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Abstract 

 

We present a probabilistic model  to monitor a user’s emotions and engagement during the 
interaction with educational games.  We illustrate how our probabilistic model assesses affect by 
integrating evidence on both possible causes of  the user’s emotional arousal (i.e., the state of the 
interaction) and its effects (i.e., bodily expressions that are known to be influenced by emotional 
reactions).  The probabilistic model relies on a Dynamic Decision Network to leverage any indirect 
evidence on the user’s emotional state, in order to estimate this state and any other related variable 
in the model. This is crucial in a modeling task in which the available evidence usually varies with 
the user  and with each particular interaction.  The probabilistic model we present is to be used by 
decision theoretic pedagogical agents to generate interventions aimed at achieving the best tradeoff 
between a user’s learning and engagement during the interaction with educational games. 
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1. Introduction 
In recent years, there has been an increasing interest in studying how to make computers 
more “sociable” by enabling them to both display their own emotions and react to the 
user’s emotions. Building computers that display emotions in a natural and meaningful 
way  is  already a challenging endeavor, since it requires formalizing concepts and 
mechanisms that are often still under investigation in emotional psychology.  But building 
computers that recognize a user’s emotions is even more challenging, as is proven by the 
fact that even human beings are not always proficient in this task. The challenge is due to 
the high level of ambiguity that exists in the mapping between emotional states and the 
factors that can be used to detect them. For instance, different people can have different 
emotional reactions to the same stimulus, and the variability depends upon  traits that are 
not always easily observable, such as a person’s goals, preferences, expectations and  
personality. Emotions can be recognized because they often have observable effects on a 
user’s behavior and bodily expressions. But the mapping between emotions and their 
observable effects also depends on often hidden  traits of a person,  as well as on the 
context of the interaction. Furthermore, observable effects of emotions are not always 
easily recognizable by a computer (i.e., subtle changes in facial expression and intonation). 

Existing approaches have tackled the challenge of recognizing user’s affect by trying to 
reduce the ambiguity in the modeling task. This has been achieved either by focusing on 
recognizing a specific emotion in a fairly constraining interaction (Healy and Picard, 2000; 
Hudlicka and McNeese, 2002) or by assessing only lower level dimensions of emotional 
reaction, such as its  intensity and valence1 (Ball and Breeze, 2000).   

In this paper, we present an approach to modeling user affect designed to assess a variety 
of emotional states during interactions in which knowing the details of a user’s emotional 
reaction can enhance a system capability to interact  with the user effectively. Instead of 
reducing the uncertainty in emotion recognition by constraining the task and the 
granularity of the model, our approach  explicitly encodes and processes this uncertainty 
by relying on  probabilistic reasoning. In particular, we use Dynamic Decision Networks 
(Dean and Kanazawa, 1989; Russell and Norvig, 1995) to represent in a unifying 
framework the probabilistic dependencies between possible causes and emotional states 
(inc luding the  temporal evolution of these states), and between emotional states and the 
user’s bodily expressions they can affect. Our goal is to create a model of user affect that 
can generate as accurate an assessment as possible, by  leveraging any existing information 
on the user’s emotional state, but that can also explicitly express the uncertainty of its 
predictions when  little or ambiguous information is available.  

We discuss our model in the context of the interaction with pedagogical agents designed to 
improve the effectiveness of computer-based educational games (which we will simply call  
educational games throughout  the paper). In the rest of the paper, we first describe why 
detecting emotions is important for educational games. We then introduce Dynamic 
Decision Networks (DDN) and illustrate how they can be used to enable pedagogical 
agents for educational games to generate interactions tailored to both the user’s learning 
and emotional state. Next, we describe in detail the DDN underlying our model of user 

                                                 
1 Valence measures whether  the emotion generated a positive or negative feeling 
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affect and how it  integrates in a principled way different sources of ambiguous 
information on the user’s emotional state.  We end  with an overview of related work, 
discussion and conclusions.  

2. Emotionally Intelligent Agents for Educational Games 
Several authors have suggested the potential of video and computer games as educational 
tools (e.g., Silvern, 1986; Malone and Lepper, 1987). However, empirical studies have 
shown that, while educational games  are usually highly engaging, they often do not trigger 
the constructive reasoning necessary for learning (Conati and Fain Lehman, 1993; Klawe, 
1998). 

An explanation of these findings is that it is often possible to learn how to play an 
educational game effectively without necessarily reasoning about the target domain 
knowledge (Conati and Fain Lehman, 1993). Possibly, for many students the high level of 
engagement triggered by the game activities acts as a distraction from reflective cognition.  
This seems to happen especially when  the game is  not integrated with external activities 
that help ground the game experience into the learning one. Also, educational games are 
usually highly exploratory in nature, and empirical studies on exploratory learning 
environments have shown that these environments tend to be effective only for those 
students that already possess the learning skills necessary to benefit from autonomous 
exploration (e.g., Shute, 1993).  

