

Modelling Learning in an Educational Game

Micheline Manske, Cristina Conati

Department of Computer Science, University of British Columbia,
Vancouver, BC, V6T1Z4, Canada

{manske, conati}@cs.ubc.ca

Abstract. We describe research on data-drive refinement and evaluation of a
probabilistic model of student learning for an educational game on number
factorization. The model is to be used by an intelligent pedagogical agent to improve
student learning during game play. An initial version of the model was designed based
on teachers’ advice and subjective parameter settings. Here we illustrate data-driven
improvements to the model, and we report results on its accuracy.

1. Introduction

A student model is one of the fundamental components of an intelligent learning environment
[11], and much research has been devoted to creating student models for various types of
computer based support. However, little work exists on student modelling for a relatively new
type of pedagogical interaction, educational computer games (edu-games from now on). In this
paper, we describe the design and evaluation of a student model to assess student learning
during the interaction with Prime Climb, an edu-game for number factorization.
 The main contribution of this work is a step toward providing intelligent computer based
support to learning with edu-games. Providing this support is both extremely valuable and
extremely challenging. It is valuable because, although there is overwhelming evidence that
even fairly simple edu-games can be highly motivating, there is little evidence that these
games, no matter how sophisticated they are, can actually trigger learning, unless they are
integrated with ad hoc supporting activities [5,9,6]. This is because many students manage to
successfully play these games without necessarily having to reason about the underlying
domain knowledge. We argue that individualized support based on careful assessment of
student learning during game playing can help overcome this limitation and make edu-games
an effective new form of learning.
 Providing this support is challenging because it requires careful tradeoffs between fostering
learning and maintaining positive affective engagement. Thus, it is crucial to have accurate
models of both student learning and affect. Creating these models is hard, however, because it
necessitates understanding about cognitive and affective processes on which there is very little
knowledge, given the relative novelty of games as educational tools. In [2] we present a model
of student affect for the Prime Climb edu-game. Here we focus on the model of student
learning. In particular, we describe the data-drive refinement and evaluation of an initial model
based on expert knowledge and subjective judgements, previously described in [3].
 There is increasing research in learning student models from data (e.g., [1,4,7]), but most of
this research has focused on student models for more traditional ITS systems. An exception is
[8], which describes a student model learned from data for a game designed to address
common misconceptions about decimal numbers. The data used in [8] come from students’
performance on a traditional test to detect decimal number misconceptions. Thus, the model
parameters learned from these data, (e.g., the probability of an error of distraction (slip) or a

lucky guess), do not reflect the actual relationship between student performance and
knowledge during game playing. This relationship is likely to be different than in traditional
tests. Several studies have shown that students can be successful game players by learning
superficial heuristics rather then by reasoning about the underlying domain knowledge.
Furthermore, students may make more slips during game playing, because they are distracted
by the game aspect of the interaction. In the work presented here, the data used to learn the
student model comes from interaction with Prime Climb. Thus, the model parameters provide
us with insights on how students learn and interact with this type of educational system, in
itself a contribution given the relative lack of understanding of these mechanisms.
 In the rest of the paper, we first introduce the Prime Climb game and an initial version of its
student model (both described in more details in [3]). Next, we present a study to evaluate this
model’s accuracy. We then describe a data-drive refinement of the model, assess its accuracy
and analyze the sensitivity to its various parameters. Finally, we introduce a further
improvement with the modelling of common factoring, and compare the three student models.

