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Abstract. This paper presents an experimental evaluation of eye gaze data as a 

source for modeling user’s learning in Interactive Simulations (IS). We com-

pare the performance of classifier user models trained only on gaze data vs. 

models trained only on interface actions vs. models trained on the combination 

of these two sources of user interaction data. Our long-term goal is to build user 

models that can trigger adaptive support for students who do not learn well with 

ISs, caused by the often unstructured and open-ended nature of these environ-

ments. The test-bed for our work is the CSP applet, an IS for Constraint Satis-

faction Problems (CSP). Our findings show that including gaze data as an addi-

tional source of information to the CSP applet’s user model significantly im-

proves model accuracy compared to using interface actions or gaze data alone. 

Keywords: Eye tacking, Eye Movement Data, Interface Actions, Interactive 
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1 Introduction 

With increasing interest in using Interactive Simulations (IS) for education and train-

ing, it has become evident that not all students learn well from the rather unstructured 

and open-ended form of interaction that these e-learning environments provide [1, 2]. 

The long-term goal of our research is to devise mechanisms to provide guidance dur-

ing interaction with an IS, personalized to the needs of each individual student. De-

tecting these needs, however, is challenging because there is still limited knowledge 

of which behaviors are indicative of effective vs. non-effective interactions with an 

IS. Our general approach is to discover these behaviors from data, using (i) clustering 

to identify students who interact similarly with an IS, (ii) association rule mining to 

extract the relevant behaviors from each cluster, and (iii) finding ways to map these 

behaviors to learning performance. The resulting data is used to train a user model 

that recognizes the salient behaviors when a new user interacts with the system, and 

suggests interventions if those behaviors were labeled to be not conducive to learning. 

In previous work, we showed the effectiveness of this approach when only interface 



actions are used for clustering and classifying users [3]. We then started looking at the 

potential of gaze data as an additional source of information for assessing how well a 

user learns with an IS [4]. The results in [4] were encouraging, because they showed 

that gaze data alone can help distinguish those users who learn from an IS and those 

who do not. The results, however, related to the performance of a classifier that pre-

dicts user learning after seeing gaze data from a complete interaction session. Thus, 

they do not tell us if and how soon during interaction, gaze data can be used to predict 

learning performance, which is crucial to provide adaptive support as students work 

with a simulation.  

In this paper, we address this limitation by evaluating the over-time performance of 

classifiers that rely only on gaze data to determine learning, i.e. the performance of 

the classifier as a function of the gaze data available over time. We also thoroughly 

investigate the relative value of gaze data for user modeling in ISs by comparing the 

over-time performance of models trained on gaze data only vs. models trained on 

interface actions only vs. models trained on both data sources. While these compari-

sons are similar in nature to those described in [5, 6], the main difference is that this 

previous work focused on task-specific gaze patterns predefined a priori, while in our 

work we analyze gaze data in a much more general and automatic way, using task-

independent gaze features and automatic clustering to discover the relevant patterns. 

An additional contribution of this paper is an extension to the user modeling frame-

work described in [3] to improve the effectiveness of behavior clustering. The exten-

sion is a mechanism known as the hybrid approach to clustering that extends the typi-

cal clustering used in [3]. When information on user learning performance is available 

for a given data set, the hybrid approach leverages this information to guide clustering 

so that users are grouped in terms of both their distinguishing behaviors and their 

learning performance. We show that on-line classifiers trained on the groupings gen-

erated by the hybrid approach are significantly more accurate than classifiers trained 

on groupings defined solely based on learning gain. 

In the rest of the paper, we first discuss related work. Next, we briefly describe the 

CSP applet (the IS we have been using as a test-bed for our research). Then, we sum-

marize our user modeling framework, followed by a description of the various dimen-

sions of our evaluation (datasets, ways to generate the training sets, classifiers eva-

luated). Subsequently we report the results of the evaluation, and then present a 

second method for combining eye gaze and interface action data (using ensemble 

models) and its performance. Finally, we conclude with a discussion of future work.  