To overcome the limitations of educational games, we are working on designing intelligent 
pedagogical agents that, as part of game playing, can generate tailored interventions aimed 
at stimulating a student’s reasoning if they detect that the student is failing to learn from 
the game. “As part of game playing” is the key point in the design of these agents. The 
main advantage of educational games versus more traditional computer-based tutors is that 
the former tend to generate a much higher level of students’ positive emotional 
engagement, thus making the learning experience more motivating and appealing. In order 
not to lose this advantage, it is crucial that the interventions of  pedagogical agents be 
consistent with the spirit of the game and consider the players’ emotional state, in addition 
to their learning. On the one hand, these pedagogical agents need to make sure that a 
student learns as much as possible from the game. On the other hand, they also need to 
avoid interventions that make the student start seeing the interaction with the game more as 
an educational chore than as a fun activity. Thus, at any point during the player interaction 
with the game, a pedagogical agent may need  to  consider the tradeoff between the 
player’s learning and entertainment when deciding how to act. The more information the 
agent has on the student’s learning and emotional state, the more focused and effective its 
actions can be. We formalize this behavior by designing our pedagogical agents as decision 
theoretic agents (Howard and Matheson, 1977; Russell and Norvig, 1995) that select 
actions so as to maximize the outcome in terms of a student’s learning and emotional 
engagement, as we describe in the next section. 

3. Decision-theoretic Pedagogical Agents 

In a decision-theoretic model (Howard and Matheson, 1977), an agent’s preferences over 
world states S are expressed by a utility function U(S),  which assigns a single number to 
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express the desirability of a state.  Furthermore, for each action a available to the agent, 
and for each possible outcome state S’ of that action, P(S’|E, a) represents the agent’s 
belief that action a will result in state S’, when the action is performed in a state identified 
by evidence E. The expected utility of an action a is then computed as 
 
EU(A) =  ΣS’ P(S’|E, a)U(S’)  

A decision-theoretic agent selects the action that maximizes this value when deciding how 
to act. 

Decision Networks (DNs), or influence diagrams (Henrion, Breeze and Horvitz, 1991), are 
an extension of  Bayesian  Networks (Pearl, 1988) that allow modeling decision-theoretic 
behavior. In addition to nodes representing probabilistic events in the world, a DN includes 
nodes representing an agent’s decision points and utilities. By relying on propagation 
algorithms for Bayesian  networks, DNs allow computing the agent’s action (or sequence 
of actions) with maximum expected utility given the available evidence on the current state 
of the world. 

Dynamic Decision Networks (DDNs) add to DNs the capability of modeling environments 
that change over time. Figure 1 shows how a  DDN can be used to define the behavior of  
pedagogical agents that take into account both the student’s learning and emotional 
reactions when deciding how to act. This DDN models behavior over two time slices, to 
answer the question: given the student’s state Sti at time ti, what is the agent’s action that 
will maximize the agent’s expected utility at time ti+1 , defined in terms of the student’s 
learning and emotional state at that time?   

In a DDN, the links between variables in different time slices indicate that the values of 
these variables evolve over time and that the value at  time ti influences the value at time  
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ti+1. In Figure 1, this is the case for the random variables Learning and Emotional State 
representing a student’s learning and emotional state, respectively.  The links between 
Learning nodes, for example, model the fact that a student is likely to know a given 
concept at time ti+1 if she knew it at time ti. The links between Emotional State nodes 
encode  that a student is more likely to feel a given emotion at time ti+1 if something that 
can trigger that emotion happens and the student was already feeling that emotion at time 
ti. The shaded nodes in Figure 1  represent random variables for which evidence is 
available to update the student model at a given time slice. In Figure 1, this evidence 
includes  the student’s game action at time ti, as well as the output of sensors for 
monitoring the student’s affective response at time ti and  ti+1 (we will say more about these 
sensors in a later section). The rectangular node in time slice ti+1  represents  the agent’s 
available actions at that time, while the hexagonal node represents the agent’s utility. To 
compute the agent’s action with highest expected utility in this time slice, the DDN 
computes the expected value of each action given the evidence currently available at time 
slice ti. The agent’s decision node is then set to the action with the highest expected utility,  
and  new evidence on the student’s emotional reactions in collected to assess what 
emotional state the agent’s action actually generated.  

The links from the Learning and Emotional State nodes to the utility node in Figure 1 
indicate that an agent’s utility function is defined over the student’s learning and emotional 
states. By varying this utility function, we can define agents that play different roles in the 
game. So, for instance, the utility function of a tutoring-oriented agent will assign higher 
values to states characterized by high levels of student learning, giving less importance to 
the student’s emotional engagement. In contrast, the utility function of  a game-oriented 
agent will value more those states in which the student is positively engaged. 

In the rest of the paper, we will concentrate on illustrating the part of the DDN that 
assesses the user’s emotional state, to show how a probabilistic model can deal with the 
high level of uncertainty involved in this still largely unexplored use r modeling task. For 
simplicity, we will ignore any relation between emotional state and learning,  as well as 
details on how assessment of learning is performed. 

