
 
 
 
 On Improving the Effectiveness of  
 Open Learning Environments  
 Through Tailored Support for Exploration 
 
 Andrea Bunt1, Cristina Conati, Michael Huggett & Kasia Muldner 
 {bunt, conati, mikey, kmuldner}@cs.ubc.ca 
 
 Department of Computer Science 

University of British Columbia 
 2366 Main Mall  
 Vancouver, B.C. Canada V6T 1Z4 
 Phone: (604) 822-4632 
 Fax: (604) 822-5485 
 
 

Abstract Open learning environments can be beneficial for learning in ways not 

available in more tutor-controlled systems, because of the active role the learner plays in 
knowledge acquisition. However, i t has been shown that not all learners are proficient in 

unconstrained exploration, restricting their abili ty to learn effectively in these 

environments. In this paper we present the Adaptive Coach for Exploration (ACE), a 

prototype computational framework that supports active exploration in an open learning 
environment by providing tai lored support to overcome specific student diff iculties. 

ACE provides students with a highly-graphical, exploratory learning environment in 
the domain of mathematical functions. A Student Model assesses student knowledge 

and exploratory behaviour using a Bayesian network; ACE's Coach uses this assessment 

to generate tailored hints that support the exploratory behaviour of those students who 

would otherwise have trouble learning in an unsupervised environment. 
After describing ACE's components, we present the promising results of a 

preliminary user study that gauges the system's effectiveness.  
 

 
1. Introduction 
 

Open learning environments have been the subject of extensive research in the field of 
computer-supported learning. These environments, also known as exploratory or discovery 
environments, place less emphasis on explicit instruction and more on providing the learner 
with tools that support  learning through unconstrained exploration of the target instructional 
domain [3, 18, 19]. Advocates of open learning environments believe that, through active 
involvement in the knowledge acquisition process, the student can gain a deeper and more 
structured understanding of the domain. At the other end of the spectrum, supporters of more 
guided ways of learning argue for the effectiveness of tutor-controlled environments that 
monitor and structure the learning process through focused activities [2, 12, 16].  
                                                
1 Research funded by NSERC PGS A 



While there is substantial evidence on the effectiveness of environments that rely on some 
degree of tutor control  [1, 5, 6], user evaluations of pure exploratory/discovery environments 
have produced mixed results. In particular, successful learning in these environments seems 
to depend strongly on the student’s learning style [10, 11] and on meta-cognitive skill s which 
contribute to effective exploration, such as the abili ty to formulate hypotheses, perform 
experiments, draw conclusions based on the results, and monitor one’s progress in the 
learning process [4].These results suggest that the effectiveness of open learning 
environments can be improved by providing additional support to the learning process. Two 
approaches have been followed in this direction. 

The first approach is to provide supplementary cognitive tools specifically designed to 
scaffold the application of the relevant meta-cognitive skill s [7, 14, 18]. However, the results 
obtained with this approach indicate that even when very carefully designed, cognitive tools 
can sometimes interfere with the learning process. This is especially true if their use is 
imposed on all learners, even the ones who do not need the extra scaffolding because they 
already possess and apply the relevant meta-cognitive skil ls.  

The second approach is to provide the students with more active and explicit instruction, 
tailored to their specific diff iculties in the exploratory process. This approach is quite 
diff icult, since it relies on the capabili ty to monitor and understand the student’s 
unconstrained exploratory behaviour. Nonetheless, it has the advantage of providing help for 
those students who have problems learning through exploration, without affecting others who 
can explore effectively.  

In this paper, we describe ACE (Adaptive Coach for Exploration), a prototype intelligent 
learning environment that follows the second approach by offering tailored support for the 
exploration of mathematical functions. ACE monitors the exploratory actions that students 
perform through its interface and tries to detect when a student is experiencing diff iculties 
with the exploration process. When necessary, the environment generates interventions aimed 
at helping the student overcome these diff iculties, while giving them a sense of control and 
freedom.  

