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Abstract. We describe research on data-drive refinement and evaluation of a 
probabilistic model of student learning for an educational game on number 
factorization. The model is to be used by an intelligent pedagogical agent to improve 
student learning during game play. An initial version of the model was designed based 
on teachers’ advice and subjective parameter settings. Here we illustrate data-driven 
improvements to the model, and we report results on its accuracy. 

 
 
1. Introduction 
 
A student model is one of the fundamental components of an intelligent learning environment 
[11], and much research has been devoted to creating student models for various types of 
computer based support. However, little work exists on student modelling for a relatively new 
type of pedagogical interaction, educational computer games (edu-games from now on). In this 
paper, we describe the design and evaluation of a student model to assess student learning 
during the interaction with Prime Climb, an edu-game for number factorization.  
 The main contribution of this work is a step toward providing intelligent computer based 
support to learning with edu-games.  Providing this support is both extremely valuable and 
extremely challenging. It is valuable because, although there is overwhelming evidence that 
even fairly simple edu-games can be highly motivating, there is little evidence that these 
games, no matter how sophisticated they are, can actually trigger learning, unless they are 
integrated with ad hoc supporting activities [5,9,6]. This is because many students manage to 
successfully play these games without necessarily having to reason about the underlying 
domain knowledge. We argue that individualized support based on careful assessment of 
student learning during game playing can help overcome this limitation and make edu-games 
an effective new form of learning. 
 Providing this support is challenging because it requires careful tradeoffs between fostering 
learning and maintaining positive affective engagement. Thus, it is crucial to have accurate 
models of both student learning and affect.  Creating these models is hard, however, because it 
necessitates understanding about cognitive and affective processes on which there is very little 
knowledge, given the relative novelty of games as educational tools. In [2] we present a model 
of student affect for the Prime Climb edu-game.  Here we focus on the model of student 
learning. In particular, we describe the data-drive refinement and evaluation of an initial model 
based on expert knowledge and subjective judgements, previously described in [3]. 
 There is increasing research in learning student models from data (e.g., [1,4,7]), but most of 
this research has focused on student models for more traditional ITS systems. An exception is 
[8], which describes a student model learned from data for a game designed to address 
common misconceptions about decimal numbers. The data used in [8] come from students’ 
performance on a traditional test to detect decimal number misconceptions. Thus, the model 
parameters learned from these data, (e.g., the probability of an error of distraction (slip) or a 



lucky guess), do not reflect the actual relationship between student performance and 
knowledge during game playing. This relationship is likely to be different than in traditional 
tests. Several studies have shown that students can be successful game players by learning 
superficial heuristics rather then by reasoning about the underlying domain knowledge. 
Furthermore, students may make more slips during game playing, because they are distracted 
by the game aspect of the interaction. In the work presented here, the data used to learn the 
student model comes from interaction with Prime Climb. Thus, the model parameters provide 
us with insights on how students learn and interact with this type of educational system, in 
itself a contribution given the relative lack of understanding of these mechanisms. 
 In the rest of the paper, we first introduce the Prime Climb game and an initial version of its 
student model (both described in more details in [3]).  Next, we present a study to evaluate this 
model’s accuracy. We then describe a data-drive refinement of the model, assess its accuracy 
and analyze the sensitivity to its various parameters. Finally, we introduce a further 
improvement with the modelling of common factoring, and compare the three student models.  
 
 
2. The Prime Climb Game and Initial Student Model  
 

Think about how to factorize the 
number you clicked on

Think about how to factorize the 
number you clicked on

 

 

Figure 1a: The Prime Climb Interface              b: A factor tree displayed in the PDA 
 