2 Related work  

Eye tracking has long been used in psychology for understanding cognition and per-

ception, but in recent years there has been increasing interest in leveraging eye-

tracking data also in HCI and in user modeling. Most of the existing work still uses 

gaze data for off-line analysis of processes of interest, as it is traditionally done in 

psychology. For instance, gaze data has been used to assess word relevance in a read-

ing task [7], to assess how well users process a given information visualization [8], to 

understand how users attend to adaptive hints in an educational game [9], to evaluate 



the impact of user differences on gaze patterns while processing a visualization [10], 

and to analyze attention to an open learner model [11].  

Some researchers, on the other hand, started to investigate gaze data as a source for 

real-time modeling of users. Some examples of real-time use of gaze data include: 

assessing user motivation during interaction with an intelligent tutoring system (ITS) 

[12]; determining a variety of elements relevant to supporting users during visualiza-

tion processing [13]; and detecting and reacting to disengagement in a gaze-reactive 

ITS [14]. Most closely related to our research on modeling users in ISs is the work by 

Conati and Merten [5] and Amershi and Conati [6]. They found that tracking a task-

specific gaze pattern defined a priori helped modeling user learning with an IS for 

mathematical functions. We extend this work by looking at a much broader range of 

general eye tracking features that are either task independent or based solely on iden-

tifying the main interface components of the target IS. This is an important distinc-

tion, for two reasons: (i) pre-defining gaze patterns that indicate learning may not 

always be possible, due to the often unstructured and open-ended nature of ISs; (ii) 

task specific patterns likely do not transfer to a different IS. Additionally, while [6] 

only evaluates the performance of a model that leverages both interface actions and 

gaze data, our work specifically compares and combines eye gaze with interface ac-

tions to better evaluate the added value of gaze data for user modeling in ISs. 

In the field of Educational Data Mining, clustering has been applied to different ap-

plications for discovering groups of similar users. Relevant to our work, in problem 

solving tasks, clustering has been used to find better parameter settings for models 

that assess student knowledge [15, 16]. Closer to our work, Shih and Koedinger em-

ployed clustering to discover student learning tactics and how these tactics relate to 

learning in a problem solving environment [17]. The clustering is done on sequences 

of student actions (namely, attempting to answer the problem and asking for help) 

using Expectation Maximization and Hidden Markov Models. Here, we are investi-

gating student behaviors in ISs, where interactions tend to be open-ended and typical-

ly there are many valid actions available at each point which makes looking at se-

quences of user actions computationally expensive (see [3], for a detailed discussion). 

Thus, we calculate features that summarize the interactions of each user, and then 

cluster users based on these features to find users with similar behaviors. Then, we 

extract the salient behaviors of each cluster which is orthogonal to clustering similar 

sequences of actions from different users together as done in [17]. 

3 The AISpace CSP applet 

This section describes the Constraint Satisfaction Problem (CSP) applet, which is the 

IS we have been using as the test-bed for our research. The CSP applet, shown in Fig. 

1, is one of a collection of interactive tools for learning artificial intelligence algo-

rithms, called AIspace [18]. Algorithm dynamics are demonstrated via interactive 

visualizations on graphs by the use of color and highlighting, and graphical state 

changes are reinforced through textual messages. 

A CSP consists of a set of variables, variable domains, and a set of constraints on 

legal variable-value assignments. Solving a CSP requires finding an assignment that 

satisfies all constraints. The CSP applet simulates application of the Arc Consistency 



3 (AC-3) algorithm for solving CSPs represented as networks of variable nodes and 

constraint arcs. AC-3 iteratively makes individual arcs consistent by removing varia-

ble domain values inconsistent with a given constraint, until all arcs have been consi-

dered and the network is consistent. Then, if there remains a variable with more than 

one domain value, a procedure called domain splitting can be applied to that variable 

to split the CSP into disjoint cases so that AC-3 can recursively solve each case. 

