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Abstract. In this paper, we explore the potential of gaze data as a source of in-

formation to predict learning as students interact with MetaTutor, an ITS that 

scaffolds self-regulated learning. Using data from 47 college students, we show 

that a classifier using a variety of gaze features achieves considerable accuracy 

in predicting student learning after seeing gaze data from the complete interac-

tion. We also show promising results on the classifier ability to detect learning 

in real-time during interaction.  

Keywords: student modeling, eye-tracking, self-regulated learning 

1 Introduction 

Student modeling is known to be a difficult problem because there is often a large gap 

between students behaviors observable by an Intelligent Tutoring Systems (ITS) and 

the students’ states and processes that the ITS needs to model in order to provide per-

sonalized instruction. One approach that is being explored to address this problem is 

to investigate the use of sensors that can help reduce the gap between the student’s 

relevant states and what an ITS can observe about them ].  

This paper contributes to this body of research by exploring the value of eye-

tracking data (also referred to as gaze data from now on) in assessing student learning 

during interactions with MetaTutor, a multi-agent ITS that scaffolds self-regulated 

learning (SRL) while students study material on the human circulatory system [2]. 

This research is part of a larger endeavor to understand and model the relations 

among affect, cognition and meta-cognition in learning with MetaTutor, by leverag-

ing multi-channel data sources including think-aloud protocols, eye-tracking, human-

agent dialogue, log-file, embedded quizzes, galvanic skin response, and face recogni-

tion. We decided to start by focusing on gaze data, because there is already evidence 

that it can provide useful information on all the student modeling dimensions we are 

interested in: cognitive [e.g. 3–5], metacognitive [6] and affective [7, 8]. We start by 

investigating if and how gaze data can be used to predict learning in MetaTutor be-

cause tracking whether a student is learning is important for a tutoring agent to decide 

when to provide personalized instruction.  



The main contribution of this paper are results showing that gaze data can indeed 

be a useful source of information to predict student learning with MetaTutor. This 

result is especially important because it does not exist in isolation. Similar research 

using a different type of learning environment (an interactive simulation to support 

learning by exploration), also found that gaze data was a good predictor of student 

learning [4]. Therefore, the results reported here contribute to confirm the importance 

of gaze data as a predictor of learning across different types of learning environments, 

that can be leveraged for providing real-time personalized support. 

In the rest of the paper, Section 2 summarizes related work. Section 3 describes 

MetaTutor, and the study that generated the data used in this paper. Section 4 de-

scribes how we trained classifiers on eye-tracking data to predict student learning. 

Section 5 reports the classification results, followed by conclusions and future work. 

2 Related Work 

Eye-tracking has been the focus of increasing interest in student modeling, as a way to 

track user’s states and processes at the cognitive, meta-cognitive and affective level. 

At the cognitive level, in addition to [4],  discussed above, Gluck and Anderson [5] 

used gaze data to assess student problem-solving behaviors within an ITS for algebra, 

including attention shifts, problem disambiguation and processing of error messages. 

Sibert et al. [9] explored gaze tracking to assess reading performance in a system for 

automated reading remediation that provides support if a user  gaze patterns indicate 

difficulties in reading a word. D’Mello et al. [3] show that tracking a student’s atten-

tion toward a Pedagogical Agent in a dialogue-based ITS and generating prompts to 

guide this attention, improves student learning. At the meta-cognitive level, [6] shows 

that using gaze data improves a student model’s ability to track students’ self-

explanation behaviors (i.e. generating explanations to one-self to improve one’s un-

derstanding), and consequent learning. At the affective level, Qu and Johnson [7] 

leveraged gaze data to assess student motivation in an  ITS for teaching engineering 

skills. Muldner et al. [8] looked at pupil dilation to detect relevant student affective 

and meta-cognitive states during the interaction with an ITS that supports analogical 

problem solving.   

In the context of modeling students’ SRL processes, so far researchers have mainly 

relied on mining action logs. For instance, Kinnebrew and Biswas [10], used sequence 

mining on action logs to identify effective and ineffective behaviors in students inter-

acting with Betty’s Brain, an ITS for scaffolding SRL via teachable agents. Bouchet 

et al. [11] performed similar work with MetaTutor, the ITS used in this paper. Sabou-

rin et al. [12], mined both actions and students self-reports on their affective states for 

the early prediction of SRL processes during interaction with Crystal Island, a narra-

tive-based and inquiry-oriented serious game for science.  