4. A Dynamic Decision Network for Modeling Affect 
Figure 2 shows two time slices of the DDN that forms our model of student affect. The 
nodes in Figure 2 represent classes of variables in the actual DDN. As the figure shows, the 
network includes variables that represent both causes and effects of emotional reac tions. 
Being able to combine evidence on both causes and effects aims to compensate for the fact 
that often evidence on causes or effects alone  is insufficient to accurately assess the user’s 
emotional state, as we illustrate in the next subsection. 

4.1 Uncertainty in Modeling Affect 
Although emotions often visibly affect a person’s behaviour and expressions, the effects of 
emotions are not always discriminating enough to allow a precise diagnosis of the 
emotional states that generated them. For example, some accentuated  facial expressions 
and prosody features can be  quite indicative of specific emotional states such as  fear, joy 
or anger (Ekman, 1993; Murray and Arnott, 1993). However, whether these intense 
emotion expressions arise usually depends on the intensity of the emotion, on the user’s 
personality and on the interaction context. For instance, an introvert person might have a 
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tendency to control her display of emotions, especially in the presence of people she is not 
well acquainted with. Thus, in many situations, changes in facial expressions and prosody 
might be too subtle to be easily detected, especially if the detection is done by a computer.  
Emotional states can also affect biometric measures  such as heart rate, blood pressure, 
skin conductance, color and temperature (Picard, 1997). A person usually has little control 
over these covert biometric measures, and therefore they could provide a more reliable 
source of information on a person’s affect. However, information on a single  biometric 
measure  is usually not sufficient to recognize a specific emotion. For instance, skin 
conductivity is a very good indicator of general level of arousal, but cannot identify the 
valence of the emotion that caused the arousal (Picard, 1997). Emotions with negative 
valence tend to increase heart rate more than emotions with positive valence (Cacioppo, 
Berntson, Poehlmann and Ito, 2000), but heart rate provides little information about 
specific emotions (Ekman, Levenson and Friesen, 1983). 
Predicting emotions from possible causes is also not always easy. Although there are 
psychological theories that define the mapping between causes and emotional states, in 
practice information on possible causes does not always provide unequivocal indication on 
the actual affective reaction. Consider, for instance, the cognitive theory of emotion 
developed by Ortony Clore and Collins and known as the OCC model (Ortony, Clore and 
Collins, 1988). This theory  defines emotions as  valenced (positive or negative) reactions 
to situations consisting of events, actors and objects. The valence of one’s emotional 
reaction depends upon the desirability of the situation for oneself, which in turn is defined 
by one’s goals and preferences. The OCC theory clearly defines twenty two emotions as 
the result of situation appraisal, thus making it quite straightforward to predict a person’s 
emotions if the person’s goals and  perception of relevant events are known. The problem 
is that this information is not always easily available when assessing a user’s emotion.  
The above factors make emotion recognition a task permeated with uncertainty.  Most of 
the existing research on modeling users’ affect has tried to reduce this uncertainty either by 
considering tasks in which  it is relevant to only monitor the presence or absence of a 
specific emotion  (Healy and Picard, 2000; Hudlicka and McNeese, 2002)  or by focusing  
on monitoring  lower level measures of emotional reaction, such as  the intensity and 
valence of emotional arousal (Ball and Breeze, 2000). In educational games, neither of 
these approaches is appropriate, for two main reasons. First, educational games do tend to 
arouse different emotions in different players. For instance, the exploratory nature of a 
game can be very exciting for students that mainly want to have fun,  while it may cause 
frustration or anxiety in students that want to learn from the game but tend to prefer more 
structured pedagogical activities. Second, detecting the student’s specific emotions is 
important for an agent to decide how to correct possibly negative emotional states or 
leverage the positive ones. For example, if the agent realises that the student is ashamed 
because she keeps making mistakes during the game, it can try to take actions that make 
the student feel better about her performance. Or, if the agent realizes that the student 
enjoys its character but is distressed with the game at a particular point in time,  it can 
initiate an interaction with the student with the sole purpose of entertaining her.   
In the next subsection we describe how we use a DDN to explicitly represent the 
uncertainty underlying the relationships between a student’s emotional states, their causes 
and effects during the interaction with educational games.  
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Figure 2: Two time slices of the DDN model of user affect 

 

4.2 Probabilistic Dependencies Between Emotions, Their Causes and Their Effects  
 
In our DDN, the causes of emotional arousal are modeled following the OCC cognitive 
theory of emotions described in the previous section. To apply this theory to the 
assessment of emotions during the interaction with educational games, our DDN includes 
variables for goals that students may have when playing one of these games, summarized 
in Figure 2 by the nodes Goals2. The subject of the student’s appraisal is any event caused 
by either a student’s game action (node Student Action in Figure 2, time slice ti ) or an 
agent’s action (node Agent Action in Figure 2, time slice ti+1). The probabilistic 
dependencies  between student’s goals, game states and emotional reactions are summarize 
in the DDN of Figure 2 by the links connecting the nodes Goals and Student Action (or 
Agent Action) to the node Emotional States.  
User’s goals are a key element of the OCC model, but it is often unfeasible to identify 
these goals with certainty, for example by asking the user. Thus, our DDN also includes 
nodes that can help the model infer the student’s goals from indirect evidence. What goals 
a student has depends on the student’s traits such as Personality (Matthews, Derryberry 
and Siegle , 2000) and Domain Knowledge, as represented by the links connecting the 
nodes Student Traits with the Goals nodes in Figure 2. Also, the student’s goals can 
directly influence how a student plays the game, as modeled by the links between the 