  

Fig. 1. CSP applet with an example CSP being solved 

The CSP applet provides several mechanisms for the interactive execution of the AC-

3 algorithm on a set of available CSPs. These mechanisms are accessible through the 

toolbar, or through direct manipulation of graph elements. The user can perform sev-

en different actions: (i) use the Fine Step button to see how AC-3 goes through its 

three basic steps (selecting an arc, testing it for consistency, removing domain values 

to make the arc consistent); (ii) directly click on an arc to apply all these steps at once; 

(iii) automatically fine step on all arcs one by one (Auto Arc Consistency button); (iv) 

pause auto arc consistency (Stop button); (v) select a variable to split on, and specify 

a subset of its values for further application of AC-3 (see popup box in the left side of 

Fig. 1); (vi) recover alternative sub-networks during domain splitting (Backtrack but-

ton); (vii) return the graph to its initial status (Reset button). As a student steps 

through a problem, the message panel above the graph reports a description of each 

step. Another message panel situated below the graph reports the domain splits made 

by the user (i.e., the value-variable assignment selected at each splitting point).  

4 User modeling framework 

This section briefly summarizes our user modeling framework for providing support 

during interaction with an IS, personalized to each student’s needs [3]. We will only 

focus on the components of the framework relevant to building the classifier user 

models evaluated later in the paper: Behavior Discovery (Fig. 2A) and User Classifi-

cation (Fig. 2B) (see [3, 19] for more details on the complete framework). 



In Behavior Discovery (Fig. 2A) user interaction data is first processed into feature 

vectors representing each user. Then, these vectors are clustered in order to (i) identi-

fy users with similar interaction behaviors, and (ii) determine which interaction beha-

viors are effective or ineffective for learning. The distinctive interaction behaviors in 

each cluster are identified via association rule mining [20]. This process extracts the 

common behavior patterns in terms of Class Association Rules (CAR) in the form of 

X c, where X is a set of feature-value pairs and c is the predicted class label for the 

data points where X applies. We use the Hotspot algorithm from the Weka datamin-

ing toolkit [21] for association rule mining, with an added initial parameter optimiza-

tion step (see [3] for details). In order to associate behaviors to learning performance, 

it is first necessary to establish how the user groups generated by clustering relate to 

learning. This can be done in different ways, depending on whether information on 

the users’ learning performance is available or not: 

─ If learning performance measures are not available, we face a problem of unsuper-

vised learning. In this case, clustering is done using k-means with a modified initia-

lization step (see [3] for more details on this technique and why it was selected). It 

is then left to the judgment of a human expert to evaluate how each cluster and as-

sociated behaviors may relate to learning. Since we have access to a learning per-

formance measure, this case is not considered in this paper. 

─ If learning performance measures are available, one possible approach is to gener-

ate the clusters solely based on interaction data, and then assign a label for each 

cluster by comparing the average learning performance of the users in that cluster 

with the performance of the users in the other clusters. This is the approach we 

successfully adopted in [3] to support on-line classification of CSP applet users in-

to high and low learners (called the old approach from now on). It is possible, 

however, that clustering solely based on behaviors do not generate groups with a 

clear (i.e., statistically significant) difference in learning performance, making it 

difficult to assign labels to the clusters automatically. To tackle this situation, we 

propose a solution that leverages user performance data to guide the clustering 

process, thus creating a hybrid approach (described in details in section 5.2).  

 

Fig. 2. Behavior Discovery and User Classification in the user modeling framework 

In User Classification (Fig. 2B), the labeled clusters and the corresponding Class 

Association Rules extracted in Behavior Discovery are used as training data to build 

an on-line classifier student model (rule-based classifier from now on). As new users 

interact with the system, they are classified in real-time into one of the clusters gener-

ated by Behavior Discovery, based on a membership score that summarizes how well 

(i.e. higher is better) the user’s behaviors match the discovered behavior patterns (i.e., 



association rules) for each cluster. This score is the normalized sum of weights of the 

satisfied rules over all the rules for each cluster as described in [3].  