 

 



3 Meta Tutor Study  

MetaTutor is an adaptive hypermedia learning environment which includes 38 pages 

of text and diagrams, organized by a table of contents displayed in the left pane of the 

environment (see Figure 1
1
) [2]. Text and diagrams are displayed separately in the 

two central panels of the interface. In addition to providing structured access to rele-

vant content, MetaTutor also includes a variety of components designed to scaffold 

learners’ use of SRL processes and their learning of science topics, such as the human 

circulatory system. Four pedagogical agents (PAs) are displayed in turn in the upper 

right-hand corner of the environment. Each agent provides spoken prompts and feed-

back on various SRL processes. For example, one PA assists the student in establish-

ing two learning sub-goals related to the overall learning goal for the session (see top 

horizontal panel in Figure 1, with sub-goal panel right below). The shading of the 

sub-goal bars in the corresponding panel shows the student’s current progress towards 

completing that sub-goal as the interaction proceeds.  

 

 Fig. 11. Sample MetaTutor interface 

Other SLR processes supported by the PAs include taking notes, writing summaries 

of the viewed content, evaluating one’s current understanding, etc., and they can be 

initiated via the learning strategy palette displayed in the right interface pane.  

A study was conducted in 2012 with the goal of collecting multi-channel data to 

examine the role of cognitive, metacognitive, and affective processes during learning 

with MetaTutor [13]. The study included two conditions: one (adaptive) in which the 

Meta-Tutor’s PAs provided prompts and feedback adapted to each student’s perfor-

mance; another (non-adaptive) in which prompts and feedback were generic. The 

                                                           
1
 The boxed areas in the figure indicate Areas of Interest used for eye-tracking, as described in Section 4.  



study consisted of two sessions. In the first, participants (university students who 

were randomly assigned to the two study conditions) completed a pre-test on the cir-

culatory system and demographics questionnaires. The second session started with the 

calibration of apparatuses, including a Tobii T60 eye-tracker
2
. Next, each participant 

watched video tutorials on SRL processes and related interface functionalities, and 

was then asked to set two sub-goals for the session. After that, the participant inter-

acted with MetaTutor for one hour, followed by a post-test. In this paper, we focus on 

exploring whether the gaze data collected in the study can be leveraged to predict 

student learning, as measured by the study pre- and post-tests The next section de-

scribes how we built gaze-based classifiers to achieve this goal. 

4 Classification experiments  

For the current work, we used 64 participants with eye-tracking data collected in the 

study described above. For the subsequent analysis, we focused on data related to 

students interacting with MetaTutor, excluding parts of the interaction during which 

participants were watching video tutorials.  

The Tobii T60 eye-tracker used in the study is embedded in a LCD screen and thus 

it is non-intrusive, because it does not constrain participants’ movements. While this 

is a great asset, the down side is that the collected data can be noisy and needs valida-

tion. One source of noise is due to participants looking away from the screen, which 

the eye-tracker interprets as invalid data. These look-away events happen when there 

are pauses in the session or when students use one of the tools provided by MetaTutor 

to submit typed text to the system (e.g., while writing summaries on the material seen 

so far)
3
. We created scripts to parse the study action-log files for these events and 

remove the corresponding segments from gaze data.  

A second source of noise is due to actual eye-tracking errors that generate invalid 

gaze samples. Participants with gaze data that include too many invalid samples need 

to be discarded because the missing data makes it difficult to draw reliable inferences 

from these participants’ attention patterns. To account for this source of noise, we 

adopted the data validation process discussed in [4], which essentially discards partic-

ipants that have less than 80% valid samples overall, as reported by the eye-tracker 

(after removing known look-away events). The validation process resulted in discard-

ing 16 users, leaving a total of 48 for the actual classification study.  

4.1 Gaze features 

An eye-tracker captures gaze information in terms of fixations (i.e., maintaining gaze 

at one point on the screen) and saccades (i.e., a quick movement of gaze from one 

fixation point to another). Gaze patterns are further defined by measures that represent 

                                                           
2 Precision/accuracy  for X are 0.4-0.5°/0.18-0.36°,  for Y are 0.4-0.6°/0.18-0.30°. the smallest 

trackable size of Area of Interest is 30 by 30 pixels. 
3
These activities can be reliability tracked using action logs, and will be included as part of our future work. 



gaze direction, including absolute path angles (i.e., the angle between a saccade and 

the horizontal) and relative path angles (i.e., the angle between two consecutive sac-

cades). Following the approach suggested in [14], and followed in [4], we computed a 

large variety of features based on raw gaze data. These are divided into two types. 

