaze patterns that we hypothesize to loeiagsd with self-explanation in the
plot unit. A sample gaze switch appears in figurél@re a student’s eye gaze (shown



as the dotted line) starts in some untracked asdawbthe screen, moves to the
equation region and then hovers around the gragionmeabove. The data-parsing
algorithm uses fixation coordinates from the eywsiter and matches them to the
appropriate ACE interface region. Next, it seardiesdata for the pattern of making
changes in one region and then looking at the othesbserve the outcome, i.e.
having a gaze shift. When this pattern is founthgais placed in the ACE log file to
synchronize the switch with the appropriate explorecase.

To analyze the relationship between time per egpion case and self-explanation,
we first compared average time spent on exploratases that were accompanied by
self-explanation (24.7 seconds) and those that netrél1.6 seconds). The difference
is statistically significant at the 0.05 level, gegting that time per case is actually a
fairly reliable indicator of self-explanation.

To turn time into a predictor of self-explanatiove then determined a threshold T
so that an action could be classified as self-énpthif the student spent more than T
seconds on it. To choose the optimal threshold, bwdt a Receiver Operating
Characteristic (ROC) curve (figure 4). The ROC euiwva standard technique used in
machine learning to evaluate the extent to whiclnérmation filtering system can
successfully distinguish between relevant datas(efes the filter correctly classifies
as positive, otrue positivey and noise (episodes the filter incorrectly clfissias
positive, orfalse positives given a choice of different filtering thresholdsgure 4
shows the ROC curve we obtained for time, wheré @aint on the curve represents
a different threshold value. As it is standard pica¢c we chose as our final threshold
the point on the curve that corresponds to a redsertradeoff between creating too
many false positives and creating too few true tpes (16 seconds, labeled by an
asterisk on the curve in figure 4).

3.2 Reaults

Figure 5 categorizes our 149 data points into @gisowith and without self-
explanation (99 circles and 50 triangles, respebt)yv The vertical line further
categorizes the points into those with and withegaze shift (GS) between graph
and equation pane in the plot unit. The horizotited separates points with elapsed
time above or below 16 seconds. The raw dateses @esented in a table adjacent to
the histogram. ROC curves were used to find thatnMme is used in combination
with eye tracking data, 16 seconds continues tihé®ptimal threshold.

Table 1 shows different measures of self-explanatiassification accuracy if we
use as predictor: (i) the eye-tracker to detecegdmft; (ii) time per self-explanation
case; (iii) both predictors. Accuracy is reportedtérms of true positive rate (i.e.
percentage of self-explanation cases correctlysiflad as such, osensitivityof the
predictor) and true negative rate (i.e. percentafig¢no self-explanation” cases
correctly classified as such, gpecificityof the predictor). We also report a combined
measure, which is the average of the two accuragieshe table shows, time alone
has a highesensitivitythan gaze shift, i.e. the episodes involving s&fanation
were more likely to take over 16 seconds than ttude a gaze shift. However, the
eye-tracker alone has comparably higlspecificity i.e. the cases without self-
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Fig. 5. Dual histogram (left) and raw time/GS data (r)ght

explanation were more likely to involve the abseata gaze shift than shorter time
per exploration case. The two predictors have coatpp@ combined accuracy.

This may suggest that the gain of using an eyekérais not worth the cost of
adding this information to the ACE model. Howevethere are a few
counterarguments to this conclusion.

First, it should be noted that time accuracy heggrobably artificially high. One of
the drawbacks of using time as predictor of seffl@xation is that the amount of time
elapsed tells the model nothing about the studdrgfgvior between actions. During
a long time spent on a given case, a student majolmg or thinking of something
completely unrelated to ACE. This seldom occursun data, but we should bear in
mind that students were in a laboratory settindy Witle available distractions, in the
presence of an observer and wearing a rather im¢raievice on their head. All these
factors are likely to have made it more difficudt the students’ thoughts to wander
from the task at hand, resulting in time being arenteliable indicator of self-
explanation than it would be in actual practice.

