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ABSTRACT 
Electronic educational games can be highly entertaining, but 
studies have shown that they do not always trigger learning. To 
enhance the effectiveness of educational games, we propose 
intelligent pedagogical agents that can provide individualized 
instruction integrated with the entertaining nature of the games. In 
this paper, we describe one such agent, that we have developed  
for Prime Climb, an educational game on number factorization. 
The Prime Climb agent relies on a probabilistic student model to 
generate tailored interventions aimed at helping  students learn 
number factorization through the game. After describing the 
functioning of the agent and the underlying student model, we 
report the results of an empirical study that we performed to test 
the agent’s effectiveness.  

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 
Games; 
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – 
uncertainty  and probabilistic reasoning;  
K.3.1 [Computers and Education]: Computer Uses in Education 
– computer-managed instruction (CMI). 

General Terms 
Human Factors, Experimentation. 

Keywords 
Intelligent Agents, Educational Games, User Modeling, Dynamic 
Bayesian Networks. 

1. INTRODUCTION 
Because electronic games are highly engaging, researchers have 
started to investigate whether they could be used to assist 
learning, especially for those children who have lost interest in 
math or other science courses [7, 11]. However, there is little 
empirical evidence that electronic educational  games can 

promote learning [11], unless the interaction is led by teachers 
and integrated with  other instructional activities [7]. One of the 
main reasons for this limitation of educational games  is that 
learning how to play the game does not necessarily imply learning 
the target instructional domain. Learning happens only when 
students actively build the connections between game moves and 
underlying knowledge [2]. Whether students can build these 
connections usually depends upon individual differences in 
knowledge and in the meta-cognitive skills relevant to learn from 
autonomous exploration (e.g., self-explanation and self-
monitoring) [13].   
In light of these findings, we are working on making educational 
games more pedagogically effective by  making them capable of  
providing  interactions tailored to each student’s needs and 
targeted at stimulating learning when necessary. Although there is 
well established research on building   student-adaptive computer-
based educational tools, to date very little of this research has 
focused on electronic educational games.   There are two main 
challenges for our approach. The first is that  in educational 
games it is  especially difficult to assess students’ knowledge and 
learning  from the interaction with the game, because often game 
actions do not have a direct connection with a student’s 
understanding of the underlying domain. The second challenge is 
how to provide individualized interventions that trigger learning, 
without  interfering   with the high level of engagement that 
educational games usually trigger precisely because they do not 
remind students of traditional educational activities.  
In this paper, we describe our work on making Prime Climb, an 
educational game for number factorization, more effective 
through an intelligent pedagogical agent that can provide students 
with adaptive, individualized support.  
Previous studies have shown that animated pedagogical agents 
tend to increase the learner’s motivation and engagement [6, 10]. 
Furthermore, these agents have been shown to be pedagogically 
effective in several computer-based  learning environments (e.g.,  
[8, 9]). Thus, using animated pedagogical agents seems quite a 
natural choice for delivering instructional interventions when it is 
crucial to maintain a high level of learner engagement, as  is the 
case for educational games.  
Conati and Klawe [4] discuss how  intelligent agents for 
educational games can  improve learning and maintain 
engagement. Their approach takes into account  student meta-
cognitive skills and emotional reactions in addition to student 
cognitive skills, as they are assessed by a probabilistic student 
model. Together with [15], the research presented in this paper is 
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a step toward the development of these emotionally intelligent 
agents.  We have developed a simple pedagogical agent that 
provides individualized help  during the interaction with the 
Prime Climb game, by relying on a probabilistic model of the 
student’s factorization knowledge as it evolves during the 
interaction.  Our goal is twofold; (i) to see how far this agent can 
go in  improving student learning while maintaining engagement, 
by using only the assessment of student knowledge; (ii) to 
integrate the model of student learning with a model of student 
emotions [15], to allow for more informed agent interventions.  
In the rest of the paper, we focus on the first of these two goals. 
We start with a description of Prime Climb. Then, we  describe  
the design of the agent, and the probabilistic model that drives its 
behavior. Finally,  we discuss the results of a user study to test the 
agent’s effectiveness. 