Because of the diff iculty of monitoring a student’s behaviour in an open learning 
environment, only a few other environments have pursued similar approaches. In [17] the 
authors present a student model to assess and support the process of hypothesis testing. This 
model relies on the student being active enough to generate hypotheses and so does not assist 
the student in searching the space of possible hypotheses. Similarly, Smithtown [11], a 
discovery learning environment in the domain of microeconomics, helps students structure 
their experiments by guiding them through a fixed sequence of steps, but does not address the 
needs of less active students who have problems initiating experiments and making 
predictions. Belvedere [8], an environment that provides graphical tools to build scientific 
arguments, also helps students improve their arguments based on predefined syntactic and  
consistency relations among argument components. However, Belvedere does not actually 
parse the students’ arguments nor does it monitor the data collection process that the students 
engage in prior to argument formation. 

In ACE, we focus more on eliciting students’ exploratory behaviour, by explicitly guiding 
more passive learners to use ACE’s interface tools effectively in exploring the target domain 
of mathematical functions. In the following sections of this paper, we first describe these 
tools. Next, we introduce both the probabili stic student model that ACE uses to assess 
students’ exploratory behaviour, and ACE’s coaching component. Finally, we report on the 
results of a preliminary study that evaluates ACE’s effectiveness in promoting learning by 
supporting exploration.  
 



 
2.  Description of the System 

 
The ACE system consists of three components: a Graphical User Interface (GUI), a Student 

Model, and a Coach. The GUI presents interactive activities geared at stimulating exploration 
of mathematical functions. The Student Model interprets interactions with the student in 
order to determine the effectiveness of the student’s exploratory behaviour and level of 
knowledge. The Coach monitors the student’s traversal of the curriculum, providing tailored 
situation-dependent suggestions and hints aimed at improving the student’s exploration of the 
available material. 

 
2.1 The GUI 

 
The GUI is designed to allow the student to explore functions in as many ways as possible. 

Most of ACE’s information is displayed in its main window (see Figure 1, left-top panel). 
The upper area of the window is a graphical display that can draw and animate text, pictures, 
and computable shapes such as function curves. This is the main area in which the student 
interacts with the system. Below this is a Feedback panel (Figure 1, left-bottom panel), in 
which hints from the Coach are printed. The right side of the window is in effect an HTML 
browser containing hyperlinks to the system’s help pages, which include both interface 
instructions and domain-related help. 

 
2.1.1 Three Unit Types 

 
Currently, ACE presents the student with three different units – the Machine, the 

Switchboard, and the Plot unit, which are loosely based on the material in the pre-calculus 

f(x) = 2 x + 2

  -50   -44   -10   -7   0   1   4   30   36

FUNCTION MACHINE

Drag a box behind the tail of the arrow and
click on the coloured button!

Next Exercise

Get hint

Figure 1:  Machine Unit



section of [13]. Each unit contains a set of exercises; each exercise presents the student with a 
different function to explore. The units and exercises are initially shown in sequential order, 
providing increasing complexity of interaction as the student moves through the curriculum. 
The student can move to the next exercise by clicking on the “Next exercise” button. Also, 
the student can choose to move to any exercise by using the Lesson Browser tool (explained 
below) at any time. 

The Machine unit (Figure 1) shows the student how a numeric input to a function is 
processed into an output. The student drags an input to the “machine” , which generates the 
output. The student is presented with a variety of inputs to explore. The student clicks 
through the ‘steps’ involved in the calculation, and can view the intermediate result at each 
step. Animation is used as an added stimulus – in order to draw the student’s attention to it, 
the output generated by the Machine appears in a pink circle after moving across the screen.  

The Switchboard unit (Figure 2) requires more active thinking from the student, in that the 
student is given the opportunity to explore the mapping of a range of inputs onto a range of 
outputs. As the unit’ s name might imply, the functionality is very much like a switchboard – 
each of the inputs has a ‘dragball ’ next to it that the student can drag to any ‘socket’ next to 
an output number. As it is dragged, a line continuously connects it to the input. If the student 
succeeds in connecting the input to the correct output, the dragball and the connect line turn 
green, otherwise they turn red. The student may reconnect an input to a different output at 
any time. 