5 Evaluation Dimensions 

The interaction data used as features by a classifier user model to perform on-line user 

classification can include a variety of sources. As we discussed in the introduction, in 

this paper we want to compare using features based on interface actions vs. eye gaze 

data vs. a combination of the two (see section 5.1). We also want to evaluate the ef-

fectiveness of each of the two major components of our classifier user model: (1) 

using the hybrid approach (described in section 5.2) to generate the training set for the 

classifiers (i.e. groups of users with labels that describe their learning performance) 

compared to a conventional approach; 2) using a rule-based classifier for learning vs. 

other available classifiers (see section 5.3). Thus, we have three dimensions in our 

evaluation: feature set, approach for training set generation, and type of classifier. In 

the rest of this section, we describe each of these three evaluation dimensions. 

5.1 Different feature sets for classification 

We calculated three sets of features for each user. The data was collected from a user 

study with 45 computer science students. Each participant: (i) studied a textbook 

chapter on the AC-3 algorithm; (ii) wrote a pre-test on the concepts covered in the 

chapter; (iii) used the CSP applet to study two CSPs, while her gaze was tracked with 

a Tobii T120 eye-tracker; (iv) took a post-test analogous to the pre-test [4]. 

The first set of features consists of statistical measures that summarize a user’s inter-

face actions (ACTION dataset from now on). We calculated usage frequency for each 

action, as well as mean and standard deviation of time interval between actions (simi-

lar to [3]) for a total of 12,308 actions. As described in section 3, there are 7 actions 

available on the interface resulting in 21 features (none were highly correlated). 

The second set of features captures user’s attention patterns using gaze information 

collected by the eye-tracker (EYE dataset from now on), namely fixations (i.e., main-

taining eye gaze at one point on the screen) and saccades (i.e., a quick movement of 

gaze from one fixation point to another). As was done in [4], the features were de-

rived by computing a variety of statistics (sum (total), average, standard deviation and 

rate) as appropriate, for the measures shown in Table 1. These measures were taken 

both over the full CSP applet window as well as over four Areas of Interest (AOI) 

defining salient visual elements of the applet (Toolbar, Top, Graph and Bottom shown 

in Fig. 1). In addition to the features above, following [4], the proportion of transi-

tions between different AOI pairs was also calculated. Unlike the ACTION dataset, of 

the initial 67 features in the EYE dataset, we found and removed 16 features that were 

highly correlated (r > 0.7), reducing the final number of eye-related features to 51. 

Finally, the third set of features (ACTION+EYE dataset) is obtained by combining 

the two feature sets described above. For each user, the ACTION and EYE feature 

vectors are concatenated to form a new vector with 72 features. This process generat-

ed a dataset with 45 datapoints (participants) with 72 dimensions (features). 

Given these three datasets, we want to test the following hypothesis: 



H1: Combining both eye tracking and interface action data significantly enhances the 

performance of the resulting user model, as opposed to using either eye tracking or 

interface actions data alone. 

Table 1. Description of basic eye tracking measures 

Measure  Description 

Fixation rate  Rate of eye fixations per milliseconds  

Number of Fixations Number of eye fixations detected during an interval of interest 

Fixation Duration Time duration of an individual fixation  

Saccade Length Distance between the two fixations delimiting the saccade 

Relative Saccade Angles The angle between the two consecutive saccades 

Absolute Saccade Angles The angle between a saccade and the horizontal axis 

Transitions between AOIs Transition of user’s gaze between two Areas of Interest 

5.2 Different approaches for training set generation 

As mentioned earlier, the first step in our approach for building a classifier user model 

is to identify groups of users that interact similarly with the learning environment and 

then label these groups based on the learning performance of their members, in order 

to provide the training set for the classifier. As pointed out in section 4, our old ap-

proach for generating this training set relied on clustering users solely based on their 

interactions. However, without a clear (i.e., statistically significant) difference in av-

erage learning performance of different clusters, it is difficult to assign labels to the 

clusters found. We encountered this problem when using clustering on the EYE data-

set. The only requirement for interpretability of the clusters in our approach is that 

there should be a significant difference between the average learning performances of 

members in different clusters, as measured by an appropriate statistical test. In other 

words, since we know the users in each cluster behave similarly, just knowing that the 

members of a cluster achieve significantly higher/lower average performance than 

other clusters, is enough to interpret salient behaviors observed in that cluster as ef-

fective/ineffective. Based on this requirement, we propose the hybrid approach first 

introduced in section 4. The hybrid approach finds the best cluster set (in terms of 

sum of within-cluster distances) with a significant difference in learning performance. 