2. THE GAME: PRIME CLIMB 
 

Think about how to factorize the 
number you clicked on

Think about how to factorize the 
number you clicked on

 
Figure 1: The Prime Climb Interface 

 
Prime Climb is an educational game devised by the EGEMS 
(Electronic Games for Education In Math and Science) group at 
the University of British Columbia. The main goal of the game is 
to help grade 6 and 7 students learn number factorization in a 
highly motivating game environment.  Prime Climb involves two 
players who must collaborate to  climb a series of mountains. 
Each mountain is divided into hexes labeled with numbers (see 
Figure 1). The main rule of the game is that each player can only 
move to a number that does not share any common factor with the 
partner’s number. If a wrong number is chosen, the climber  falls 
and swings from the rope until she can grab onto a correct 
number. For instance, in Figure 1 the player at the bottom of the 
mountain fell because she tried to move to hex 10 while the other 
player was on hex 5. 
To help students with the climbing task, Prime Climb includes a 
tool known as the Magnifying glass.  This  tool allows a student to 
view the factor tree for each number on a mountain in the PDA 
shown at the top right corner of the game (see Figure 1). The 
factor tree is a common representation used in math text books to 
visualize number factorization as the recursive decomposition of a 

number into its non-prime factors (see 
Figure 2).   Students can view the 
factor tree of a  number incrementally, 
by clicking each of the visible nodes 
to see the first level of their 
decomposition. Although there can be 
different factor trees for a number, the 
Prime Climb PDA shows the most 
balanced, for easier display. 
Several user studies performed by the 
EGEMS group have shown that Prime 
Climb, like most educational games 
that have been actually tested, is 
highly entertaining but fails to show 
reliable learning effects.  Thus, we 

have modified the game to include an animated pedagogical agent 
designed to trigger learning as it provides support during the 
climbing task,  as described in the next section. 

3. THE PRIME CLIMB PEDAGOGICAL 
AGENT 
The Prime Climb agent is implemented with the Microsoft Agent 
Package. There is a pedagogical agent for each of the two players 
involved in the game. The agent (see Figure 1) gives hints either 
on demand, when the student asks for them, or unsolicited, when 
it decides that the student needs help in learning from the game.  
A student can ask its agent for hints by clicking on the PDA 
“help” button (see Figure 2). This activates a dialogue box with a 
selection of questions reflecting the most common problems that 
students have when playing Prime Climb. The agent answers 
questions at an incremental level of detail as the student clicks on 
the “further help” button available in the dialogue box.  
In addition to answering the students’ requests for help, the agent 
provides unsolicited hints to overcome the students’ tendency to 
avoid seeking help even when they need it [1, 4]. To decide when 
to intervene and what hints to provide, the agent relies on a 
probabilistic model of the student’s factorization knowledge. The 
model  is a Dynamic Bayesian network [5] that tracks  student 
actions and agent interventions during game playing and uses this 
information as evidence to assess student knowledge as the 
interaction proceeds. We describe this model in more detail in the 
next section. 
In general, the pedagogical agent provides unsolicited hints when 
the probabilities in the student model indicate that the student is 
missing key pieces of  knowledge to learn from her current move. 
A sample of the agent’s unsolicited  hints is shown  in Table 1. In 
the following, we illustrate when these hints are provided. 
 Hint 1_1a  is given when the student performs a wrong move 

and the agent thinks that the move is due to the student not 
knowing the factorization of the number  she tried to move to. 
This happens when   the student model reports a low 
probability that   the student knows the factorization of the 
number  in question. Similarly, Hint 1_1b is given when the 
agent thinks that a  wrong move is due to the student not 
knowing the factorization of her partner’s number.  When both 
numbers involved in  a wrong move have low probability, the 
agent addresses first the number the student moved to. Hints 

Figure 2: Sample 
Factor Tree 



1_2 and 1_3 are provided when the student continues to move 
incorrectly after receiving Hint 1_1a or Hint 1_1b. 