The goal of the Plot unit (Figure 3) is to help the student explore the properties of graphs 
and equations, and relationships between the two. The interface contains both an equation 
box (found in the lower left corner of Figure 3), which shows the current function equation, 
and the corresponding graph of that function, displayed in an x-y plane. The student can 
manipulate the graph of the function either by dragging it around the plane or by typing 
directly into the equation box. Updating the graph automatically updates the function 
equation, and vice-versa. 
 
2.1.2 Tools 

 
Although the above units and corresponding exercises are initially presented in a predefined 

sequence, we want students to be able to freely explore the curriculum.  Therefore, the GUI 
toolbar holds buttons to allow the student to move forward and backward through the 
curriculum, as well as a Lesson Browser (Figure 5). The Lesson Browser shows all exercises, 
and allows the student to go to any exercise by clicking on it. The toolbar also contains an 

FUNCTION SWITCHBOARD

input x

output     f(x) = 4 x  - 4

Drag the inputs (x) to the cor rect outputs f(x)

Next exercise (x-0.3)          -3.1     f(x)= 1
4

f(x) = (x - .3 ) 4 – 3.1

124   –12   184    4    -196  -136   32   -40    -4

-48   –33      -9    -2     0      2        9      32    47

Next exercise

Figure 2:  Switchboard Unit                                  Figure 3:  Plot Unit



Exploration Assistant, a tool to help the students organize their exploration process that wil l 
be described in more detail in a later section. 
 
2.2 The Student Model 

 
The Student Model  monitors the student’s interaction with the system in order to determine 

whether the student is effectively exploring the environment and gaining an understanding of 
the domain.  

The Student Model must assess the student’s behaviour with relatively sparse information. 
The model can view low-level information such as the inputs and outputs entered by the 
student, but it does not have any access to the student’s underlying reasoning. While this 
restricts the level of assessment, it does allow for a more natural interaction with the system 
where the student is allowed to freely explore the environment without imposition. Given the 
limited information available to the model, assessing the student’s behaviour involves a great 
deal of uncertainty, which we handle using the probabilistic reasoning framework of 
Bayesian networks [9].  

The Student Model’s Bayesian network consists of two types of nodes: one that assesses the 
effectiveness of the student’s exploratory behaviour (exploratory nodes) and the other 
representing the student’s understanding of the domain concepts. Exploratory nodes in the 
network represent exploratory behaviour at different levels of granularity (see Figure 4): the 
effectiveness of the student’s overall exploration, the exploration of individual units, the 
exploration of individual exercises, and the exploration of concepts, such as ‘slope’ and 
‘ intercept’ . Concepts are modeled in the network in a hierarchical fashion. For example, the 
general concept of slope exploration consists of the more specific concepts – the exploration 
of positive slopes, negative slopes and the zero slope. The Conditional Probabili ty Tables in 

constantFunction
Exploration

linearFunction
Exploration

Intercept
Exploration

PosIntercept
Exploration

NegIntercept
Exploration

Slope
Exploration

PosSlope
Exploration

NegSlope
Exploration

PlotUnit
Exploration

Exercise1
Exploration

Exercise1
Case1

Exercise1
Case2

ZeroSlope
Exploration

Exercise2
Exploration

Exercise2
Case2

Exercise2
Case1

Exercise2
Case3

Exercise2
Case4

Exercise2
Case5

Figure 4:  An example por tion of the Bayesian Network for the plot unit.



the network are constructed using our initial estimates; empirical evaluations will be needed 
to verify and refine these probabil ities. 

In order to assess the effectiveness of the student’s exploratory behaviour, the Student 
Model looks for evidence that the student is exploring an exercise’s salient concepts, referred 
to as relevant exploration cases. The relevant exploration cases for a particular exercise 
depend on both the current unit and current function being explored. For example, in the 
Machine and Switchboard units, the student should explore all of the different categories of 
inputs available, such as small positive inputs, large positive inputs, small negative inputs, 
large negative inputs, and zero. In the Plot unit, the student should explore how modifying 
each of the different components of the function (e.g. the slope coeff icient) changes the shape 
of the graph, and vice-versa.  