                                                 
2 We currently do not explicitly represent the player’s preferences in our model . 
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nodes Goals and Interaction Patterns in Figure 2. In turn, interaction patterns can be 
inferred from specific features of the student’s individual actions at each time slice. Thus, 
observations of both the relevant student’s traits and game actions can provide the DDN 
with indirect evidence for assessing the student’s goals.  
The part of the network below the nodes Emotional States represents the interaction 
between emotional states and their observable effects. The node Emotional States directly 
influences the node representing the class of bodily expressions that are affected by 
emotional arousal. In turn, this node directly influences the node Sensors, representing 
devices  that can detect the bodily expressions of interest. In recent years,  there have been 
encouraging advances in the development of such devices, which include, among others, 
software for face and prosody recognition (Mozziconacci, 2001; Bianchi-Berthouze and 
Lisetti, 2002), as well as sensors to capture biometric signals (Picard, 1997). However, 
none of these devices,  by itself, will always reliably identify a specific emotional state. By 
explicitly representing the probabilistic relationships between emotional states, bodily 
expressions and techniques available to detect them, our DDN can combine and leverage 
any available sensor information, and gracefully degrade when such information becomes 
less reliable.  
In the rest of the paper, we describe an example application of the above model in the 
context of Prime Climb, the game we are using as a test-bed for our research. 
 

5. The Prime Climb Educational Game 
 

 
Figure 3: The Prime Climb Interface 
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Prime Climb is an educational game designed by the EGEMS (Electronic Games for 
Education in Math and Science) group at the University of British Columbia to help 
students learn number factorization. In Prime Climb, teams of two players must climb ice-
faces divided into numbered sections (see Figure 3). Each player can only move to sections 
with numbers that do not share any factors with that occupied by the other team member.  
When a player moves to a section that does not satisfy the above constraint, the player falls 
and the team looses points. For instance, the playe r at the bottom in Figure 1 fell because 
she tried to move to section 42, which shares the factor 3 with section 9, where the other 
player is. To help the students understand factorization, Prime Climb includes tools to 
inspect the factorizations of the numbers on the mountain. These tools are accessible by 
clicking on the icons representing a magnifying lens and a flag on the PDA shown at the 
top-right corner of Figure 3. 

An informal study of this version of Prime Climb showed that, while some students used 
and benefited from these additional tools, other ignored them even when they kept falling. 
Furthermore, many of the students who had very weak math knowledge and accessed the 
tools did not seem to gain much from their use. In light of these findings, we are designing 
pedagogical agents that, as part of Prime Climb, aim at stimulating a student’s reasoning 
when they realize that the student is not learning from the game.  One of the agents is a 
climbing instructor that can provide tailored help, both unsolicited and on demand, to help 
the student better understand number factorization as she is climbing, and that can do so 
without compromising  the player’s level of engagement. The actions that this agent can 
perform  inc lude stimulating the student to think about the reasons that caused a fall, giving 
more specific advice on how to recover from a fall (see Figure 3), suggesting and helping 
with the usage of the available tools, and deciding the level of difficulty of the climbing 
task.  

We now show an illustrative example of how the general model in Figure 2 can be 
instantiated and used to allow the Prime Climb climbing instructor to monitor a player’s 
emotional state and react adequately to it.   

6. Sample Affective Model for the Interaction with Prime Climb 
6.1 Model Variables and Structure  
For the sake of simplicity, the model described in this example (shown in Figure 4) covers 
in detail only slice ti+1 of the general model shown in Figure 2, and includes only a subset 
of the variables that are necessary to completely specify this time slice. We chose this 
subset to give the reader a sense of how the model is built and of its workings, but several 
additional variables should be included to accurately model a real interaction. 

All the variables and links in the model have been derived from findings described in 
relevant literature, from observations of students playing Prime Climb, and in a few 
occasions from our intuition. The conditional probabilities are currently based mainly on 
our estimates of relevant qualitative findings described in the literature, but we are working 
on revising them empirically.  

Student’s goals. By observing and interviewing students playing Prime Climb, we have 
derived a set of common high level goals that students may have when interacting with the 
game. We use three of these goals to exemplify the role of these variables in our model: 
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having fun (node Have_Fun in Figure 4), succeeding without the agent’s help (node 
Succeed_by_Myself) and not falling (node Avoid_Falling).  