 Hints 2_1 to 2_3 are given when the student performs a 
wrong move and the agent thinks that the student’s error is due 
to lack of understanding of either the game’s general climbing 
rule (Hint 2_1) or the concept of common factors. Because the 
agent’s student model currently does not explicitly represent 
the probability that the student knows these pieces of 
knowledge, hints of this type  are given only  when a student 
makes an error but the student model indicates that the student 
knows how to factorize the numbers involved in the wrong 
move. 

 Hint 3_1 aims to counteract  the problem of a student 
performing correct moves despite not understanding the  
underlying factorization (due to guessing, to remembering 
previous patterns, or to the agent more specific hints). The 
agent detects this problem when the  student model gives a low  
probability that the student knows the factorization of the 
numbers involved in a correct move.   

 

Table 1: Sample Agent's Unsolicited Hints 

Hint1_1a “Think about how to factorize the number you clicked 
on” 

Hint1_1b “Think about how to factorize your partner’s  number” 

Hint1_2 “Do you need help? Use the Magnifying glass” 

Hint1_3 “To factorize X, do this…….” 

Hint2_1 “You can not click on a number which shares common 
factors with your partner’s number” 

Hint2_2 “Are there common factors between your number and 
your partner’s? Use the Magnifying Glass to find out!” 

Hint2_3 “Do you know that x and y share z as a common 
factor?” 

Hint3_1 “Great, you are right this time. Do you know why?” 

 

To avoid interfering too much with the pace of the interaction,   
we don’t require the student to explicitly acknowledge  the 
agent’s hints. However,  to make sure that students  do notice the 
hints, the agent audibly verbalizes them, in addition to showing 
the text in a bubble (see Figure 1). We now proceed to illustrate 
the probabilistic student model that drives the agent’s 
interventions.  

4. THE AGENT’S STUDENT MODEL 
Modeling students’ knowledge in educational games involves a 
high level of uncertainty. The student model can only access 
student actions such as moves and tool usage, not the intermediate 
mental states that cause these actions. Furthermore,  several 
studies have shown that students can learn to play an educational 
game without learning the underlying domain. Thus, analyzing 
student actions in Prime Climb often does not give a  clear insight 
onto a student’s knowledge. A solution to this problem could be 
to insert into the game more explicit tests of factorization 
knowledge. However, this would endanger the high level of 
motivation that an educational game usually triggers exactly 
because it does not remind students of traditional pedagogical 

activities. Thus, both Prime Climb and our agent are designed to 
interrupt game playing as little as possible, making the 
interpretation of student actions highly ambiguous. As we 
mentioned in the previous section, we use Dynamic Bayesian 
Networks (DBNs) to handle the uncertainty in the student model 
assessment.  
DBNs are a framework for reasoning under uncertainty designed 
to model situations that evolve over time. They are, therefore, 
well suited to model the unfolding of a student’s interaction with 
the game, and the corresponding evolution of the student’s 
factorization knowledge. 
A DBN keeps track of variables whose values change overtime by 
representing multiple copies of these variables, one for each 
snapshot of the temporal process (or time slice). Links between 
variables across time slices represent their  temporal 
dependencies. However, it quickly becomes impractical   to keep 
in a DBN all the relevant time slices. The rollup mechanism keeps 
at most  two time slices1  [47]: the network at slice t-1 is removed 
after the evidence in this slice has been processed and the network 
for slice t is established. The prior probabilities of  root nodes in t 
are set to the posteriors of the same  nodes in slice t-1. 
The DBNs for the Prime Climb student model actually work over 
two levels of temporal evolution, to deal with the computational 
complexity of modeling the fast-paced interaction that the game 
generates. One level, which represents the short-term student 
model (described in more detail in the next section), uses a DBN 
to capture the evolution of student knowledge from one interface 
action to the next, while climbing a specific mountain. The 
second level models the evolution of student knowledge when 
moving between mountains, either within a game session or 
across sessions. At this level, a time slice encompasses the 
climbing of a specific mountain and thus corresponds to the short-
term model for that climbing task.  Following the approach 
suggested in [3], at this level a form of roll-up is performed every 
time a student finishes climbing a mountain. Before the short-term 
model for the current mountain is discarded, the  probabilities of 
the relevant student knowledge are saved in  the  long-term 
student model. The probabilities in the long-term model  are then 
used as priors in the new short-term model when the student 
accesses a new mountain. Thus, at any given time the long-term 
student model encodes the assessment of a  student’s factorization 
knowledge given all the mountains completed so far. In the rest of 
this section, we  provide more details on the  short-term model. 
More information on the long-term model can be found in [14]. 