The Student Model uses evidence that each relevant exploration case has been suff iciently 
explored to both assess how well the student has explored a particular exercise, as well as 
how well the student has explored concepts that appear in multiple exercises. As the system 
does not know ahead of time the exact number and nature of exercises that the student will 
visit (since the student can jump around using the Lesson Browser), each exercise node and 
its associated case nodes are added to the network dynamically at run-time when the student 
begins a new exercise. 

Figure 4 shows an example portion of the network for the plot unit where the student has 
visited two exercises, as indicated by the “Exercise 1 Exploration” and “Exercise 2 
Exploration” nodes. In the first exercise, the student was presented with a constant function, 
which has as relevant exploration cases positive intercepts (labeled “Exercise 1 Case 1” in 
Figure 4) and negative intercepts (labeled “Exercise 1 Case 2” ). In the second exercise, the 
student was presented with a linear function, which has as relevant exploration cases positive 
intercepts, negative intercepts, positive slopes, negative slopes, and the zero slope (labeled 
“Exercise 2 Case 1” through “Exercise 2 Case 5” respectively). These cases are used to 
update the nodes representing the exploration of the related general concepts (labeled 
“PosIntercept Exploration” , “NegIntercept Exploration”, “PosSlope Exploration” , 
“ZeroSlope Exploration” and “NegSlope Exploration”) and the student’s exploration of each 
individual exercise.  

The other type of nodes found in the network represent the student’s knowledge of function-
-related concepts. The extent of the student’s explorations is used in part to judge how well 
the student seems to understand the material. The exercises in the Switchboard allow the 
students to demonstrate their knowledge directly, although these are the only exercises with 
any notion of ‘ correctness’ . 
 

 smal l -r ange +

 lar ge-r ange +

 zer o

 smal l -r ange -

 lar ge-r ange -

 Y ou have tr i ed these in pu ts:

 -43  -33

 37

 0

-2 -7

 4

Figure 5: The Lesson Br owser      Figure 6: The Expl or ation Assistant



2.3 The Coach 
 
In order to remain consistent with the philosophy of exploratory learning environments, it is 

crucial that the Coach supports student exploration as unobtrusively as possible. Thus, the 
Coach is designed to provide different levels of guidance, according to the needs of the 
individual learner.  

The first level of guidance consists of a generic suggestion to continue exploring when a 
student tries to leave an exercise before having adequately explored it. Currently, the Coach 
does not interrupt a student’s exploration of an exercise. Once the students signal that they 
wish to move to a different exercise, the Coach examines the students’ behaviour in order to 
decide whether the exploration is satisfactory. In order to do so, the Coach queries the 
Student Model for two pieces of information: the probabili ty that the student has adequately 
explored the current exercise and the probabil ities for the relevant exploration concepts. The 
Coach remains silent if either the current exercise exploration is satisfactory (i.e. the related 
probabili ty is above a pre-determined threshold), or if all of the associated exploration 
concept probabili ties are satisfactory. If the student does not meet either of these two criteria, 
then a message is shown, suggesting that the student explore more and ask for hints if 
necessary. This message does not contain any concrete information as to what the student 
should explore, but includes a suggestion to ask for a hint. We omitted any specifics from this 
message to force the students to be as self-directed as possible in the exploration process, and 
to take initiative in obtaining hints. Since we want to maintain a high level of learner control, 
the student may always choose to disregard the Coach’s suggestion and leave the exercise at 
any point. If a student does decide to stay, a suggestion is made to open the Exploration 
Assistant (currently only available for the Machine and Switchboard units), a tool that helps 
students monitor their exploration process by categorizing and displaying their recent 
exploratory actions. Figure 6 shows the tool open for an exercise in the Machine unit; it has 
organized the various inputs that the student has explored into relevant categories represented 
in the Student Model (such as Small-Positive-Range inputs, Zero inputs, etc). 