2. The Prime Climb Game and Initial Student Model

Think about how to factorize the
number you clicked on

Think about how to factorize the
number you clicked on

Figure 1a: The Prime Climb Interface b: A factor tree displayed in the PDA

In Prime Climb (devised by the EGEMS group at the University of British Columbia) students
in 6th and 7th grade practice number factorization by pairing up to climb a series of mountains.
Each mountain is divided into numbered sectors (see Figure 1a), and players must try to move
to numbers that do not share common factors with their partner’s number, otherwise they fall.
To help students, Prime Climb includes the Magnifying Glass, a tool that allows players to
view the factor tree for any number on a mountain. This factor tree is shown in the PDA
displayed at the top right corner of the game (see Figure 1b).
 Each student also has a pedagogical agent (Figure 1a) which provides individualized
support, both on demand and unsolicited, when the student does not seem to be learning from
the game (see [3] for more details on the agent’s behaviours). To provide appropriate
interventions, the agent must have an accurate model of student learning. However, this
modelling task involves a high level of uncertainty because, as we discussed earlier, game
performance tends to be a fairly unreliable reflection of student knowledge. We use Dynamic
Bayesian networks (DBNs) to handle this uncertainty.
 A DBN consists of time slices representing relevant temporal states in the process to be
modelled. In Prime Climb, there is a DBN for each mountain that a student climbs (the short-
term student model). A time slice is created in this network after every student action, to
capture the evolution of student knowledge as the climb proceeds. Each short term model
includes the following random binary variables:
• Factorization (F) Nodes: each factorization node Fx represents whether the student has

mastered the factorization of number x down to its prime factors.
• Knowledge of Factor Tree (KFT) Node: models knowledge of the factor tree representation.

• Click Nodes: each click node Cx models the correctness of a student’s click on number x.
• Magnification (Mag) Nodes : each Magx node denotes using the magnifying glass on number

x.
 The network for a given mountain includes F nodes for all its numbers, F nodes for their
factors, and the KFT node. Click and Mag nodes are introduced in the model when the
corresponding actions occur, and are immediately set to one of their values.
 Figure 2 illustrates the structure that we used in the first version of the model to represent
the relations between factorization and click nodes1. A key assumption underlying this
structure, derived from mathematics teachers, is that knowing the prime factorization of a
number influences the probability of knowing the factorization of its factors, while the opposite
is not true. It is hard to predict if a student knows a number’s factorization given that s/he
knows how to factorize its non-prime factors.
 To represent this assumption, F nodes are linked as parents of nodes representing their non-
prime factors. The conditional probability table (CPT) for each non-root F node (e.g. Fx in
Figure 2a) is defined so that the probability of the node being known is high when all the
parent F nodes are true, and decreases proportionally with the number of unknown parents.
The action of clicking on number x when the partner is on number k is represented by adding a
click node Cx as parent of nodes Fx and Fk (see Figure 2b). Thus, evidence coming from click
actions is represented in the diagnostic rather than causal direction. This structure prevents
evidence on a number x from propagating upwards to the numbers that contain it as a factor
(e.g. Fz in Figure 2b), thus respecting the insights provided by our teachers.

ti−1 ti

a b

FZ

FX FG

FUFY

FWFV

FZ

FG FX

CX

FK

Figure 2. a: Factorization nodes, where Z=X*G and Y=V*W*X; b: Click action

Note that this model has two major limitations. The first is that it does not apportion blame
for an incorrect click in a principled way. The two F nodes involved in a click should be
conditionally dependent given the action, so that the node with the lower probability can be
“blamed” more for the incorrect move. This dependency could be modelled by adding a
link between the two F nodes (e.g, Fx and Fk in Fig. 2b), however this would increase the
model’s complexity so we chose not to. The second limitation is that the model does not
include a node to explicilty represent knowledge of the common factor concept, which is a
key component in playing the game successfully.

Although we were aware of these limitations, we wanted to investigate how far this
relatively simple model would take us. In an initial study, the game with the agent giving help
based on the above model generated significantly better learning than the game without agent
[3]. However, the study was not designed to ascertain the role of the model in this learning.
Hence, we ran a second study specifically designed to determine the model’s accuracy.