Variables describing the student’s personality traits. We consider three personality 
traits in this example, taken from the Five Factor Model of Personality (Costa and McCrae, 
1992): extraversion, agreeableness, and conscientiousness (the two other personality types 
that are part of the Five Factor Model are openness and neuroticism). Each of these traits is 
represented by a node that has as values the two extremes of the personality type (e.g. 
extrovert and introvert for the node extraversion) Personality traits can directly influence 
what goals  a student has (Matthews et al., 2000). The links between personality nodes and 
goals can be derived from the definition of the different personality types. For instance, the 
definition of an agreeable person includes the following statements “…. eager to help…and 
believes that others will be equally helpful in return”.  By contrast, the disagreeable person 
is “egocentric, skeptical of others’ intentions, and competitive rather than cooperative.”  
This definition indicates that agreeableness can directly influence a player’s goal to 
succeed in the game without any external help, and this influence is modeled  in the 
network by a  link between the node representing the agreeableness personality type and 
the goal Succeed-by-Myself. In addition, the conditional probability table (CPT) for 
Succeed-by-Myself  is defined so that the probability of this goal is high for a  disagreeable 
person, and low for an agreeable one. Similarly, the CPT for the node Have_Fun indicates 
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that this goal is likely for an extravert player, while the CPT of the goal Avoid_Falling  
indicates that this goal is more likely for a person that is conscientious. Although in  this 
example we have a one-to-one mapping between personality traits and goals, in reality, 
when additional goals and personality traits are considered,  the mapping can be many-to-
many. For instance, it is plausible for a conscientious person to have both the goal to avoid 
falling and  the goal to learn math from the game.  The goal to avoid falling is also 
compatible with a person belonging to the neuroticism personality type. 

Personality traits can also directly influence emotional reactions. For instance, 
psychological studies have shown that introverts tend to reach a higher level of emotional 
arousal than extroverts, given the same stimulus (Kahneman, 1973). This is encoded in our 
network by linking the node for the extraversion personality type with the node 
representing the level of emotional arousal (see Figure 4), which we will describe later in 
the section.  

Agent’s actions . For this example, we will consider only two of the possible actions that 
the Prime Climb agent can generate: (1) provide help when the student makes a mistake, 
and (2)  do nothing. These actions are represented as two different values of the decision 
node Agent Actions in Figure 4.  

Variables describing the user’s emotional state. Following the OCC cognitive model of 
emotions, we model the user’s emotional state as the result of the user’s appraisal of the 
current interaction event in relation to her goals. In our model, a new  interaction event 
corresponds to  either a student’s or an agent’s action and generates the addition of a  new 
time slice in the DDN. To keep things simple, in this example we only consider a time slice 
corresponding to an agent’s action (see Figure 4). The appraisal mechanism is explicitly 
modeled in the network by conditioning the nodes representing emotional states to both 
nodes representing user’s goals and nodes representing interaction events (the node Agent 
Actions in this case).  The nodes representing emotional states are also defined following 
the OCC theory of emotions.  Out of the twenty two emotions that the OCC theory 
describes, we currently represent six  that related to the appraisal of the direct 
consequences of an event for oneself3.  These emotions include:  joy and distress toward 
the event that is appraised by the user; reproach and admiration toward the entity that 
caused the event; pride and shame toward the entity that caused the event when the entity 
is oneself .  For illustrative purposes, we’ll consider only three of these emotions in our 
example (see Emotional State cluster in  Figure 4): (i)  Reproach, which arises when the 
behavior of the Prime Climb agent interferes with a player’s goals; (ii) Shame, which is felt 
when the player is disappointed with the outcome of her actions in the game; (iii) Joy 
which arises in response to any interaction event that satisfies the student’s goals.  

Notice that in Figure 4 the node Agent Actions is linked only to the emotion nodes 
Reproach and Joy, not to the  node Shame. This is because shame is an emotional reaction 
to the student’s actions, not to the agent’s actions, and therefore can be directly involved in 
the appraisal process only in the DDN time slices representing student’s actions.  When an 
emotion node is not directly involved in the appraisal process at a given time slice, its 
probability depends only upon the probability of the corresponding emotion node in the 
                                                 
3 Other emotions relate for, instance, to  the consequences of an event for others or  to the evaluation of 
objects rather than events. 
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previous time slice and its CPT represents the fact that an emotional state persists over 
brief periods of time, but it slowly decays if no new event revives it.  

Because we are interested in assessing the student’s level of engagement in the game, a 
corresponding variable is inserted into the model, along with links representing how  this 
variable is  influenced by the valence of a user’s emotions (represented in Figure 4 by the 
nodes Pos_Valence and Neg_Valence). The corresponding conditional probabilities are 
defined to express the rather simplifying assumption that emotions with positive valence 
increase the level of engagement, while emotions with negative valence decrease it. In a 
more complete model, we may want to explicitly represent how specific emotions affect 
engagement.  A node representing the level of arousal is also included in the model, 
because information on the level of arousal can be relevant to judge how much a given 
emotional state influences the user’s behavior. As shown in Figure 4, the node Arousal has 
as parents the two nodes representing the valence of the emotional state and the node 
representing the personality type Extraversion. Conditioning arousal to valence is slightly 
misleading, since these are two orthogonal dimensions of emotional states. However, in 
our network the valence nodes are linked to the Arousal node for the practical purpose of 
summarizing that an emotional reaction does exist, without having to link every single 
emotion node to arousal. Combined with the input coming from the node for Extraversion, 
the links from the valence nodes allow us to compactly define a CPT representing the 
finding that an introvert reaches higher levels of arousal than an extravert given the same 
stimulus (Kahneman, 1973). Directly linking the emotion nodes to the arousal node may 
become necessary if the model needs to  represent the influence that specific emotions 
have on the intensity of the arousal. 