Second, we found that the sensitivity of the epeker may be higher than our
data shows. The program that synchronizes gazts shith actions assumes that a

Table 1. Classification accuracy of different predictors

Eye-tracker Time Eye-tracker + Time
True Positive Ratesgnsitivity 61.6% 71.7% 85.8%
True Negative Ratespecificity 76.0% 68.0% 62.0%
Combined Accuracy 68.8% 69.85% 73.9%

student performs an exploratory action and theriesout a gaze shift to observe the
changes it generates. Thus, each gaze shift ortleeof is associated with the
preceding action. In our logger, an action invodvachange in the function equation
would be captured only when a student finishesty@ind presses “enter”. However,



it is possible that in some cases the student \daoteatch the change in the graph
when it happened, and thus would look up at thelgragion after typing but before
pressing enter. Our logger would incorrectly rectind gaze shift to be associated
with the actiorbeforethe current one. Of the 38 false negatives geegray the eye-
tracker, 21 had a gaze shift associated with teegaling action in the log file, and are
thus consistent with the above scenario. If weewerswitch the matching of these
gaze shifts with the following log file action, tisensitivity of the eye-tracker would
increase to 86.8%, and that of eye tracker pluse tivould reach 92.5%. We plan to
run more subjects with a revised logger to clattiig issue.

Third, combining gaze shift and time into one pctali substantially improves
sensitivity. That is, if an action is classified ssf-explained when there &ther a
gaze shiftor more than 16 seconds elapsed time, most of thieexalnation
episodes (85.8%) are correctly recognized. Thiseeme also causes the combined
accuracy to improve. However, as sensitivity insesa specificity is reduced and
only 62% of the episodes that lack self-explanadiondiscovered by the model. This
situation is shown in figure 5. With the combineddual, all data points to the right of
the vertical line or above the horizontal time Hiveld line are classified as self-
explained. As a result, most of the episodes véthrexplanation are found but many
of those without self-explanation are incorrectissified.

Here a tradeoff appears between sensitivity andifsgiey. Depending on how the
system is used, it may be most important to cdyretassify self-explanation when it
occurs than to detect the lack thereof. This isdihgation when letting natural self-
explainers explore without interruption is givergtest priority. Here, using the
combination of eye-tracker and time data is bedterAatively, it may be more
important to make sure that the system intervenesraver it is necessary. Then
failing to identify lack of self-explanation is agger problem than failing to detect it
when it occurs. In this case, the eye-tracker aligna more appropriate predictor
because students who need help will be more lileehet it..

3.3 Discussion and Future Work

In this paper, we have presented a study to astesaether using eye tracking
information can increase the accuracy of a useremibét needs to assess the meta-
cognitive skill known as self-explanation. An attative, easier to obtain source of
evidence for this assessment is time per relevastface action. In the study, we
have collected data to compare the two sources.

Our results have shown that, in a laboratory sgttiime is actually a much better
predictor of self-explanation than expected. Howewr data suggests that eye
tracking data combined with time can increase tloelehbandwidth when a system
that uses this model is mostly concerned with detgcthe presence of self-
explanation to avoid interfering with students wkpontaneously self-explain.
Furthermore, the eye-tracker alone may be moreogpiate when the system priority
is to detect when students do not self-explain. @ilata analysis also uncovered
possible sources of inaccuracies in the data dalledhat may underestimate the
value of eye tracker data.



Given these considerations, we plan to continudogexyg the usage of eye tracker
data with further experiments. One goal is to inwerour data collection procedure to
more reliably assess accuracy of eye-tracker dat®econd goal is to collect data to
test the addition to the ACE student model of nadeepresent evidence from both
eye tracker and time. We plan to experiment by ragl@di naive Bayesian classifier
structure. The advantage of this structure is tha highly modular, allowing the
eye-tracker and time data to be included or ignomedneeded. In addition, the
necessary conditional probabilities are readilyilabée from sensitivity/ specificity
frequencies in our data. We are also planning tiopa the analysis described in this
paper for the data collected on the other ACE uthitsng the study. This will require
extending the gaze detection algorithm to attenpiaiterns relevant for those units.
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