4.1 The Short-Term Student Model: Nodes 
and Assumptions 
As we mentioned earlier, each time slice in the Prime Climb 
short-term model represents the student’s knowledge state after a 
relevant  interface event. 
The short-term model uses several random variables to represent 
the relevant student knowledge and interface events. The core of 
these variables includes: 
 Factorization Nodes FX : for each number X on a mountain, 
the corresponding short-term model includes a binary node FX, 

                                                                 
1 Or as many slices as are necessary to model the direct 

dependencies of the current state from past states.   



representing whether the student has mastered the factorization 
of X down to its prime factors. The model  also includes a 
factorization node for every number that is part of the 
factorization of X. 

 Node KFT (Knowledge of Factor Tree): this binary node 
models whether or not a student  knows the factor tree 
representation, and thus can learn the factorization of a number 
by seeing the factor tree of that number. 

 Nodes ClickX : each binary node ClickX models whether or 
not a student’s action of clicking number X is correct, i.e. 
whether or not X shares any common factor with the partner’s 
number. 

 Nodes MagX : each binary node MagX denotes a student 
action of using the magnifying glass to see the factorization of 
number X.  

ClickX and MagX nodes are evidence nodes that are introduced in 
the model when the corresponding actions occur, and are 
immediately set to either one of their values. As the list above 
indicates, the student model currently does not include nodes that 
explicitly represent knowledge of the game rules or knowledge 
related to the concept of common factors. As we discussed in the 
previous section, the agent infers lack of this knowledge when it 
can rule out lack of factorization knowledge on specific numbers 
as a cause of incorrect actions.   

Before going into detail as to  how the nodes described above are 
structured into the short-term student models, we list the  set of 
assumptions that we use to define the structure. 

Assumption1: Knowing the prime factorization of a number (i.e., 
the factorization of a number down to its prime factors), 
influences the probability of knowing the factorization of its non-
prime factors. In particular, if a student knows the prime 
factorization of Z, where Z=X1*X2*Y1*Y2, then she probably 
knows the factorization of X and Y, where X = X1*X2 and 
Y=Y1*Y2. This assumption was made after consulting the math 
teachers involved in developing  Prime Climb. The teachers also 
pointed out that the opposite is usually not true: it is hard to 
predict if a student knows a number’s  factorization given that the 
student knows how to  factorize its factors.   

Assumption 2: Clicking on a number that does not share common 
factors with the partner’s number increases the probability that the 
student knows the factorization of the two numbers, although this 
action could also be due to a lucky guess or remembering 
previous moving patterns. A wrong click decreases the probability 
that the student knows the factorization of the two numbers, 
although it could also be due to a slip. 

Assumption 3: When a student uses the magnifying glass on 
number X, the probability that the student knows  how to 
factorize X increases if the student knows the factor tree 
representation. Otherwise the probability stays the same. 

Assumption 4: When a student uses the magnifying glass on 
number X at time t-1, and then correctly (incorrectly) moves to X 
at time t, the move provides evidence that the student learned (did 
not learn) the correct factorization of X by using the magnifying 
glass at time t-1. Thus, this action provides evidence that 
increases the probability of the student knowing (not knowing) 
the factor tree representation. 