As students explore, they can ask for a hint at any time. The Coach generates hints 
dynamically by traversing the concept hierarchies that are stored in the Student Model in a 
bottom-to-top, left-to-right manner. The traversal includes only those hierarchies that contain 
concepts relevant to the current exercise, and stops when an unexplored concept is found. 
Each applicable concept has a direct mapping to a hint object that contains a template for a 
progression of suggestions on how to explore that concept; these suggestions start off very 
general, and become more specific. Once an unexplored concept is found, its corresponding 
hint object is used to generate the hint. The Student Model continues to assess the student’s 
actions between hint requests, and so the concept traversal is performed every time a hint is 
requested; this approach allows the Coach’s suggestions to remain consistent with the current 

I thi nk you shoul d expl ore a wi der var iety of graphs

You shoul d see what the function looks l ike when it has a positi ve slope: pay close attention to
the shape of the l ine!

You can modi fy the slope by typing a new value into the function equation text box. Think
about the relationship between the  functi on equati on and gr aph!

Figure 7:  The Hint Window



status of the student’s exploration.  
We will i llustrate the hint procedure by going back to the example in the previous section. 

Let’s suppose our student is working with a linear function, has already explored both 
positive and negative intercepts extensively, and has just requested a hint. In order to generate 
the hint, the Coach first traverses the exploration-related concept hierarchies that are relevant 
to the current exercise. In this exercise, the traversal begins with the hierarchy containing 
nodes related to intercept exploration (see “Intercept Exploration” nodes in Figure 4). Since 
the positive-intercept, negative-intercept and general intercept exploration node probabili ties 
are satisfactory, the Coach moves on to examine the slope-concept hierarchy, starting with 
the “PosSlope Exploration” . This concept has a probability below the satisfactory threshold, 
and so the traversal stops here. The hint object linked to this node is used to generate the hint. 
Our student requests two more hints in succession; the hint window containing all three levels 
of hints related to slope exploration is shown in Figure 7. Currently, each concept has two to 
three levels of hints associated with it; further testing is required to determine the optimal 
number of levels. 

 
 
3. Empir ical Evaluation of ACE 
 
3.1 Experimental design 

 

The target population for ACE is high school students who are beginning to learn about 
functions. Thus, to evaluate if and how the current version of ACE influences students’ 
learning, we were planning to run a study with grade 11 students from a local school. 
Unfortunately, due to unforeseen last-minute scheduling diff iculties with the school, we were 
unable to carry out the study with these subjects and had to resort to first year undergraduate 
students in our university. We only accepted subjects who were not currently taking any math 
courses, nor had done so within the past year. Nonetheless, several of our subjects showed 
very good function knowledge. Because only 14 subjects signed up for the study and because 
several subjects showed a ceil ing effect in the pre-test, a two-groups design was unlikely to 
give any reliable information on ACE. Thus, we decided to use all of the 14 subjects in one 
experimental group, to gain an initial understanding of how and if system usage affects 
learning. 

The one-session study was carried out in our computer science research lab. Each student 
used ACE for 30 minutes. To gauge students’ learning, we gave them an equivalent paper-
and-pencil pre-test and post-test. The tests consisted of 39 questions equally divided into 
categories of function output recognition and generation, graph property recognition, 
equation property recognition, and equation–graph correspondence. In addition, the students 
wrote a 9-item questionnaire to assess their subjective experience with ACE. 

Each session was observed by one of the experimental team members, who recorded data on 
standardized observer sheets. ACE itself also produced log files of the students’ interactions. 
From these files, we extracted a number of interaction events, including: 1) number of 
exercises passed (a student ‘passed’ an exercise if the Student Model indicated suff icient 
exploration); 2) total number of exploration hints requested; 3) average level of hint accessed 
by each subject; and 4) total exploratory actions performed. In the next section, we report 
results from the analysis of the log files, questionnaire and observer sheets.  