2.1 Study for Model Evaluation

The study included data from 52 students in 6th and 7th grade. Each student played Prime
Climb for approximately 10 minutes, with an experimenter as partner. All game actions were
logged. Students were given identical pre and post-tests to gauge their factorization knowledge
of 10 numbers frequently involved in the first two game levels, as well as their understanding

1 We don’t discuss the mechanisms to model learning through usage of the magnifying glass, because they are not involved in the model
refinement process discussed here. See [3] for more details.

of the common factoring concept. We used the post-test answers to evaluate the model’s
assessment after game play (as explained in section 3.1). Despite an effort to fine-tune the
model using data from the study, its accuracy was no better than chance (50.8%). This is not
surprising, given the model limitations described above. The fact that agent condition showed
significantly better learning indicates that even hints based on an almost random model are
better than no hints at all. However, the fact that there was still large room for improvement in
the post-tests of the agent-condition suggests that a more accurate student model may yield
even more substantial learning gains. Thus, we set to improve our model to incrementally
address the two limitations discussed earlier. This process resulted in two new versions of the
model, both with parameters learned from data, which we illustrate in the following sections.

3. New Model – Causal Structure

One of the limitations of the original model is that it did not correctly apportion blame for
incorrect moves. The new model uses a causal structure over click nodes to fix this problem.
Each click node is added as child of the two F nodes involved in the click (see Figure 3a in
contrast to Figure 2b). Thus, these nodes become conditionally dependent given a click and
share the blame for an incorrect action proportionally to their probability.

Fx Fk P(Click=C) Prior Fz Fy P(Fx=K)
K K 1-α K K or U 1
K U e_guess K K max
U K e_guess K U max/2
U U guess U K max/2

ti

a

ti+1

b

FY FZ

FX

CX

Fk

PriorX FY FZ

FX

U

U U 0
Figure 3. a: Click configuration at time ti.; b: Roll-up on node Fx at time ti+1 when node Fx has two parents.
K: known, U: unknown, C: correct

The three parameters needed to specify this configuration are α, e_guess, and guess (Figure

3a). The α parameter represents the probability of making an incorrect move despite knowing
the factors of the relevant numbers, because of either a slip or lack of understanding of the
common factoring concept. The guess parameter represents the probability of a correct move
when both the numbers involved are unknown. The e_guess (educated guess) parameter is
introduced to represents the possibility that it is easier to guess correctly when knowing the
factorization of one of the numbers.

To reduce the computational complexity of evaluating the short-term model, at any given
time we maintain at most two time slices in the DBN. This requires a process known as roll-
up, i.e. saving the posterior probabilities of the slice that is removed (e.g., slice in Figure 3a)
into the new slice that is created (e.g., slice in Figure 3b). Posterior probabilities of root nodes
in the removed slice are simply saved as priors of the corresponding nodes in the new slice. For
non-root nodes the process is more complicated, and requires different approaches for various
network configurations [3,10]. The approach proposed here is as follows: for every non-root F
node that needs to be rolled up (e.g. Fx in Figure 3a) we introduce an additional Prior node in
the new time slice (e.g. Priorx in Figure 3b), and give it as a prior the posterior of the F node in
the previous time slice.

The CPT for the F node in the new slice (see table for Fx in Figure 3b) is set up such that
knowing the factorization in the previous time slice implies knowing the factorization in the
current slice (i.e. we do not model forgetting). Otherwise, the probability of the node being
known is 0 when all the parent F nodes are unknown, and increases proportionally with the
number of known parents to a maximum of max, the probability that the student can infer the
factorization of x by knowing the factorization of its parent nodes.

We now describe how we learn the parameters α, e_guess, guess, and max from data from
the user study described in the previous section.

3.1 Setting Parameters from Data

When all the nodes involved in a given CPT are observable, the CPT values can be learned
from frequency data. F nodes are not usually observable, however, we have pre and post-test
assessment on 10 of these nodes for each of our 52 students. If we consider data points in
which pre and post-test had the same answer, we can assume that the value of the
corresponding F nodes remained constant throughout the interaction (i.e. no learning
happened), and can use these points to compute the frequencies for the CPT entries involving
α, guess, and e_guess. We found 58 such data points in our log files, yielding the frequencies in
Table 1.