. 

4.2 Structure of the Short-Term Model 
The process of building the short-term model for a given 
mountain starts by generating the part of the model that  includes 
all the nodes representing the knowledge relevant for climbing 
that mountain. These consist of the factorization nodes for the 
numbers on the mountain, as well as the KFT node. The model 
represents the factorization of each number on the mountain 
following  the factor tree representation (see Figure 2),  and  
encodes only the factorization shown in the PDA. The 
dependencies among each number and its factors  are defined by 
assumption 1 above, and  are represented in the model as shown 
in Figure 3. The right side of the figure shows some of the 
dependencies for the numbers  of the mountain in Figure 1.  
Figure 7, in a later section, shows the complete model for that 
mountain. The conditional probability table (CPT) for each non-
root factorization node is defined so that the probability of the 
node being known is high when all the parent factorization nodes 
are true, and decreases proportionally with the number of 
unknown parents.  At the beginning of the interaction, the KFT 
node is not connected to any other node in the model. 

The priors of root factorization nodes and of the KFT node in the 
short-term model are initialized using the long-term student 
model. As we mentioned earlier, the long-term model  encodes 
the current assessment of the student’s knowledge, based either on 
evidence accumulated through the student’s previous climbing 
tasks or on alternative forms of assessment  if the student is a first 
time player (e.g. a pre-test on the relevant factorization 
knowledge or teachers’ estimates). 

The rest of the short-term model is built dynamically as the 
student interacts with the game, following assumptions 2 to 4.  
Figure 4 shows the basic structure that, in our DBN, represents 
the relations between factorization nodes and evidence E coming 
from interface actions. As the figure shows, these relations are 
represented in the diagnostic rather than causal direction.  The 
reason for this choice  is that a causal representation would 
generate unwarranted dependencies between factorization nodes. 
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Figure 3:  Dependencies between factorization nodes. On 
the left,  Z= X*Y. 
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Figure 4: General relation between knowledge and evidence 
nodes in the short-term model 



For instance, if  node Ex(t-1) in Figure 4 was inserted as a child of 
node Fx(t-1),  the evidence would propagate upward to both  Fx(t-1) 
and Fz(t-1), contradicting  the teachers’ suggestion that 
factorization knowledge of a number’s factors does not provide a 
direct indication that a student can factorize that number.  This, 
along with the fact that teachers did not find the causal 
representation more intuitive than the diagnostic one, made the 
latter more appropriate for this particular model.   
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Figure 5:  Representation of a student’s actions in the 
short-term model 

Figure 5 shows a schematic representation of how some of the 
most common game actions and related assumptions are 
represented in the model.   The action of clicking on number X 
when the partner is on number K is represented by (1) adding a 
node ClickX to the model with  links to both nodes FX and FK  (see 
Figure 5, slice t); (2) augmenting (decreasing) the conditional 
probability of FX and FK  if the action is correct (incorrect)2, as 
suggested by assumption 2. 
The action of activating the magnifying glass on number Z is 
modeled by adding a node MagZ, as well as links from both MagZ 
and KFT to Fz, (see Figure 5, slice t+1). The corresponding CPT 
represents the assumption that the probability of gaining 
knowledge from seeing the factor tree of a number depends on the 
student’s knowledge of the factor tree representation (assumption 
3). 
Finally, when a click action on a number follows the activation of 
the magnifying glass on that number (say number Z in Figure 5), 
an additional link is added from the new Click node (ClickZ in 
Figure 5, slice t+2) to the KFT node, to represent the influence 
that a move following usage of the magnifying glass has on the 
assessment of the KFT node (assumption 4). 
The short-term model includes similar mechanisms to model the 
incremental viewing of the factor tree and the influence of the 
agent’s hints on student knowledge. 
Although Figure 5 shows a sequence of three time slices, we 
maintain at most two time slices at any given time, to reduce the 
computational complexity of evaluating the model. However, 
because of our networks’ structure we cannot apply the standard 