 
 
 



3.2 Results 
 
Effect of ACE on learning. We first wanted to verify if interaction with ACE triggered any 
learning at all . It did, as we found a statistically significant difference (p = 0.013) between the 
pre-test average (78.4%) and post-test average (92.3%), despite the fact that 8 out of our 14 
subjects had very high pre-test scores. Second, we wanted to understand how system usage 
influences learning. Thus, for each of the event counts extracted from the log files, we ran a 
regression analysis with that event count and pre-test scores as independent variables, and 
post-test scores as the dependent variable1. Pre-test score was always a significant positive 
predictor of post-test scores.  

We found the following positive predictors of post-test scores (after controlli ng for pre-test)  
1. Total number of exploration hints accessed [p = 0.0406, R2=84.6%].  
2. The number of exercises passed [p = 0.0093, R2= 87.9%].  

These results provide an initial indication that ACE’s support of the exploratory process 
does improve learning. The first result confirms that some students do need help when 
interacting with an open learning environment. The second result also suggests that the 
Student Model accurately predicts when students are ready to move to a new exercise, 
because ACE lets students leave an exercise without warning only when the Student Model 
assesses that they have adequately explored it. The above results could, of course, also be 
caused by additional factors (such as student’s general academic abil ity or conscientiousness) 
that might influence the related event counts and post-test performance. The fact that there is 
no correlation between event counts in 1 and 2 above suggests that this is not the case, but 
only a formal study can show this more reliably. 

The total number of exploratory actions that students performed was not a significant 
predictor of learning. This might be due to a tendency that we noticed in several students to 
“over-explore” . When these students received a hint from the system to stay and explore 
more, they stayed, but then tended to try every available case, even those related to concepts 
that they had already explored. Redundant explorations likely did not contribute to improving 
the student’s understanding, which explains the lack of correlation between number of 
exploratory actions and learning. Over-exploration is consistent with one of the problems 
students have in open learning environments: the inabil ity to monitor one’s own progress 
during the exploration process [15].   

The system’s Exploration Assistant is specifically designed to help students monitor their 
exploration, but not a single subject used it, possibly because it was relegated to the tool bar 
and labeled with an ambiguous icon. This requires either re-designing the interface so that the 
Exploration Assistant is more accessible, or having ACE explicitly suggest its use whenever 
over-exploration occurs.  

Another relevant result obtained from the log files showed that the number of times a stay 
event was generated was a positive predictor of the number of exploratory actions performed 
[p = 0.0378 , R2= 31.2%]. At first, this may seem like an obvious result: a suggestion is made 
to explore an exercise further, it is followed, and thus more exploratory events are generated. 
However, it is possible that a subject may choose to stay, inspect the interface without 
performing any meaningful actions, and then move on to the next exercise – this in fact did 
happen a number of times with one subject. Nonetheless, the fact that stay events were 
typically followed by exploratory actions indicates that ACE’s interventions are successful at 
encouraging exploration.    

                                                
1 Due to our small sample size, we were only able to include at the most two independent variables in our model. 



Subjects’ Perception of ACE. In general, students’ answers to the questionnaire indicate 
that they enjoyed using the system and found it useful. The degree to which subjects found 
the hints helpful (measured on a scale from 2 to -2) was a positive predictor of their post test 
scores [p = 0.0339, R2 = 85.0%], after controlli ng for the pre-test. This indicates that the 
subjects’ questionnaire answers were not simply dictated by a desire to please (a common 
confounding variable in subjective questionnaires) but reliably reflected their opinion.  

We also found that the average level of hints requested were predictors of the degree to 
which subjects found the hints helpful [p= 0.0267, R2 = 34.7%]. This indicates that although 
in many cases the first, generic  level of hint was suff icient to trigger more exploration (74% 
of all hints requested were at the first level), the more detailed hints were useful to the people 
who needed them. 
Further quali tative observations from the observer sheets. All subjects traversed the 
curriculum sequentially – in fact, only one tried “ jumping around” , and even then only 
towards the end of the session. The fact that a  “Next exercise” button was considerably more 
accessible than the Lesson Browser doubtlessly encouraged this behaviour; making the 
Lesson Browser more visible or available would likely encourage a less linear approach to 
the curriculum.  