In Prime Climb (devised by the EGEMS  group at the University of British Columbia) students 
in 6th and 7th grade practice number factorization by pairing up to climb a series of mountains. 
Each mountain is divided into numbered sectors (see Figure 1a), and players must try to move 
to numbers that do not share common factors with their partner’s number, otherwise they fall.  
To help students, Prime Climb includes the Magnifying Glass, a tool that allows players to 
view the factor tree for any number on a mountain. This factor tree is shown in the PDA 
displayed at the top right corner of the game (see Figure 1b).  
 Each student also has a pedagogical agent (Figure 1a) which provides individualized 
support, both on demand and unsolicited, when the student does not seem to be learning from 
the game (see [3] for more details on the agent’s behaviours).  To provide appropriate 
interventions, the agent must have an accurate model of student learning.  However, this 
modelling task involves a high level of uncertainty because, as we discussed earlier, game 
performance tends to be a fairly unreliable reflection of student knowledge.  We use Dynamic 
Bayesian networks (DBNs) to handle this uncertainty. 
 A DBN consists of time slices representing relevant temporal states in the process to be 
modelled. In Prime Climb, there is a DBN for each mountain that a student climbs (the short-
term student model). A time slice is created in this network after every student action, to 
capture the evolution of student knowledge as the climb proceeds. Each short term model 
includes the following random binary variables: 
• Factorization (F) Nodes: each factorization node Fx represents whether the student has 

mastered the factorization of number x down to its prime factors.  
• Knowledge of Factor Tree (KFT) Node: models knowledge of the factor tree representation. 



• Click Nodes: each click node  Cx  models the correctness of  a student’s click on number x. 
• Magnification (Mag) Nodes : each Magx node denotes using the magnifying glass on  number 

x. 
 The network for a given mountain includes F nodes for all its numbers, F nodes for their 
factors, and the KFT node.  Click and Mag nodes are introduced in the model when the 
corresponding actions occur, and are immediately set to one of their values. 
 Figure 2 illustrates the structure that we used in the first version of the model to represent 
the relations between factorization and click nodes1. A key assumption underlying this 
structure, derived from mathematics teachers, is that knowing the prime factorization of a 
number influences the probability of knowing the factorization of its factors, while the opposite 
is not true. It is hard to predict if a student knows a number’s factorization given that s/he 
knows how to factorize its non-prime factors.  
    To represent this assumption, F nodes are linked as parents of nodes representing their non-
prime factors. The conditional probability table (CPT) for each non-root F node (e.g. Fx in 
Figure 2a) is defined so that the probability of the node being known is high when all the 
parent F nodes are true, and decreases proportionally with the number of unknown parents.  
The action of clicking on number x when the partner is on number k is represented by adding a 
click node Cx as parent of nodes Fx and Fk (see Figure 2b).  Thus, evidence coming from click 
actions is represented in the diagnostic rather than causal direction.  This structure prevents 
evidence on a number x from propagating upwards to the numbers that contain it as a factor 
(e.g. Fz in Figure 2b), thus respecting the insights provided by our teachers.  
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Figure 2. a: Factorization nodes, where  Z=X*G and Y=V*W*X;  b: Click action 

Note that this model has two major limitations. The first is that it does not apportion blame 
for an incorrect click in a principled way. The two F nodes involved in a click should be 
conditionally dependent given the action, so that the node with the lower probability can be 
“blamed” more for the incorrect move. This  dependency could be modelled by  adding  a 
link between the two F nodes (e.g, Fx and Fk in Fig. 2b), however this would increase the 
model’s complexity so we chose not to.  The second limitation is that the model does not 
include a node to explicilty represent knowledge of the common factor concept, which is a 
key component in playing the game successfully.  

Although we were aware of these limitations, we wanted to investigate how far this 
relatively simple model would take us.  In an initial study, the game with the agent giving help 
based on the above model generated significantly better learning than the game without agent 
[3]. However, the study was not designed to ascertain the role of the model in this learning. 
Hence, we ran a second study specifically designed to determine the model’s accuracy. 
 
2.1  Study for Model Evaluation  
 
The study included data from 52 students in 6th and 7th grade.  Each student played Prime 
Climb for approximately 10 minutes, with an experimenter as partner. All game actions were 
logged. Students were given identical pre and post-tests to gauge their factorization knowledge 
of 10 numbers frequently involved in the first two game levels, as well as their understanding 
                     
1 We don’t discuss the mechanisms to model learning through usage of the magnifying glass, because they are not involved in the model 
refinement process discussed here. See [3] for more details. 
 



of the common factoring concept. We used the post-test answers to evaluate the model’s 
assessment after game play (as explained in section 3.1). Despite an effort to fine-tune the 
model using data from the study, its accuracy was no better than chance (50.8%).  This is not 
surprising, given the model limitations described above. The fact that agent condition showed 
significantly better learning indicates that even hints based on an almost random model are 
better than no hints at all. However, the fact that there was still large room for improvement in 
the post-tests of the agent-condition suggests that a more accurate student model may yield 
even more substantial learning gains. Thus, we set to improve our model to incrementally 
address the two limitations discussed earlier. This process resulted in two new versions of the 
model, both with parameters learned from data, which we illustrate in the following sections. 
 