The first type was generated by applying summary statistics such as mean and stand-

ard deviation (SD) to the above measures, taken independently of the specific inter-

face layout. This process generated 10 features representing general gaze trends that 

do not take into account the nature of the interaction with MetaTutor (see Table 1, 

“no-AOI” column, where AOI stands for Area of Interest). The second type consists 

of features that do incorporate interface-specific information in terms of salient areas, 

or AOIs, of the MetaTutor’s interface. We defined seven of these AOIs (labeled with 

rectangles in Figure 1): Text Content, Image Content, Goal, Subgoals, Learning Strat-

egies Pallete, Agent and Table of Contents. 

 

Table 1. Description of gaze-based features 
No-AOI Features AOI-based Features 

Rate and Number of Fixations Fixation rate in AOI 

Mean and SD of Fixation Duration Proportion of fixation time and fixation number in AOI  

Mean and SD of Saccade length Duration of longest fixation 

Mean and SD of Relative Path 

Angles 

Proportion of transitions from every other AOI to the 

current one (7 different features) 

Mean and SD of Abs Path Angles  

 

 For each AOI, we calculated the following features: rate of fixations, proportion of 

time and number of fixations, and duration of longest fixation. We also included the 

proportion of transitions from every other AOI to the current one. Proportional 

measures were used to assess the relative magnitude of attention devoted to each AOI 

over the course of a complete interaction. In total, there are 77 AOI-based features 

(summarized in the second column of Table 1). In the classification experiments de-

scribed next, we trained separate classifiers on each of the two feature sets described 

above, as well as on a third feature set obtained by combining the two, referred to as 

the Full feature set from now on. Our goal is to ascertain the relative importance of 

AOI dependent and AOI independent features in predicting student learning. 

4.2 Training classifiers on gaze data 

A large number of features can lead to over-fitting when only relatively small datasets 

are available for training. To avoid this issue, we reduced the number of features by 

performing wrapper feature selection [15]. This approach is based on searching sub-

sets of the available features to find one that gives the classifier with the highest accu-

racy, where the search is greedy if the initial set of features is large (as is the case for 

our Full and AOI-based feature sets). To further reduce the likelihood of over-fitting, 

the feature selection process was cross-validated. For each of the original feature sets, 



the final set of features was obtained by discarding all features that appeared in less 

than 10% of the cross validation folds.  

Classification labels were generated by dividing students into High Learners (HL) 

or Low Learners (LL) based on a median split of their learning performance, meas-

ured as proportional learning gains (PLG), namely the ratio of the differences between 

post and pre-test scores, and between maximum post-test score and pre-test. One out-

lier was excluded, resulting in a dataset of 47 participants. It should be noted that, in 

this dataset, we found no significant differences between users from the adaptive and 

non-adaptive study conditions described in section 3
4
 (t(45) = -0.77, p = 0.45, Cohen's 

d = 0.23). Thus, for the purpose of our analysis, it makes sense to collapse the two 

groups. Performing a median split on this dataset resulted in 23 LL (Mean PLG = 

0.93, SD = 36.05), and 24 HL (Mean PLG = 67.01, SD = 16.48). Given these labels, 

we used the WEKA data mining toolkit to train a variety of classifiers with feature 

selection on our three feature sets: Full, AOI-based and no-AOI. The next section 

summarizes our results.  