Variables describing bodily expressions and sensors. Let’s suppose that we have sensors 
to detect three types of bodily expressions: (i) eyebrow position, by using, for instance, 
software to detect facial expression and an electromyogram sensor (EMG) to detect muscle 
contraction; (ii) skin conductance,  through a sensor that detects galvanic skin response 
(GSR); (iii) heart rate, through  a heart rate monitor. All these sensors can already be 
donned in a fairly non- intrusive manner (Picard, 1997), and considerable research is being 
devoted to make these kinds of devices increasingly wearable. Each bodily expression B is 
linked to each sensor S that can detect it, as shown in Figure 4, and if multiple sensors are 
available, the DDN propagation algorithms can automatically integrate evidence data 
coming from all of them. By encoding the probability of a sensor’s value S given each 
value of bodily expression B, the conditional probability P(S|B) specifies the reliability of 
each sensor. Because this measure can be independently specified for each sensor and for 
the bodily expression that it detects, the model allows one to easily include new sensors as 
they become available.  

Likewise, each conditional probability P(B|E1,..,En), indicates how a set of emotional states 
E1,..,En affects  a given bodily expression B. As information on a bodily expression not yet 
considered in the model becomes available, a new variable for this expression can be added 
to the model and linked to the emotion variables that influence it, thus increasing the 
amount of evidence that can be used to detect the corresponding emotions. The conditional 
probabilities linking emotions and bodily expressions in our sample model represent the 
following findings (Picard, 1997): 
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1. Frowning eyebrows are a very good indicator of negative emotions in the anger range, 
including reproach4. 

2. Skin conductivity is a very good indicator of the level of arousal. 

3. Heartbeat increases more in the presence of emotions with negative valence. 

6.2 Sample Assessment 
As we mentioned earlier, DDNs provide a flexible framework for reasoning under 
uncertainty. Given evidence on any subset of the random variables in our affective model, 
propagation algorithms  compute the conditional probability of any other random variable 
in the model. Furthermore, if the agent needs to decide how to act at time ti+1 , the DDN 
computes the expected utility of every available action at that time and allows the agent to 
choose and execute the action with maximum expected utility.  

We now give an example of how the propagation of available evidence allows our model 
in Figure 4 to incrementally refine the assessment on the user’s emotional state as more 
relevant user data become available, thus providing the Prime Climb agent with 
increasingly accurate information to decide how to act in order to improve the user’s 
interaction with the  game. 

Let’s suppose that, at some point during the interaction with Prime Climb, the player falls 
and the agent decides to provide help. Let’s also suppose that the only sensor signal 
available at this time comes from the heart rate monitor and indicates high heart rate. When 
this evidence is inserted in the model in Figure 4 and propagated, it increases the 
probability that the player’s heart rate is high. High heart rate in turn increases the 
probability that the player is in an emotional state with negative rather than positive 
valence, because the conditional probabilities for the Heart_Rate  node represent the 
finding that heart rate increases more in the presence of emotion with negative valence. 
Although the available evidence cannot discriminate between the player feeling reproach 
or shame, high probability of negative valence is sufficient to raise the probability that the 
player’s engagement is low. At the next decision cycle, this probability may influence the 
model so that the agent’s action with the highest expected utility is one designed to bring 
the  level of engagement back up.  

Let’s now suppose that, in addition to high heart rate, we also detect high GSR. When 
propagated in the model, this evidence increases  the probability of a high level of arousal 
and consequently the probability that our player is an introvert. This is because the CPT for 
arousal is set up to encode the finding that introverts reach a higher level of arousal than 
extraverts given the same stimuli.  Although the resulting assessment does not add any 
information on the player’s specific emotional state, it does give more information on the 
player’s personality. At the next decision cycle, this information might result in having the 
action with maximum expected utility  be one that deals specifically with overcoming a 
user’s negative affective state when the user is an introvert (provided, of course, that such 
action is available to the agent).  

                                                 
4 Other kinds of facial expressions are generally good indicators of valence, if not of individual emotions. In our sample 
model, eyebrow position contributes indirect information on valence through the reproach variable. 
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Lastly, if our sensors also detect that the user is frowning, the probability of the player 
feeling reproach rather than shame increases (because of the conditional probability 
representing the finding that frowning is a good indicator of emotions in the anger range). 
Indication that the player feels reproach also increases the probability that the player has 
the goal of succeeding by herself. This is because the conditional probabilities for 
Reproach  give a high probability for this emotion if the player has the goal to succeed by 
herself and the agent provides unsolicited help (as it was the case in this example). Thus, in 
addition to giving an assessment of the user’s emotional state, the DDN also  assesses why 
the player is in that state. This information can further improve the capability of the 
decision model to select an adequate action. For instance, if the DDN assesses that the 
student feels reproach toward the agent because its interventions interfere with her goal to 
succeed by herself, the appropriate  agent’s behavior to revive the player’s positive 
engagement in the game  may be to  refrain from giving further advice even if the student 
falls. A completely different cause of reproach toward the agent might be that the agent 
does not provide any help to a student that has the goal Avoid Falling but actually falls. A 
high probability for this particular configuration of the user’s goal and emotion may 
influence the decision cycle  so that providing help, not withdrawing it, is  the action with 
the maximum expected utility. 