Although we did find a positive relationship between learning and the number of hints used, 
hints were not requested as often as subjects seemed to need them. A number of subjects 
indicated that they had forgotten about the hints – this suggests that the interface should 
emphasize that hints are available. On the other hand, we also believe that some students 
simply have a tendency not to ask for help. These students either flounder, in which case the 
system should react to long pauses and ‘wandering’ , or they move on without learning the 
required concepts. In such cases the system should intervene more aggressively, until it 
becomes apparent that the student has taken charge of their own learning; this wil l have to be 
investigated in further studies. 

Finally, by observing the students’ interaction with the system, we realized that even 
individuals who know the material and explore adequately need reassurance at times that they 
are in fact “doing the right thing” . This type of support is not related to either domain- or 
exploration-specific knowledge provision, but rather is a form of emotional support for the 
students. Currently, the system indicates when the student has explored enough by saying 
“good job” when the student asks to move to the next exercise, but says nothing as the 
student is exploring. In future versions, we will explore ways of identifying students who 
require more verbose support, and the means of providing it. 
 
 
4. Conclusions and Future Work 
 

We have presented a prototype intelligent exploratory learning environment, ACE 
(Adaptive Coach for Exploration), whose goal is to provide tailored adaptive support to 
student exploration.  ACE aims to address one of the main  limitations  of open learning 
environments: that students who do not already possess the capabili ty to learn through 
autonomous and unconstrained exploration generally do not learn as effectively from these 
environments.  

The approach we took to overcome this limitation involves three steps: providing students 
with highly graphical tools designed to encourage the exploration of domain concepts (related 
to mathematical functions in the current application); monitoring the student’s exploration, to 
allow a probabilistic Student Model to assess the effectiveness of the student’s exploratory 
process; using the Student Model’s assessment to direct the interventions of an exploration 



Coach. The Coach provides both unsolicited encouragement to explore more and  hints on 
demand, which are tailored to improving the effectiveness of students’ exploratory behaviour. 
Particular emphasis placed on guiding students who do not take the initiative to explore. 

We described a preliminary study to evaluate  ACE’s effect on learning.  The study  shows 
that ACE does trigger learning, as seen in a significant increase in test scores following 
usage.  Regression analyses of posttest scores on different interaction events and pretest score 
suggest that, as  subjects explored the system more and asked for more hints, their learning 
increased. Subjects who requested hints in greater depth found them useful. The study also 
uncovered various ways to make ACE’s interface and tailored support more effective, which 
we wil l investigate in future versions of the system. 

Since the study we conducted did not have a control group, the results we report do not tell 
us how relevant ACE’s tailored support is to triggering students’ exploration and learning –  
perhaps the same results could be obtained with the ACE interface alone.  To address this 
issue, we are planning to conduct a more formal study with grade-11 students who represent 
our initial target population. 

Future work on ACE includes designing additional activities to encourage students’ 
exploration. We wil l also focus  on improving the ACE’s student modeling in two ways. 
First, we would like to use eye-tracking technology to add data on user attention to the 
evidence used to assess exploratory behaviour. The second enhancement involves enriching 
the model’s representation of exploratory behaviour by including additional user’s features 
that influence this behavior, such as motivation and relevant meta-cognitive skill s (e.g., self-
explanation). This will enable the model to diagnose the causes of poor exploration and to 
support tutorial interventions that specifically target these causes. Finally, we plan on 
researching alternative ways of motivating exploration, which could supplement ACE's hints 
and suggestions.   

 
 

References   
 

1. Aleven, V., K.R. Koedinger, and K. Cross. Tutoring answer-explanation fosters learning with understanding. 
in AIED ‘99, 9th World Conference of Artificial Intell igence and Education. 1999. Le Mans, France. 