5 Results 

5.1 Classification accuracy  

Table 2. Accuracy and Kappa 
5
scores for different classifiers and feature sets 

Full Feature set 
Accuracy (%) 

Kappa 
Overall LL HL 

Simple Logistic Regression 78.3 70.43 85.83 0.56 

Multinomial Logistic Regression 61.28 66.52 56.25 0.23 

Naïve Bayes 71.7 51.3 91.25 0.43 

Random Forest 64.48 67.83 61.67 0.29 

Multilayer Perceptron 66.59 60.86 72.08 0.33 

AOI-based Feature set Overall LL HL Kappa 

Simple Logistic Regression 64.47 51.3 77.08 0.28 

Multinomial Logistic Regression 54.47 51.3 57.5 0.09 

Naïve Bayes 69.57 56.52 82.08 0.39 

Random Forest 68.08 72.61 63.75 0.36 

Multilayer Perceptron 56.59 51.3 61.67 0.13 

 No-AOI Feature set Overall LL HL Kappa 

Simple Logistic Regression 52.55 60.43 45 0.05 

Multinomial Logistic Regression 58.3 60.43 56.25 0.17 

Naïve Bayes 52.34 45.65 58.75 0.04 

Random Forest 48.93 48.69 49.17 -0.02 

Multilayer Perceptron 55.96 54.78 57.08 0.12 

                                                           
4 There was also no significant difference in PLGs between the two conditions in the original group.  
5 As per [16] kappa: <0.2  is  poor; 0.21-0,4  is  fair; 0.41-0.6  is  moderate; >0.61 is good. 

Comment [D1]: Reviewer 2: what value 

of kappa is considered large or significant? 

Comment [D2]: Do we need to add 
reference to (Landis and Koch, 1977) for 

Kappa interpretation 

 
<0.20 – poor 

0.21 – 0.40 – fair 

0.41 – 0.60 – moderate 

0.61 – 0.80 – good 

0.80 – 0.81 – very good 



 

All the results reported here are based on 10-fold cross-validation, with 10 runs per 

fold, and pertain to the 5 best performing classifiers among the ones we tested (Sim-

ple Logistic Regression, Multinomial Logistic Regression, Naïve Bayes, Random 

Forest and Multilayer Perceptron). Table 2 reports, for each feature set (Full, AOI-

based and No-AOI): overall accuracy (percentage of data points correctly classified), 

accuracy on each class (LL and HL), and kappa scores (another commonly used 

measure of accuracy that accounts for agreement due to chance)[17]. 

To ascertain the impact that different feature sets have on classification performance, 

we performed two, two-way ANOVA with feature set (3 levels) and classifiers (5 

levels) as factors on both overall accuracy and kappa-scores. The two analyses gener-

ated analogous results, thus here we discuss only results on overall accuracy, because 

they are easier to interpret in terms of practical classification performance.  

 

Fig. 2. Overall accuracy of the 5 classifiers over the 3 features sets 

Figure 2 shows the mean of overall accuracy for each combination of classifier and 

feature set. There are significant main effects of both classifier (F(4, 36) = 9.01, 

p<0.001, ηp
2 

= 0.50) and feature set, (F(2, 18) = 112.55, p<0.001, ηp
2 

= 0.93), further 

qualified by a significant interaction between factors, F(8, 72) = 16.63, p<0.001, 

ηp
2
=0.65), showing that classifier type influences the relative accuracy that can be 

achieved with each feature set. We performed planned contrast analysis (with corre-

sponding Bonferroni adjustments) to gain a better understanding of the relative value 

of AOI-dependent and AOI independent features. This analysis shows that, in general, 

the performance of the classifiers that were trained on the Full feature set is signifi-

cantly better than those trained on AOI-based features (t(72) = 6.21, p<0.001, Co-

hen’s d = 1.46). The latter classifiers, in turn, perform better than those trained on no-

AOI (t(72) = 9.53, p<0.001, Cohen’s d = 2.24). In particular, the highest overall accu-

racy is achieved by Simple Logistic Regression on the Full dataset (78.3%, kappa = 

0.56), which also shows good balance in class accuracy (70.4% on LL and 85.8% on 

HL as shown in Table 2). 

We see this result as strong evidence of the value of eye-tracking data as a source 

of rich information in student modeling, because it shows that gaze information can 

be a good predictor of student learning, even before taking into account other student 

interaction behaviors (e.g., interface actions). Furthermore, this result seems to gener-

alize across at least some learning environments that are different in nature, because 



similar accuracies were found in [4], where the authors looked at how gaze data pre-

dicts learning with an interactive simulation to support exploratory learning. 

Simple Logistic regression on the Full dataset performs significantly better 

(t(72)=4.12, p<0.001, Cohen’s d = 0.97) than the best performing classifier on AOI-

only features, namely Naïve Bayes (69.6% accuracy, kappa = 0.39). This classifier is 

also quite unbalanced in terms of class accuracy (56.5% for LL, and 82% for HL), 

indicating that AOI-independent features have considerable added value when com-

bined with AOI-dependent ones, although on their own they do not perform that well. 