Notice that the model would have generated a high probability of the user feeling reproach 
even if, instead of having evidence about the user frowning, it had evidence about the user 
having a  disagreeable personality type (see top of Figure 2). This is because evidence of 
this personality type would increase the probability of having the goal Succeed_by_Myself, 
which is impaired by the agent’s provision of help and therefore causes the user’s reproach.  

If contradictory evidence arises, such as evidence  that the player has the goal to avoid 
falling but frowns when the agent provides help on how to recover from a fall, the model 
assessment of the user’s affect will depend on the relative strength assigned to the different 
kinds of evidence by the model CPTs. However, in general the model probabilities will 
reflect a higher level of uncertainty on the user’s emotional state.  This also represents 
valuable information that the agent can use to decide how to act. The agent might decide, 
for instance, to explicitly ask the player how she is feeling or how she wants the agent to 
behave. Without a model of affect, explicit inquiries would be the only way the agent has 
to assess engagement, and might  easily become annoying if they were too frequent. The 
model of affect allows the agent to explicitly interrogate the user only when the available 
evidence is insufficient to generate a reliable assessment. 

6.3 Model Specification 
One of the major difficulties in using probabilistic frameworks based on Bayesian 
networks is defining the required prior and conditional probabilities. In the model in Figure 
4, the only prior probabilities to be specified are those for variables representing user traits, 
which can be defined through existing statistics,  specialized tests, or  set to indicate lack of 
specific information. The conditional probabilities for the model have been defined by the 
author to encode the general qualitative information available in the literature, and can be 
refined for our particular application and user population (students in grade 6 and 7) 
through empirical evaluations.   

An alternative approach for building a model of affect that combines multiple sources of 
ambiguous evidence would be to specify heuristic rules to define how the available 
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evidence should be integrated.  But defining these rules still requires quantifying at some 
point complex probabilistic dependencies, because not explicitly using probabilities does 
not magically get rid of the uncertainty inherent to the modeling task. The advantage of a 
formal probabilistic approach is that the model designer only needs to quantify local 
dependencies among variables. The sound foundations of probability theory define how 
these dependencies are processed and affect the other variables in the model. In contrast, 
heuristic approaches require defining both the dependencies and ways to process them. 
This task is not necessarily simpler that defining conditional probabilities and entails a 
higher risk  of building a model that generates unsound inferences.  Furthermore, the DDN 
graphical representation provides a compact and clear description of  all the dependencies 
that exist in the domain, given the direct conditional dependencies that the model designer 
has explicitly encoded. This helps to verify that the postulated conditional dependencies 
define a coherent model and to debug the model when it generates inaccurate assessments.  

7. Related Work 
Although affective user modeling is a field still in its infancy, an increasing number of 
researchers have started investigating the problem of how to make a software agent aware 
of a user’s emotional state and able to react appropriately to it.  

The work that is more closely related to what we propose in this paper is the probabilistic 
model  described in  (Ball and Breeze, 2000). This model relies on a Bayesian network to 
assess valence and arousal of user’s affect, along with the dominance and friendliness 
aspects of a user’s personality, during the interaction with an embodied conversational 
agent. The assessment relies on evidence from the user’s linguistic behavior, vocal 
expression, posture and facial expressions, thus combining information from multiple 
bodily expressions to more accurately detect valence, arousal, dominance and friendliness. 
The main differences between the Ball and Breese’s model and the model we propose in 
this paper are the following: (i) our model leverages evidence on the causes of emotional 
reactions in addition to  evidence on bodily expressions; (ii) it explicitly represents the 
temporal evolution of emotional states; and, (ii) it allows assessing specific emotions in 
addition to valence and arousal, when sufficient evidence is available.   

A substantial amount of research on how to use bodily expressions to assess  a user’s affect 
has been done at the MIT Medialab. Healy and Picard (2000) have used input from 
electromyogram, electrocardiogram, respiration and skin conductance sensors to detect 
stress in a car driver.  Kaapor, Mota and Picard (2001) discuss how to monitor eyebrow 
movements and posture to provide evidence on  students’ engagement while they interact 
with a computer  based tutor. Vyzas and Picard (1999) have shown how physiological data 
on jaw clenching, blood volume pressure, skin conductance and respiration  can quite 
accurately recognize eight different emotional states, when a single subject intentionally 
expresses them.  