As Table 1 shows, the frequency for the α parameter is based
on 44 points, thus we feel confident fixing its value at 0.23.
However, because we have far fewer points for the e_guess and
guess parameters we must estimate these parameters in another
manner. Similarly, we cannot use frequencies to set the max
parameter as we do not have data on Prior nodes, which

represent the (possibly changing) student knowledge at any given point in the interaction.
To select ideal values for e_guess, guess and max we attempt to fit the data to the answers

students gave on post-tests. We fix the parameters to a specific triplet, feed each student’s log
file to the model, and then compare the model’s posterior probabilities over the 10 relevant F
nodes with the corresponding post-test answers. Repeating this for our 52 students yields 520
<model prediction, student answer> pairs for computing model accuracy. Since it would be
infeasible to repeat this process for every combination of parameter values, we select initial
parameter values by frequency estimates and intuition. Next we determine whether the model
is sensitive to any of the three parameters, and if so, try other parameter settings. The values
used initially for e_guess were {0.5,0.6,0.7}, chosen using Table 1 as starting point. For guess
there are too few cases to base the initial values on frequencies, so we rely on the intuition that
they should be less than or equal to the e_guess values, and thus use {0.4,0.5,0.6}. For max we
use {0,0.2,0.4}. We try all 27 possible combinations of these values and chose the setting with
the highest model accuracy.

To avoid over fitting the data, we perform 10-fold cross-validation by splitting our 520 data
points to create 10 training/test folds. For each fold, we select the parameter triplet which
yields the highest accuracy on the 90% of the data that forms that training set, and we report its
accuracy on the 10% in the test set. We then select the parameter setting with the best training
set performance across folds.

As our measure of accuracy, we chose (sensitivity + specificity)/2 [12]. Sensitivity is the
percentage of known numbers that the model classifies as such; specificity is the percentage
of unknown numbers classified as such. Thus, we need a threshold that allows us to classify
model probabilities as known or unknown. To select an adequate threshold, we picked several
different threshold values, and computed the average model accuracy on training set across all
10 folds and 27 parameter settings. The threshold yielding the highest average accuracy was
0.8 (see Table 2). Note that the standard deviation across folds is low, indicating that we are
not over fitting the data.

Using a threshold of 0.8, the setting with best performance across all 10 folds (highest
accuracy in all but one of the folds) was 0.5 for both e_guess and guess and 0 for max. The
fact that the two guess parameters are high confirms previous findings that students can often
perform well in educational games through lucky guesses or other heuristics not requiring
correct domain knowledge.

Table 1: Parameter estimates
from click frequencies
Parameter Freq Points
a 0.23 44
e_guess 0.75 12
guess 0 2

The fact that they are equal indicates that there is no
substantial difference in the likelihood of a lucky guess
given different degrees of domain knowledge. The setting of
0 for max indicates that the teacher-suggested relation
between knowing the factorization of a number and knowing
the factorization of its non-prime factors may be too tenuous
to make a difference in our model (more on this in the next
section).

Using these settings, our model achieves an average test set accuracy of 0.776, with a
sensitivity of 0.767, and a specificity of 0.786. This is a substantial improvement over the
0.508 accuracy of the old model.

3.2 Model Sensitivity to Individual Parameters

To investigate how sensitive our model is to each parameter, we fix two of the parameters and
calculate the standard deviation of the model’s accuracy across all three values of the third.
This yields an average standard deviation of 0.002 for e_guess, 0.005 for guess, and 0.002 for
max, indicating low sensitivity to small changes in these parameters. To rule out the possibility
that the three values we initially chose for each parameter were not ideal, we try more extreme
values (0.3 and 0.1 for guess and e_guess; 0.6 and 0.8 for max). All of them yielded worse
accuracy, indicating that the model is sensitive to larger changes in these parameters. Slight
variation of the α parameter also produced little change in accuracy, with more extreme values
(0.1 and 0.5) decreasing accuracy. These results indicate that we were able to identify adequate
value ranges for the parameters in our new model configuration, and that the model is not
sensitive to small changes of these parameters in the given ranges. They also suggest that we
could select a value slightly higher than 0 for the max parameter if we want to maintain the
teacher-suggested relationship among F nodes in the model, or we can choose to ignore these
relationships if we need to improve the efficiency of model update.