It is interesting to see that the importance of having a combination of AOI-dependent 

and AOI-independent features is confirmed by the results of feature selection. For the 

Simple Logistic Regression classifier, which showed the best overall accuracy on the 

Full feature set, 14 features were selected: 4 AOI-independent features (mean and 

standard deviation of fixation duration, rate of fixations and mean of relative path 

angles), and 10 AOI-dependent ones. These include: 

 7 features describing proportion of transitions between AOIs: (i) from Table Of 

Contents (ToC), Learning Strategies Palette and Text Content to Subgoals; (ii) 

from ToC to Overall Learning Goal; (iii) from ToC and Image Content to Learning 

Strategies Palette; (iv) from Text Content to ToC. 

 Longest fixation in Overall Learning Goal; 

 Proportion of time and number of fixations spent in Subgoals. 

It is worth noting that seven out of the ten AOI-based features are related to Overall 

Learning Goal and Subgoals AOIs, suggesting that attention to these elements is in-

deed important for assessing learning with MetaTutor. The next most frequent AOI to 

appear in this set, with two related features, is the Learning Strategies Palette, also 

supporting the importance of this element in gauging learning with MetaTutor. A 

notable absence is related to any feature involving the Agent AOI. As described in 

section 3, the MetaTutor agents provide spoken feedback and prompts during interac-

tion. The fact that attention to the Agent AOI does not seem to play a role in our clas-

sification results may be due either to the fact that learners do not need to always look 

at an agent to process its audio prompts and feedback  or, if they do, to the fact that 

agents’ prompts and feedback do not impact learning enough to help detect it  (an 

explanation supported by the lack of difference in learning between the adaptive and 

non-adaptive conditions in the original MetaTutor study). 

5.2 Accuracy over time 

The results in the previous section show that gaze data can be a rather powerful 

source of information to predict student learning, when data from the complete inter-

action with MetaTutor is available. Here we explore whether it can also be a source of 

information for detecting a student’s learning performance during interaction with 

MetaTutor, to support real-time personalized help and feedback when needed. To 

address this question, we simulated online system conditions by incrementally feeding 

gaze data from the Full feature set to the best performing classifier from the previous 



section (Logistic Regression), and calculated overall and class accuracy (cross-

validated) at regular intervals of 2 minutes.  

 

Fig. 3. Accuracy over time (Simple Logistic Regression, Full feature set) 

Figure 3 shows the result of this process, i.e., the accuracy over time (overall and for 

each class) of the Logistic Regression classifier on the Full dataset. The classification 

accuracy starts growing above a baseline that predicts the most likely class (HL) 

based on a simple median split (51% overall accuracy), after seeing about 28% of the 

data (28.70 minutes from the beginning of the session). After seeing about 37% of the 

data (36.61 minutes), overall accuracy stabilizes above 72%, with some small fluctua-

tions. The average accuracy over the session was 68.83%. We argue that these results 

provide strong support for using eye-tracking data as a source of on-line prediction of 

student learning, because they are obtained for an interactive system without even 

considering interface actions. We expect that combining features based on gaze data 

and features based on interface actions (e.g., taking notes, writing summaries, number 

of content pages visited, number of sub-goals completed) will boost accuracy over 

time, a finding that has already been observed in [18], where this approach was used 

on the interactive simulation discussed in [4].  

6 Conclusions and future work 

We presented research on understanding the value of gaze data to predict student 

learning during interaction with MetaTutor, an ITS that supports the acquisition of 

SRL processes. Our results show that gaze data alone achieves 78% classification 

accuracy on student learning after seeing all data from an interaction, and reaches 

72% accuracy after seeing 37% of the data. These results replicate findings obtained 

by previous research using a different type of learning environment, and confirm the 

value of using gaze data as a source of information that ITSs can leverage to assess 

student learning and react accordingly. Our next step will be to combine gaze data 

with other multi-channel data sources (e.g., interaction logs, facial expressions of 

emotions), to see how this increases classification accuracy. We also plan to repeat 

this analysis to predict student states at the affective level (e.g. curiosity, boredom). 
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