                                                                 
2 In the case of an incorrect click,  the two factorization nodes 
should be  conditionally dependent given the action, so that the 
node with the lower probability of being known can be “blamed” 
more for the incorrect move. Because of the non-causal structure 
of the model, the only way to encode this dependency is to add a 
direct arc between the two factorization nodes, thus increasing the 
model complexity. We decided to first try the simplified structure 
in Figure 5, slice t,  and to change it if empirical testing shows 
that it significantly  affects the agent’s performance. 

roll-up technique to  adopt this approach. In the next section, we 
illustrate why and we describe the alternative form of roll up that 
we use. 

4.3 Modified Roll-Up for the Short-Term 
Model 
The standard roll-up technique in DBNs consists of  evaluating 
the effect of new evidence (e.g. E(t-1) in Figure 4) at time t-1, 
creating a new time slice at time t, assigning the posteriors of root 
nodes at time t-1 as the priors of the same nodes  at time t, and 
finally removing slice t-1. 
This technique  is only accurate when  the only nodes that evolve 
over time (dynamic nodes from now on) are root nodes, as is the 
case in most applications of DBNs. When this is true, “rolling up” 
the posteriors of dynamic nodes in one time slice as priors of the 
same nodes in the next slice carries over all the information 
accumulated on dynamic nodes through past evidence. On the 
other hand, when some of the  dynamic nodes are non-root (as  is 
the case in our model,  see for instance, Fx(t-1) and Fx(t) in  Figure 
4), basic roll-up loses most of the information accumulated 
through direct evidence for these nodes, once time slices are 
removed. 
A possible solution, discussed in  [12], is  to maintain several time 
slices and “roll-up” a slice (and  the corresponding evidence) only 
when its influence on the current slice becomes negligible. 
However, this approach can be computationally expensive,  
especially when the non-root nodes can have several parents and 
thus quite large CPTs. In our model, for instance, it causes  delays 
in the order of seconds, which highly disrupt the pace of the 
game.  

 
We use an alternative approach to keep only two time slices in the 
short-term student model. In this approach, changes in the 
probability of a non-root factorization node due to a new interface 
event are transferred to the  next time slice by changing  the CPT 
of that node given its parent factorization nodes. Figure 6 
illustrates this process when the new action (node E) brings 
positive evidence on student knowledge. In Figure 6,  We in the 
CPTs for node Fx is the weight that action E has on  the 
assessment of that knowledge node. We further reduce the 
complexity of the model by assuming that a learned node stays 
learned (i.e., there is no forgetting),  so that we can avoid the 
specification of all the  CPT entries corresponding to states in 
which the non-root node was known in the previous time slice.    
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Figure 6: Alternative roll-up in the short-term model  
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Figure 7:  State of the short-term model after a sequence of student actions

 
As Figure 6 shows, what we have done in effect is to represent  
the influence of new evidence as a change in  the belief about how 
the student factorization knowledge of a number predicts the 
student factorization knowledge of its non-prime factors. A 
possibly awkward  implication of this approach is that, in the 
short-term model, the dependencies among knowledge nodes will  
be different for different numbers and time slices. This, however, 
is not a real inconsistency,  because the relation between factor 
nodes summarized by Assumption 1 does not represent a causal 
mechanism with well defined, general properties, but rather a 
part-of relation which does in fact  depend on each number and 
each student.  
Figure 7 shows a concrete example of a short-term model slice. 
This is the final time slice after the student performs the following 
sequence of actions, starting from the game state in Figure 1: 
moving to 8 when the partner is on 3 (correct click action), 
activating the magnifying glass on 42 after the partner moved to 
19, then moving to 42. 