The measure of learning performance used in this paper is Proportional Learning Gain 

(PLG), i.e., the ratio of the difference between post-test and pre-test, over the maxi-

mum possible gain; described in percentage ratio.  

When determining the optimal number of clusters with the hybrid approach using the 

three different feature sets described in section 5.1 (ACTION, EYE and 

ACTION+EYE), we found that two clusters was always the optimal number of user 

groups, but with slightly different composition. We use Fleiss' kappa (a measure of 

agreement between more than two raters) for comparing the three different sets of 

user labels thus generated and found high agreement (kappa = 0.701). This kappa 

value shows that the two groups detected using each feature set share the same core of 

users (supporting the relevance of using clustering to detect these groups), with few 

users that are labeled differently when using different sources of data (showing that 

there are non-overlapping information captured by each source). For illustration, the 



size and performance measures associated with the two clusters generated by the hy-

brid approach applied to the ACTION+EYE dataset is shown in Table 2, where LLG 

stands for Low Learning Gain and HLG stands for High Learning Gain. The differ-

ence in PLG is significant (p = 0.017 < 0.05) with a medium effect size (d = 0.625). 

When the performance measure of interest for classification is available (in our case, 

PLG), the conventional method for creating a training set of labeled classes is to di-

vide the performance spectrum into different ranges and putting users within each 

range into one group. Thus, in our evaluation we want to compare our hybrid ap-

proach for generating the training set against the standard approach that relies solely 

on PLG1. We generate what we call the PLG-based training set by dividing users into 

two groups based on the median of the PLG measure (45.83). Table 2 reports the size 

and PLG measures for the corresponding groups.  

Table 2. Descriptive statistics of the training sets generated via different methods 

 Hybrid on ACTION+EYE PLG-based 

HLG 
Number of users 19 22 

Average (std. dev.) 53.29 (SD = 22.79) 68.27 (SD = 12.39) 

LLG 
Number of users 26 23 

Average (std. dev.) 32.45 (SD = 39.33) 15.40 (SD = 30.29) 

 

When grouping users together, the hybrid approach relies on both PLG as well as the 

similarity in user interaction data as opposed to only relying on PLG. Thus, we argue 

that it can generate better performing user models since the user models can only rely 

on user interaction data when classifying users. This is the second hypothesis we will 

test in our evaluation: 

H2: The hybrid approach for training set generation outperforms the conventional 

PLG-based approach in terms of user model performance. 

5.3 Different types of classifiers 

Our goal is to evaluate the rule-based classifier generated by our user modeling 

framework. Thus, we compare its performance with a battery of ten different classifi-

ers available in the Weka toolkit on the EYE, ACTION and ACTION+EYE datasets. 

These classifiers are C4.5, Support Vector Machine, Linear Ridge Regression, Binary 

Logistic Regression, Multilayer Perceptron, as well as Random Subspace and Ada-

Boost with different base classifiers. We tested the 10 Weka classifiers on each of the 

three datasets, and report the results for the classifier with the highest performance, 

which we will simply refer to as the Weka classifier. The third hypothesis tested in 

this study is the following: 

H3: The rule-based classifier will have better performance compared to the best Weka 

classifier on each dataset. 

                                                           
1  Note that, the hybrid approach is an improvement over the old approach used in [3], to ad-

dress cases when the latter approach fails to find clusters with significant learning difference 

(e.g., the EYE dataset). In other cases, e.g. the dataset used in [3], both approaches produce 

the same cluster set; therefore, a comparison between these two approaches is not necessary. 