 
3.  New Model – Causal Structure 
 
One of the limitations of the original model is that it did not correctly apportion blame for 
incorrect moves. The new model uses a causal structure over click nodes to fix this problem.  
Each click node is added as child of the two F nodes involved in the click (see Figure 3a in 
contrast to Figure 2b). Thus, these nodes become conditionally dependent given a click and 
share the blame for an incorrect action proportionally to their probability. 

 
Fx Fk P(Click=C) Prior Fz Fy P(Fx=K) 
K K 1-α K K or U 1 
K U e_guess K K max 
U K e_guess K U max/2 
U U guess U K max/2 
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Figure 3. a: Click configuration at time ti.; b: Roll-up on node Fx at time ti+1 when node Fx has two parents.  
K: known, U: unknown, C: correct 

 
The three parameters needed to specify this configuration are α, e_guess, and guess (Figure 

3a). The α parameter represents the probability of making an incorrect move despite knowing 
the factors of the relevant numbers, because of either a slip or lack of understanding of the 
common factoring concept.  The guess parameter represents the probability of a correct move 
when both the numbers involved are unknown.  The e_guess (educated guess) parameter is 
introduced to represents the possibility that it is easier to guess correctly when knowing the 
factorization of one of the numbers. 

To reduce the computational complexity of evaluating the short-term model, at any given 
time we maintain at most two time slices in the DBN. This requires a process known as roll-
up, i.e. saving the posterior probabilities of the slice that is removed (e.g., slice in Figure 3a) 
into the new slice that is created (e.g., slice in Figure 3b). Posterior probabilities of root nodes 
in the removed slice are simply saved as priors of the corresponding nodes in the new slice. For 
non-root nodes the process is more complicated, and requires different approaches for various 
network configurations [3,10].  The approach proposed here is as follows: for every non-root F 
node that needs to be rolled up (e.g. Fx in Figure 3a) we introduce an additional Prior node in 
the new time slice (e.g. Priorx in Figure 3b), and give it as a prior the posterior of the F node in 
the previous time slice.   

The CPT for the F node in the new slice (see table for Fx in Figure 3b) is set up such that 
knowing the factorization in the previous time slice implies knowing the factorization in the 
current slice (i.e. we do not model forgetting). Otherwise, the probability of the node being 
known is 0 when all the parent F nodes are unknown, and increases proportionally with the 
number of known parents to a maximum of max, the probability that the student can infer the 
factorization of x by knowing the factorization of its parent nodes. 



We now describe how we learn the parameters α, e_guess, guess, and max from data from 
the user study described in the previous section.  
 
3.1 Setting Parameters from Data 
 
When all the nodes involved in a given CPT are observable, the CPT values can be learned 
from frequency data. F nodes are not usually observable, however, we have pre and post-test 
assessment on 10 of these nodes for each of our 52 students.  If we consider data points in 
which pre and post-test had the same answer, we can assume that the value of the 
corresponding F nodes remained constant throughout the interaction (i.e. no learning 
happened), and can use these points to compute the frequencies for the CPT entries involving 
α, guess, and e_guess. We found 58 such data points in our log files, yielding the frequencies in 
Table 1. 

As Table 1 shows, the frequency for the  α parameter is based 
on 44 points, thus we feel confident fixing its value at 0.23.  
However, because we have far fewer points for the e_guess and 
guess parameters we must estimate these parameters in another 
manner.  Similarly, we cannot use frequencies to set the max 
parameter as we do not have data on Prior nodes, which 

represent the (possibly changing) student knowledge at any given point in the interaction.   
To select ideal values for e_guess, guess and max we attempt to fit the data to the answers 

students gave on post-tests.  We fix the parameters to a specific triplet, feed each student’s log 
file to the model, and then compare the model’s posterior probabilities over the 10 relevant F 
nodes with the corresponding post-test answers. Repeating this for our 52 students yields 520 
<model prediction, student answer> pairs for computing model accuracy.  Since it would be 
infeasible to repeat this process for every combination of parameter values, we select initial 
parameter values by frequency estimates and intuition.  Next we determine whether the model 
is sensitive to any of the three parameters, and if so, try other parameter settings. The values 
used initially for e_guess were {0.5,0.6,0.7}, chosen using Table 1 as starting point.  For guess 
there are too few cases to base the initial values on frequencies, so we rely on the intuition that 
they should be less than or equal to the e_guess values, and thus use {0.4,0.5,0.6}.  For max we 
use {0,0.2,0.4}. We try all 27 possible combinations of these values and chose the setting with 
the highest model accuracy. 