 Hudlicka and McNeese (2002) propose a framework that, like our model, combines 
information on relevant bodily expressions with other factors that can help assess a user’s 
affect. They focus on identifying and combining factors to detect anxiety in combat pilots 
during a mission. These factors include general properties of the mission at hand (such as 
difficulty and risk level), events that happen during the mission (e.g., the detection of an 
enemy plane), pilot’s traits (such as personality, experience and expertise) and real-time 
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information on the pilot’s heart rate. The framework includes heuristic fuzzy rules 
specifying the weight that each of the above factors has in predicting anxiety, as well as a 
mechanism to integrate the different factors. The framework also includes rules that 
specify how the pilot’s level of anxiety  affects his beliefs and performance, as well as 
strategies to counteract the possible negative effects of anxiety on performance.  

Elliott, Lester and Rickel (1999)  discuss how the Affective Reasoner, a rule-based 
framework to build agents that respond emotionally, could also be used to model user’s 
affect. Like part of our DDN, the Affective Reasoner is based on the OCC cognitive theory 
of emotions, but relies on deterministic rules to model the appraisal process. Elliot et al., 
describe these rules in the context of assessing a student’s affect during the interaction with 
the pedagogical agent for Design_a_Plant, a learning environment for botany.  In their 
discussion, the authors assume that the user’s goals and preferences necessary to define the 
outcome of the appraisal are known.    

Although we are not aware of other user models designed specifically to assess emotional 
states in addition to cognitive states, both Del Soldato (1995) and de Vicente (2000) have 
developed tutoring systems that assess and try to enhance  student motivation, a variable 
closely related to affective states. In both works, student motivation is assessed by 
comparing how the tutorial interaction relates to student  traits that are known to influence 
motivation. These variables include degree of control that the student likes to have on the 
learning situation, degree of challenge that the student likes to experience, degree of 
independence during the interaction and degree of fantasy based situations that the student 
likes the instructional interaction to include. Murray and VanLehn (2000)  developed a 
decision theoretic tutor that takes into account both student learning and morale in deciding 
how to act. However the authors do not discuss how student morale is assessed in their 
system.   

Other researchers have been investigating the decision theoretic approach to guide the 
behavior of adaptive interactive systems. Mayo and Mitrovic (2001) apply decision theory 
to guide the actions of a computer-based tutor, solely based on student’s learning. Horvitz  
(1999a; 1999b), presents intelligent desktop assistants that use a decision theoretic 
approach to decide when and how to provide unsolicited help to the user. Finally, Jameson 
et al. discuss how to apply decision theoretic methods to automatically provide the user 
with a sequence of tailored recommendations  and instructions (Bohnenberger and 
Jameson, 2001; Jameson, Großmann-Hutter, March, Rummer, Bohnenberger and Wittig, 
2001). 

8. Conclusions and Future Work 
We have presented a probabilistic model of a user’s affect that integrates information on 
the possible causes of the user’s emotional state (e.g., stimuli from the environment and 
personality traits) as well as the behavioral effects of this state (e.g., the user’s bodily 
expressions). The model relies on a Dynamic Decision Network (DDN) to explicitly 
represent the probabilistic dependencies between causes, effects and emotional states, as 
well as their temporal evolution. By taking into account different kinds of possibly 
ambiguous evidence on the user’s emotional state, our probabilistic model aims at reducing 
the uncertainty that pervades the assessment of user’s affect in situations in which a variety 
of emotions can arise in relation to a variety of user’s features.  
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We have shown how our model of user’s affect  can be used by decision-theoretic 
pedagogical agents designed to  improve the effectiveness of educational games. In 
particular, we have described an instantiation of the model for the interaction with the 
pedagogical agent of Prime Climb, an educational game to help students learn number 
factorization.  

The current version of our model DDN has been defined by relying on various theories and 
findings on the psychology and physiology of emotions. The part of the model that defines 
the dependencies between emotional states and possible causes is based on the OCC 
cognitive theory of emotions, which links emotional reactions to a person’s goals, 
preferences and how they are matched by the current situation. We have integrated the 
basic structure suggested by the OCC theory with variables that provide indirect evidence 
on a person’s goals, such as a player’s personality and interaction patters. The part of the 
model that encodes the dependencies between emotional states and their observable effects 
has been defined by relying on existing findings on how emotions generate changes in 
one’s bodily expressions and how these changes can be captured by specialized software 
and sensors.    

We are currently working on refining the structure and conditional probabilities in the 
model with data derived from observations of players interacting with Prime Climb. We 
are especially interested in gathering more accurate statistics on the relations between 
players’ goals, task knowledge and interaction behavior, as well as in understanding what 
bodily expressions  are more easily detectable in this kind of interaction.   

We also plan to investigate the issue of if and how emotional reactions influence the 
players’ goals and situation appraisal. There is increasing evidence that affective states can 
impact performance by altering the perceptual and cognitive processes that define how a 
given situation is perceived, as well as the cognitive and motor skills that influence 
behavior selection and actuation. However, it appears tha t what these influences are is very 
much task dependent, and we currently have no clear sense of what role they play during  
the interaction with educational games. Our current intuition is that in educational games 
the influences of emotional states on situation appraisal  may not be strong enough to 
warrant being explicitly represented in the affective model, but this intuition needs to be 
verified empirically. 
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