Finally, we analyzed the sensitivity of the model
to the initial prior probability of F nodes. All
results presented thus far have used population
priors derived from frequencies over all students’
pre-tests. We tried two more settings: (i) Default,
which gives a prior of 0.5 for each F node; (ii)
Individual, with priors derived from each student’s
pre-test answers. As the Receiver-Operator Curve
(ROC) in Figure 4 show, population priors and
individualized priors do better than default priors at
most thresholds. However, the model can still
have good performance even when accurate priors
are not available (maximum accuracy is 0.717 for
default, 0.776 for population, and 0.828 for

individualized).
Although this new model has shown significant gains in accuracy, we wanted to see

whether we could get further improvements by addressing the second limitation of the original
model: omitting the concept of common factoring. We discuss its addition in the next section.

4. Modelling Common Factoring Knowledge

Because the model discussed above does not model common factor knowledge, when a student
makes an incorrect move despite knowing the factorization of both numbers involved, the

Table 2: Average training set
accuracy across folds by threshold
Threshold Accuracy Std. Dev.
0.4 0.624 0.010
0.5 0.697 0.009
0.65 0.753 0.007
0.8 0.772 0.007
0.95 0.725 0.006

ROC - Influence of Priors

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

1-specificity

se
ns

iti
vi

ty

Default Priors

Population Priors

Individual Priors

Figure 4: ROC curves comparing priors
influence on sensitivity and specificity.

model can only infer that the student either made a slip or does not know the concept of
common factors. This limits the system’s capability to provide precise feedback based solely
on model assessment. However, modelling common factor knowledge increases model
complexity. To see how much we can be gained from this addition, we generated a new model
that includes a common factor node (CF) as a parent of each click action (Figure 5). Note that
the CPT entry corresponding to an incorrect action when all the parent nodes are known now
isolates the probability of a slip. As before, the guess and edu-guess parameters in the CPT
reflect potential differences in the likelihood of a lucky guess given different levels of existing
knowledge.

We use the same process described in the previous sections to set the parameters in the new
model. Optimal threshold is again 0.8, while optimal parameter setting is 0.2 for slip, 0.6 for
e_guess and guess, and 0 for max, showing good consistency with parameters in the model
without CF node. Like that model, the new model is also not very sensitive to small changes in
the parameters. Its average test set accuracy with population priors across all folds is 0.768
(SD 0.064) over F nodes and 0.654 for CF node (SD 0.08).

Figure 6 compares the accuracy of the three
models and of a baseline chance model in
assessing number factorization knowledge. As we
can see, the accuracy of the assessment on number
F nodes does not change considerably between the
CF and no CF version. Furthermore, the
assessment accuracy over CF is not very high. This
may suggest that the addition of the CF node
would not substantially increase the model’s
capability to support precise didactic interventions,
and thus may not be worth the potential delays in
model updates due to larger CPTs. However, two
factors speak to the contrary. The first is that we

have not seen these delays in our test runs. The second is that our current data may not be
sufficient for accurate parameter learning in this more complex model, as it is suggested by the
larger standard deviation of accuracy across folds compared to the no CF version. We plan to
gather more data and see if that improves accuracy in the CF assessment of the model.

5. Discussion and Future Work

Although even simple games like Prime Climb are extremely motivating for students, as we
observed during our studies, there is currently very little evidence that simple or complex edu-
games trigger learning. Usually this is not because of poor design, but because it is difficult to
introduce intervention elements that make students reflect on domain knowledge without
interfering with engagement. An accurate model of student learning is essential for balancing
the trade-off between fostering learning and engagement in an educational game.