To avoid over fitting the data, we perform 10-fold cross-validation by splitting our 520 data 
points to create 10 training/test folds.  For each fold, we select the parameter triplet which 
yields the highest accuracy on the 90% of the data that forms that training set, and we report its 
accuracy on the 10% in the test set.  We then select the parameter setting with the best training 
set performance across folds.  

As our measure of accuracy, we chose (sensitivity + specificity)/2 [12].  Sensitivity is the 
percentage of known numbers that the model classifies as such; specificity is the percentage 
of unknown numbers classified as such. Thus, we need a threshold that allows us to classify 
model probabilities as known or unknown.  To select an adequate threshold, we picked several 
different threshold values, and computed the average model accuracy on training set across all 
10 folds and 27 parameter settings. The threshold yielding the highest average accuracy was 
0.8 (see Table 2).  Note that the standard deviation across folds is low, indicating that we are 
not over fitting the data.   

Using a threshold of 0.8, the setting with best performance across all 10 folds (highest 
accuracy in all but one of the folds) was 0.5 for both e_guess and guess and 0 for max.  The 
fact that the two guess parameters are high confirms previous findings that students can often 
perform well in educational games through lucky guesses or other heuristics not requiring 
correct domain knowledge.   

Table 1: Parameter estimates 
from click frequencies 
Parameter Freq Points  
a 0.23 44  
e_guess 0.75 12  
guess 0 2  



The fact that they are equal indicates that there is no 
substantial difference in the likelihood of a lucky guess 
given different degrees of domain knowledge.  The setting of 
0 for max indicates that the teacher-suggested relation 
between knowing the factorization of a number and knowing 
the factorization of its non-prime factors may be too tenuous 
to make a difference in our model (more on this in the next 
section). 

Using these settings, our model achieves an average test set accuracy of 0.776, with a 
sensitivity of 0.767, and a specificity of 0.786. This is a substantial improvement over the 
0.508 accuracy of the old model.  
 
3.2   Model Sensitivity to Individual Parameters 
 
To investigate how sensitive our model is to each parameter, we fix two of the parameters and 
calculate the standard deviation of the model’s accuracy across all three values of the third.  
This yields an average standard deviation of 0.002 for e_guess, 0.005 for guess, and 0.002 for 
max, indicating low sensitivity to small changes in these parameters.  To rule out the possibility 
that the three values we initially chose for each parameter were not ideal, we try more extreme 
values (0.3 and 0.1 for guess and e_guess; 0.6 and 0.8 for max). All of them yielded worse 
accuracy, indicating that the model is sensitive to larger changes in these parameters. Slight 
variation of the α parameter also produced little change in accuracy, with more extreme values 
(0.1 and 0.5) decreasing accuracy. These results indicate that we were able to identify adequate 
value ranges for the parameters in our new model configuration, and that the model is not 
sensitive to small changes of these parameters in the given ranges. They also suggest that we 
could select a value slightly higher than 0 for the max parameter if we want to maintain the 
teacher-suggested relationship among F nodes in the model, or we can choose to ignore these 
relationships if we need to improve the efficiency of model update. 

Finally, we analyzed the sensitivity of the model 
to the initial prior probability of F nodes. All 
results presented thus far have used population 
priors derived from frequencies over all students’ 
pre-tests.  We tried two more settings: (i) Default, 
which gives a prior of 0.5 for each F node; (ii) 
Individual, with priors derived from each student’s 
pre-test answers. As the Receiver-Operator Curve 
(ROC) in Figure 4 show, population priors and 
individualized priors do better than default priors at 
most thresholds.  However, the model can still 
have good performance even when accurate priors 
are not available (maximum accuracy is 0.717 for 
default, 0.776 for population, and 0.828 for 

individualized). 
Although this new model has shown significant gains in accuracy, we wanted to see 

whether we could get further improvements by addressing the second limitation of the original 
model: omitting the concept of common factoring. We discuss its addition in the next section.  
 