5. THE STUDY 
To evaluate the effectiveness of the Prime Climb pedagogical 
agent and of the underlying student  model, we ran a study with  
20 grade 7 students. 
The study participants were divided into an experimental and a 
control group. In the experimental group, ten students played with 
the version of Prime Climb including the pedagogical agent. In 
the control group, ten students played with the original version of 
the game.   
The study took place in the school and consisted of ten sessions, 
each running  two subjects in parallel.  Each subject played with 
an  experimenter, rather then with a peer. We chose this setting to 
avoid the possible confounding effect due to  the students’ 
different playing patterns and prior knowledge.  

 
Before the study, students were given a pre-test involving seven 
multiple-choice questions on  finding  common factors between 
two numbers. Five of the questions were worth a maximum of 2 
points, and two a maximum of 4 points, depending upon the 
number of common factors involved. Thus, the maximum total 
score for  the pre-test was 18. Unfortunately, we did not have time 
to use the pre-test results to initialize each student’s long term 
model for this study, so we set the probability of all the nodes to 
0.5 for every student. After receiving a brief introduction to the 
game, students played Prime Climb for 20 minutes. Then, they 
took a  post-test. Students in the experimental group  also filled 
out  a short questionnaire to gauge their opinion of the 
pedagogical agent. Log files were collected, recording the 
relevant student interface actions, as well as all the agent’s hints.  

5.1 Results 
We started our analysis by comparing learning gains in the two 
groups, where “gain” is defined as the difference between a 
student’s post-test and pre-test scores.   
As Table 2 shows, the experimental group gained  more than the 
control, and the difference is marginally significant (p = 0.068)3, 
with an effect size of 0.7. This is quite a large effect, especially 
considering that students interacted with the system only for 20 
minutes. 
Table 2 also shows that students in the control group hardly 
improved from pre-test to post-test, confirming  that students can  
often learn very little from a game environment without any 
external guidance. In addition, the fact that during the game 
students in the control group climbed slightly more mountains (on 

                                                                 
3 This is a one-tailed t-test, due to  our initial  assumption that 

students from the experimental group should gain more because 
of the agent’s interventions 



average) than students in the experimental group (7.1 vs. 6.6) 
confirms that students can become quite proficient in playing an 
educational game without  necessarily  learning the underlying 
knowledge. The higher number of mountains climbed by the 
control group also rules out the possibility that students in the 
experimental group learned more because they had more chances 
to practice the relevant factorization skills.  
 

Table 2: Statistics on learning gains (post-test - pre-test) 

Group Mea
n  

Std. Dev. t p(1-tailed) 

Experimental  (10)4 2.40 3.406 1.56 0.068 

Control (10) 4 0.30 2.541   

 
A t-test on the pre-test scores of the two groups ruled out pre-
existing knowledge as a confounding variable, since the 
difference in the score of the two groups (11.6 for control and 
10.8 for experimental) is not significant (p > 0.7).   
 

Table 3: Correlation between agent's hints and learning  

Hint Type 1_1a 1_1b 1_3 2_1 3_1 

Pearson r 0.606 0.216 0.7 0.038 .460 

p (1-tailed) 0.03 0.275 0.013 .46 0.095 

% of total hints 21% 9.2% 22.4% 7.9% 11.8% 

% followed by 
correct action 

87% 83% 65% 100% N.A. 

 
To further verify that the better performance of the experimental 
group is actually due to the agent’s interventions during the game, 
we checked the correlation between learning gains and the various 
kinds of hints that the agent provided. We only considered 
unsolicited hints because during the study no student asked the 
agent for help. Furthermore, we excluded hint 1_2 (one of the two 
hints to use the magnify glass)  because students never followed 
it, as well as  hints 2_2 and 2_3 (which are  a follow-up to hint 
2_1), because none was  generated   during the study. 
As table 3 shows, hints 1_1a (which, after a fall,  suggests 
thinking about the factorization of the number the student tried to 
moved to)  and 1_3 (which gives  the factorization of a number 
after a more generic hint of type 1_1a or 1_1b) have a high and 
significant correlation  with learning gains. This  indicates that 
they are a  possible cause of student learning in the experimental 
group. Although the correlation could be due to additional factors, 
such as student general ability and conscientiousness, the fact that    
87% of hints 1_1a and 65% of hints 1_3 were followed by a 
correct move (see Table 3) supports the hypothesis that they 
played a role in triggering student learning. These percentages 
also indicate that the student model is quite effective in detecting 
holes in the student’s knowledge.  