6 Results and discussion 

In this section, we present the evaluation results across each of the three dimensions 

described in the previous section. We compare the performance of the rule-based and 

Weka classifiers described in the previous section in terms of their average over-time 

accuracy in classifying new users as high or low learners. This means that, over equal 

time intervals, the interaction features for a new user are calculated cumulatively from 

the start of the interaction, and the classifier is asked to provide a label for this. In [3], 

classifier accuracy was calculated after each user action, because only actions were 

used as data sources. Here, however, we have two different data sources, which pro-

vide information at different rates (typically length of a fixation is much shorter than 

the time between two interface actions). Thus, we compute current accuracy of the 

classifier at intervals of 30 seconds, i.e., long enough for observing at least one user 

action and a fair number of fixations. Then, to be able to combine accuracy data 

across users (with different interaction durations), we retrieve current accuracy after 

every one percent of user interaction, calculating 100 accuracy points for each user. 

We use 9-fold cross validation for calculating the performance of the classifiers. Ta-

ble 3 summarizes the average over-time accuracy of the two classifiers on the three 

feature sets (ACTION, EYE, ACTION+EYE) using both the hybrid and the PLG-

based approach to generate the training set. We also report the average Cohen's kappa 

value for agreement between the actual labels and the labels predicted by the model. 

Cohen's kappa accounts for agreement by chance [23] and is useful here for compar-

ing performance across different dimensions, because the size of the classes generated 

by the PLG-based approach and by the hybrid approach on each feature set are 

slightly different, changing the probability of agreement by chance in each case.  

A 3 (feature set) by 2 (training set approach) by 2 (classifier type) ANOVA with kap-

pa scores as dependent measure shows significant main effects for each factor 

(F(1.43,198) = 294.27 for feature set; F(1,99) = 398.02 for training set; F(1,99) = 

329.98 for classifier type, with p < 0.001 for all factors). 

Table 3. Average over-time performance results for different training sets, classifiers and 

feature sets. The best performance in each column is indicated in bold. 

Training Set Classifier Measure Feature Set 

    
 

ACTION EYE ACTION+EYE 

PLG-based 

Weka 
Accuracy 51.18 57.62 58.18 

Kappa 0.027 0.144 0.157 

Rule-based 
Accuracy 57.24 64.29 62.2 

Kappa 0.134 0.283 0.245 

Hybrid 

Weka 
Accuracy 79.87 71.49 77.24 

Kappa 0.359 0.384 0.522 

Rule-based 
Accuracy 84.04 81.76 84.51 

Kappa 0.471 0.614 0.675 

 

For post-hoc analysis we used pair-wise t-tests with Bonferroni adjustment using the 

estimated marginal means for each factor. Pair-wise comparisons over the feature set 

factor shows that the models trained on the EYE+ACTION dataset outperform the 



models trained either on EYE or ACTION feature sets (p < 0.001), thus supporting 

H1. Pair-wise comparisons over the training set factor shows that the hybrid approach 

outperforms the PLG-based approach (p < 0.001), thus supporting H2. Finally, pair-

wise comparisons over the classifier type factor shows that the rule-based classifier 

significantly outperforms the Weka classifier (p < 0.001), thus supporting H3. The 

findings show that we were able to extend our user modeling framework with an ef-

fective training set generation approach (H2), and the updated framework is able to 

build models that employ interface actions and eye gaze data effectively (H3), rein-

forcing the validity of our findings regarding the added value of eye gaze data (H1). 

7 Ensemble model for combining EYE and ACTION features 

The superior performance generated by the feature set that combines gaze and action 

information indicates that there is an advantage in leveraging both data sources. Thus, 

we decided to investigate whether we could further this advantage by using a more 

sophisticated approach to combine gaze and action information. In particular, for each 

combination of training set (hybrid and PLG-based) and classifier type (rule-based vs. 