4.  Modelling Common Factoring Knowledge 
 
Because the model discussed above does not model common factor knowledge, when a student 
makes an incorrect move despite knowing the factorization of both numbers involved, the 

Table 2: Average training set 
accuracy  across folds by threshold 
Threshold Accuracy Std. Dev. 
0.4 0.624 0.010 
0.5 0.697 0.009 
0.65 0.753 0.007 
0.8 0.772 0.007 
0.95 0.725 0.006 
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Figure 4: ROC curves comparing priors 
influence on sensitivity and specificity.   



model can only infer that the student either made a slip or does not know the concept of 
common factors. This limits the system’s capability to provide precise feedback based solely 
on model assessment. However, modelling common factor knowledge increases model 
complexity.  To see how much we can be gained from this addition, we generated a new model 
that includes a common factor node (CF) as a parent of each click action (Figure 5). Note that 
the CPT entry corresponding to an incorrect action when all the parent nodes are known now 
isolates the probability of a slip.  As before, the guess and edu-guess parameters in the CPT 
reflect potential differences in the likelihood of a lucky guess given different levels of existing 
knowledge.  
 
 
 
 
 
 
 
 
 

We use the same process described in the previous sections to set the parameters in the new 
model. Optimal threshold is again 0.8, while optimal parameter setting is 0.2 for slip, 0.6 for 
e_guess and guess, and 0 for max, showing good consistency with parameters in the model 
without CF node.  Like that model, the new model is also not very sensitive to small changes in 
the parameters.  Its average test set accuracy with population priors across all folds is 0.768 
(SD 0.064) over F nodes and 0.654 for CF node (SD 0.08).   

Figure 6 compares the accuracy of the three 
models and of a baseline chance model in 
assessing number factorization knowledge.  As we 
can see, the accuracy of the assessment on number 
F nodes does not change considerably between the 
CF and no CF version.  Furthermore, the 
assessment accuracy over CF is not very high. This 
may suggest that the addition of the CF node 
would not substantially increase the model’s 
capability to support precise didactic interventions, 
and thus may not be worth the potential delays in 
model updates due to larger CPTs. However, two 
factors speak to the contrary. The first is that we 

have not seen these delays in our test runs. The second is that our current data may not be 
sufficient for accurate parameter learning in this more complex model, as it is suggested by the 
larger standard deviation of accuracy across folds compared to the no CF version. We plan to 
gather more data and see if that improves accuracy in the CF assessment of the model.   

 
5.  Discussion and Future Work 
 
Although even simple games like Prime Climb are extremely motivating for students, as we 
observed during our studies, there is currently very little evidence that simple or complex edu-
games trigger learning.  Usually this is not because of poor design, but because it is difficult to 
introduce intervention elements that make students reflect on domain knowledge without 
interfering with engagement.  An accurate model of student learning is essential for balancing 
the trade-off between fostering learning and engagement in an educational game. 

CF Fy Fz P(Click=C) 
K K K 1-slip 
K K U e_guess 
K U K e_guess 
K U U guess CY

FY FZ CF

 
U K or U guess 

Figure 5: Click configuration with common factor node 
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In this paper, we presented research to improve a model of student learning during the 
interaction with Prime Climb, an edu-game for number factorization. The model is to be used 
by a pedagogical agent that generates tailored interventions to trigger student reasoning when 
the student seems not to be learning well from the game. We discussed how we substantially 
improved the accuracy of an initial model by (i) changing the causality of the dependencies 
between knowledge and evidence nodes; (ii) learning model parameters from data. We also 
described a third version of the model that includes a common factor node to increase the 
specificity of the didactic advice that the model can support.  

The next step in this research is to explore whether we can further increase model accuracy 
by (1) obtaining data to refine the part of the model that includes information on usage of the 
Magnifying Glass [3]; (2) including in the model the Prime Climb agent’s interventions, which 
are currently not considered because we wanted to ascertain model accuracy before adding 
agent actions that relied on the model.  

We also plan to run ablation studies to verify what impact the model accuracy has on 
overall effectiveness of the pedagogical agent.  Finally, we wish to explore the scalability of 
our approach to modelling learning in more complex games and skills. 
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