                                                                 
4 These numbers are  reported incorrectly in the version printed in the 

conference proceedings 

We cannot draw any principled conclusion from the low 
correlation of hints 1_1b (which suggests thinking about the 
factorization of the partner number after a fall) because the 
correlation is not significant, probably due to the fact that the 
agent gave few of these hints. However, the fact  that  83% of  
these hints were followed by a correct move provide further 
evidence that the student model is quite good at detecting missing 
student  knowledge. 
Hints 2.1 (which remind students that they cannot move to 
numbers that share factors with their partner’s) basically have no 
correlation with learning. However,  this is consistent with their 
purpose. These hints are given when the agent thinks that the 
student has not understood the game’s general rule, although she 
has all the necessary math knowledge to follow it. Thus, they 
have no ambition to increase learning.  
It is difficult to make any conclusive statement  on hints 3_1, 
because they have a medium correlation at the 0.1 level of 
significance and we have no other way to tell whether they had 
any effect on student behavior (students were not required to 
perform any action in response to these hints). These hints are 
designed to overcome the common problem that students often 
learn to play an educational  game effectively without learning the 
underlying knowledge. The fact that they were given quite 
infrequently (see table 3) may be an indication that our 
probabilistic model overestimates student knowledge, possibly 
giving too much credit to correct actions, too little blame to 
incorrect ones or using a too low threshold probability for judging 
a factorization node to be unknown.  We are planning to 
experiment with different weights and thresholds, to see if there 
are parameter  combinations that  can improve the agent’s 
pedagogical effectiveness. 

6. DISCUSSION AND FUTURE WORK 
The results discussed in the previous section offer encouraging 
evidence that providing individualized instruction by using an 
animated pedagogical agent can improve student learning with 
educational games. However, our goal is to have pedagogical 
agents that can both stimulate learning and maintain the high level 
of engagement that educational games usually  generate. 
Currently, the agent tries to avoid interfering too much with 
student game playing by keeping a low threshold for unknown 
nodes and by allowing the student to ignore the agent hints, but it 
still gives priority to stimulate learning when the student model 
indicates that the student needs it. For instance, the agent always 
provides hints if the model says that the student is probably 
lacking the knowledge underlying a move, regardless of its 
correctness and without considering how these hints may impact 
engagement. 
To gauge how the agent described in this paper influences student 
engagement in Prime Climb, we analyzed the students’ answers  
to  the  post-study questionnaire. One of the items in the 
questionnaire required to score the statement “I like the agent 
Merlin” on a scale from 1 to 5. The average score for this item 
was 3.7. A second item asked whether a student  would rather 
play Prime Climb again with or without the agent. Four students 
said “with”,  two students said “without”, and four gave  
ambiguous  answers (“sometime”, “I am not sure”, “both” and no 
answer).  Thus, although these reactions are quite positive 
considering that the agent didn’t really take any proactive action 



to increase student engagement,  we can argue that there is still 
quite a lot of room for improvement   in making our pedagogical 
agent a fun addition to the Prime Climb game. Some of these 
improvements should definitely go in the direction of exploiting 
the non-verbal communication channels available to the agent 
(such as gesture,  gaze and locomotion), which currently the 
Prime Climb agent does not utilize during the interaction. 
However, we also believe that the pedagogical agent could strike 
a better balance between learning and engagement if it could have 
access to the student’s affective reactions to the game in addition 
to the student’s knowledge. To this end, we are currently working 
on a probabilistic model of student  affect also based on DBNs 
[15]. The goal is to integrate this model with the model of student 
learning, so that the agent’s actions can be informed by both the 
student cognitive and affective state. 
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