CF Fy Fz P(Click=C)
K K K 1-slip
K K U e_guess
K U K e_guess
K U U guess CY

FY FZ CF

U K or U guess

Figure 5: Click configuration with common factor node

ROC - Model comparisons

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

1-specificity

se
ns

iti
vi

ty

Old Model

New Model - no CF

New Model - CF

Chance

Figure 6: ROC curve comparisons of the three
models and chance.

In this paper, we presented research to improve a model of student learning during the
interaction with Prime Climb, an edu-game for number factorization. The model is to be used
by a pedagogical agent that generates tailored interventions to trigger student reasoning when
the student seems not to be learning well from the game. We discussed how we substantially
improved the accuracy of an initial model by (i) changing the causality of the dependencies
between knowledge and evidence nodes; (ii) learning model parameters from data. We also
described a third version of the model that includes a common factor node to increase the
specificity of the didactic advice that the model can support.

The next step in this research is to explore whether we can further increase model accuracy
by (1) obtaining data to refine the part of the model that includes information on usage of the
Magnifying Glass [3]; (2) including in the model the Prime Climb agent’s interventions, which
are currently not considered because we wanted to ascertain model accuracy before adding
agent actions that relied on the model.

We also plan to run ablation studies to verify what impact the model accuracy has on
overall effectiveness of the pedagogical agent. Finally, we wish to explore the scalability of
our approach to modelling learning in more complex games and skills.

Acknowledgments

This research has been sponsored by an NSERC PGS-M scholarship. We thank Heather
Maclaren helping with the user study, and Giuseppe Carenini for his help with data analysis

References

 [1] Beck, J., P Jia and J. Mostow. Assessing Student Proficiency in a Reading Tutor That Listens. User
Modeling 2003: pp. 323-327.
[2] Conati, C. and H. Maclaren. Data-driven Refinement of a Probabilistic Model of User Affect. To appear in
User Modeling 2005.
[3] Conati, C. and X. Zhao. Building and Evaluating an Intelligent Pedagogical Agent to Improve the
Effectiveness of an Educational Game. Intelligent User Interfaces 2004. pp. 6-13.
[4] Croteau, E. A., N. T. Heffernan and K. R. Koedinger. Why Are Algebra Word Problems Difficult? Using
Tutorial Log Files and the Power Law of Learning to Select the Best Fitting Cognitive Model. Intelligent
Tutoring Systems 2004. pp. 240-250.
[5] Klawe, M. When Does The Use Of Computer Games And Other Interactive Multimedia Software Help
Students Learn Mathematics? NCTM Standards 2000 Technology Conference, 1998.
[6] Leemkuil, H., T. De Jong, R. deHoog, and N. Christoph. KM Quest: A collaborative Internet-based
simulation game. Simulation & Gaming, 2003, 34(1).
[7] M. Mayo and A. Mitrovic. Optimising ITS Behaviour with Bayesian Networks and Decision Theory.
International Journal of Artificial Intelligence in Education 2001. 12, pp 124-153.
[8] Nicholson, A.E., T. Boneh, T.A. Wilkin, K. Stacey, L. Sonenberg, V. Steinle: A Case Study in Knowledge
Discovery and Elicitation in an Intelligent Tutoring Application. Uncertainty in Artificial Intelligence 2001.
[9] Randel, J.M., B.A. Morris, C.D. Wetzel, and B.V. Whitehill, The effectiveness of games for educational
purposes: A review of recent research. Simulation & Gaming, 1992, 23(3).
[10] Schafer, R. And T. Weyrath. Assessing Temporally Variable User Properties with Dynamic Bayesian
Networks. User Modeling 1997.
[11] VanLehn, K. Student modeling. Foundations of Intelligent Tutoring Systems. M. Polson and J. Richardson.
Hillsdale, NJ, Lawrence Erlbaum Associates. (1988). pp. 55-78.
[12] VanLehn, K. and Z. Niu Bayesian student modeling, user interfaces and feedback: A sensitivity analysis.
International Journal of Artificial Intelligence in Education, 2001. 12, pp. 154-184.