2. Anderson, J.R., et al., Cognitive Tutors: Lessons Learned. The Journal of the Learning Sciences, 1995. 4(2): 
p. 167-207. 

3. Collins, A. and J.S. Brown, The computer as a tool for learning through reflection, in Learning issues for 

intel ligent tutoring systems, H. Mandle and A. Lesgold, Editors. 1990, Springer: New York. 

4. de Jong, T. and W. van Joolingen, R., Scientific Discovery Learning With Computer Simulations of 

Conceptual Domains. Review of Educational research, 1998. 68(2): p. 179-201. 

5. Koedinger, K.R., et al., Intell igent tutoring goes to school in the big city, in Proceedings of the 7th World 

Conference on Artificial Intell igence and Education, J. Greer, Editor. 1995, AACE: Charlottesvil le, NC. p. 
421-428. 

6. Lesgold, A., et al., Sherlock: A coached practice environment for an electronics troubleshooting   job., in 
Computer Assisted Instruction and Intel ligent Tutoring Systems: Shared Goals   and Complementary 

Approaches, J.H. Larkin and R.W. Chabay, Editors. 1992, Lawrence Erlbaum Associates: Hill sdale, NJ. p. 
201-238. 

7. Njoo, M. and T. de Jon, Exploratory Learning with a Computer Simulation for Control Theory: Learning 
Processes and Instructional Support. Journal of Research in Science Teaching, 1993. 30(8): p. 821-844. 



8. Paolucci, M., D. Suthers, and A. Weiner, Automated advice-giving strategies for scientific inquiry, in 

Intell igent Tutoring Systems: Proceedings of the Third International Conference, C. Frasson, G. Gauthier, and 
A. Lesgold, Editors. 1996, Springer: Berl in. p. 372-381. 

9. Pearl, J., Probabili stic Reasoning in Intell igent Systems: Networks of Plausible Inference. 1988, San Mateo, 
CA: Morgan-Kaufmann. 

10.Shute, V.J., A comparison of learning environments: All that gl itters..., in Computers as Cognitive Tools, 
S.P. Lajoie and S.J. Derry, Editors. 1993, Lawrence Erlbaum Associates: Hil lsdale, NJ. p. 47-73. 

11.Shute, V.J. and R. Glaser, A large-scale evaluation of an intell igent discovery world. Interactive Learning 
Environments, 1990. 1: p. 51-76. 

12.Shute, V.J. and J. Psotka, Intell igent tutoring systems: Past, Present and Future, in Handbook of Research on 
Educational Communications and Technology, D. Jonassen, Editor. 1996, Scholastic Publications. 

13.Stewart, J., Caculus: Single Variable, Early Transcendentals. 3rd ed. 1995, Pacific Grove: Brooks/Cole. 

14.van Joolingen, W. and T. de Jong, Supporting hypothesis generation by learners exploring an interactive 
computer simulation. Instructional Science, 1991. 20: p. 389-404. 

15.van Joolingen, W.R., Cognitive Tools for Discovery Learning. Journal of Arti ficial Intell igence in Education, 

1999. 10. 

16.VanLehn, K., Conceptual and meta learning during coached  problem solving, in ITS96: Proceeding of the 

Third International conference on Intel ligent Tutoring Systems., C. Frasson, G. Gauthier, and A. Lesgold, 
Editors. 1996, Springer-Verlag: New York. 

17.Veermans, K. and W.R. van Joolingen. Using induction to generate feedback in simulation-based discovery 

learning environments. in ITS '98, 8th International Conference on Intel ligent Tutoring Systems. 1998. 

18.White, B., T. Shimoda, and J. Frederiksen, Enabling students to construct theories of collaborative inquiry 

and reflective learning: computer support for metacognitive development. International Journal of AI in 
Education, 1999. 10: p. 151-182. 

19.White, B., ThinkerTools: Causal models, conceptual change and science education. Cognition and 
Instruction, 1993. 10(1): p. 1-100. 