Weka) we created an ensemble classifier [24] that classifies a new user by using ma-

jority voting among the three following classifiers on the ACTION+EYE dataset: one 

trained using only the action-based features subset, one trained using the eye-based 

features subset, and one trained over the complete ACTION + EYE feature set. This 

ensemble model benefits from the added information captured by the eye gaze data (if 

any) by being able to correctly classify the user in some of the cases where the clas-

sifier trained solely on the action-based features fails. Moreover, in some cases where 

combining the features in the way that it is done in previous section on the 

ACTION+EYE dataset, is introducing some noise in the dataset, thus diluting the 

information value gained, the classifiers trained on eye-based subset and action-based 

subset will not be affected and will be able to capture characteristics of each user as 

detected by each data source. Therefore, we hypothesize that: 

H4: Each ensemble model outperforms the individual model equivalent to it (i.e., the 

model with the same classifier type and training set generation approach).  

Table 4 shows the performance results for the ensemble models (measured by kappa 

scores). In order to evaluate the performance of the ensemble models vs. the individu-

al models described in previous section, we performed a 2 (model type) by 2 (training 

set approach) by 2 (classifier type) ANOVA with kappa scores for the ACTION+EYE 

dataset as dependent measure. Here, we are only interested in testing to see whether 

there is a main effect for the model type factor (i.e., individual vs. ensemble). The 

analysis shows a significant main effect for the model type factor (F(1,99) = 165.420, 

with p < 0.001). Post-hoc analysis using pair-wise t-tests with Bonferroni adjustment 

shows that the ensemble models significantly (p < 0.001) outperform their individual 

model counterparts thus supporting H4. Particularly, we are interested in the best 

performing individual model (rule-based model trained using hybrid training set) and 

its ensemble equivalent, where in addition to improved average over-time perfor-

mance (86.56% vs. 84.51%), the ensemble model exhibits a more balanced perfor-

mance across the HLG and LLG classes as well (85.33% and 87.52% for the ensem-

ble vs. 79% and 88.54% for the individual model respectively).  



Table 4. Average over-time performance results for different training sets and classifiers for the 

ensemble models, in terms of kappa scores 

Training Set PLG-based Hybrid 

Classifier Weka Rule-based Weka Rule-based 

Kappa 0.194 0.315 0.585 0.725 

Considering the ultimate goal of providing adaptive interventions to the users during 

their interaction, we are also interested to have a user model that can achieve an ac-

ceptable accuracy in early stages of the interaction. Thus, we plotted the over-time 

accuracy of the rule-based ensemble model trained using hybrid training set in Fig. 3. 

Performance of the majority class classifier is also plotted as the baseline. The model 

achieves 80% accuracy in both classes after observing 22 percent of the interaction 

(Fig. 3), which shows that this model is highly reliable for providing adaptive inter-

ventions during the user interaction. 

 

Fig. 3. Over-time performance of the rule-based ensemble model  

8 Conclusion and future work  

We presented an experimental evaluation of eye gaze as an additional source of user 

data for modeling user’s learning in an IS for constraint satisfaction problems (the 

CSP applet). We also described a new approach for generating training sets from user 

data, called the hybrid approach. This mechanism extends our user modeling frame-

work originally described in [3], to be able to effectively utilize eye gaze data when 

building classifier user models. Our main finding is that eye gaze data when used as 

an additional source of user data in combination with the interface actions significant-

ly boosts the average over-time performance of the classifier user models trained to 

distinguish students who learned well from students who did not. We also demon-

strated that using the hybrid approach leads to models with significantly higher per-

formance compared to a conventional alternative. 

One possible extension of this work is to combine the gaze data in finer grained set-

ting by looking at the gaze patterns between consecutive interface actions. This 

enables the system to provide gaze based interventions in a more meaningful way. 

Another important aspect of future work is further evaluation of the hybrid approach 

for other interactive simulations and similar open-ended environments (generalizabili-

ty). We are also working on evaluating the effectiveness of the rule-based user model 

in triggering adaptive interventions for the CSP applet [25].  
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