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Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 4

Jan, 18, 2021



Announcements

What to do with readings? In a few lectures we will discuss the first research 

paper. Instructions on what to do are available on the course webpage.
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Office Hours have been posted: all on zoom (see on Canvas) 

• Giuseppe Carenini carenini@cs.ubc.ca Wed 11-12

•

• Deka Namrata dnamrata@cs.ubc.ca Mon 10am

• Ivanova Inna inna.ivanova@alumni.ubc.ca Tue 1pm

• Tootooni Mofrad Amirhossein tootooni@cs.ubc.ca Fri 11:30-1

322 Review Exam 

(125 submissions!)

mailto:Carenini@cs.ubc.ca
mailto:dnamrata@cs.ubc.ca
mailto:inna.ivanova@alumni.ubc.ca
mailto:tootooni@cs.ubc.ca


422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution

• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning

Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering
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Just a few datapoints (from NLP, same trends in 

other areas of AI)
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Four papers in 2016 using 

(PO)MDP & Reinforcement Learning!

Now e.g., EMNLP 2020: seven papers with reinforcement learning in the 

title and many more using it !

Four papers in 2017 as well……

When the popularity of these R&R methods started to explode
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Lecture Overview

Markov Decision Processes

• Some ideas and notation

• Finding the Optimal Policy

• Value Iteration

• From Values to the Policy (if there is time)

• Rewards and Optimal Policy
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Example MDP: Scenario and Actions

Agent moves in the above grid via actions Up, Down, Left, Right

Each action has:

• 0.8 probability to reach its intended  effect

• 0.1 probability to move at right angles of the intended direction

• If the agents bumps into a wall, it says there

Eleven states

Two terminal states (4,3) and (4,2)
CPSC 422, Lecture 3
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Example MDP: Rewards
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Discounted Reward Function
➢ Suppose the agent goes through states s1, s2,...,sk  and 

receives rewards r1, r2,...,rk

➢ We will look at discounted reward  to define the  reward for 

this sequence, i.e. its utility for the agent 
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MDPs: Policy
• The robot needs to know what to do as the decision process 

unfolds…

• It starts in a state, selects an action, ends up in another state 

selects another action….

• So a policy for an MDP is a 

single decision function π(s)

that specifies what the agent 

should do  for each state s

• Needs to make the same decision over and over: Given the 

current state what should I do? 
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Sketch of ideas to find the optimal policy 

for a MDP (Value Iteration)

We first need a couple of definitions

• Vπ(s): the expected value of following policy π in state s

• Qπ (s, a), where a is an action:  expected value of 

performing a in s, and then following  policy π.

CPSC 422, Lecture 3
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Sketch of ideas to find the optimal policy 

for a MDP (Value Iteration)

• V п(s):

• Q п(s, a)

We have, by definition

states reachable 
from s by doing a

reward 
obtained in s

expected value 
of following 
policy π in s’

Probability of 
getting to s’ from 
s via a

Q п(s, a)=

Discount 
factor
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Sketch of ideas to find the optimal policy 

for a MDP (Value Iteration)

We first need a couple of definitions

• V п(s): the expected value of following policy π in state s

• Q п(s, a), where a is an action:  expected value of 

performing a in s, and then following  policy π.

We have, by definition

states reachable 
from s by doing a

reward 
obtained in s

expected value 
of following 
policy π in s’

Probability of 
getting to s’ from 
s via a

Q п(s, a)=

Discount 
factor
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Value of a policy and Optimal policy

• V п(s):

• Q п(s, a)

We can also compute  V п(s) in terms of  Q п(s, a)

𝑉𝜋(𝑠) = 𝑄𝜋( ? ? ? ))

𝑉𝜋(𝑠) = 𝑄𝜋(𝜋 𝑠 , 𝑎)

𝑉𝜋(𝑠) = 𝑄𝜋(𝑠, 𝑎))

𝑉𝜋(𝑠) = 𝑄𝜋(𝑠, 𝜋(𝑠))

B. 

A. 

C. 
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Value of a policy and Optimal policy

We can also compute  V п(s) in terms of  Q п(s, a)

))(,()( ss Q sV  =

For the optimal  policy π * we also have

))(*,()( ** ss Q sV  =

• V п(s):

• Q п(s, a)
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Value of a policy and Optimal policy

We can also compute  V п(s) in terms of  Q п(s, a)

))(,()( ss Q sV  =

Expected value of performing

the action indicated by π in s

and following π after that

Expected 
value of 
following 
π in s

action indicated by π in s

For the optimal  policy π * we also have

))(*,()( ** ss Q sV  =
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Value of Optimal policy

𝑉𝜋∗(𝑠) = 𝑄𝜋∗(𝑠, 𝜋 ∗ (𝑠))
Remember for any policy π and any action a

So from (1) and (2)

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎𝑉𝜋(𝑠′))

𝑄𝜋 𝑠, 𝜋 𝑠 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃(𝑠′|𝑠, 𝜋(𝑠)) × 𝑉𝜋(𝑠′))

Which is true also for the optimal policy

𝑉𝜋∗(𝑠) = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃(𝑠′|𝑠, 𝜋(𝑠)) × 𝑉𝜋(𝑠′))

𝑄𝜋 𝑠, 𝜋 𝑠 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃(𝑠′|𝑠, 𝜋(𝑠)) × 𝑉𝜋(𝑠′))

So for a = π(s) 
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Value of Optimal policy

𝑉𝜋∗(𝑠) = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑃(𝑠′|𝑠, 𝜋(𝑠)) × 𝑉𝜋(𝑠′))

But the Optimal  policy π* is the one that gives 

the action that maximizes the future reward for 

each state

𝑉𝜋∗(𝑠) = 𝑅(𝑠) + 𝛾max
𝑎

෍

𝑠′

𝑃(𝑠′|𝑠, 𝑎) × 𝑉𝜋∗(𝑠′))



Value Iteration Rationale
➢ Given N states, we can write an equation like the one below 

for each of them

𝑉(𝑠1) = 𝑅(𝑠1) + 𝛾max
𝑎

෍

𝑠′

𝑃(𝑠′|𝑠1, 𝑎)𝑉(𝑠′)

𝑉(𝑠2) = 𝑅(𝑠2) + 𝛾max
𝑎

෍

𝑠′

𝑃(𝑠′|𝑠2, 𝑎)𝑉(𝑠′)
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𝑉 𝑠3 = ⋯

𝑉 𝑠𝑁 = ⋯

……



Example for state (1,1)

+=
'

111 )'(),|'(max)()(
sa

sVassPs R s V 
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𝑉(1,1) = −0.04 + 1 ∗ max

0.8 𝑉 1,2 + 0.1 𝑉 2,1 + 0.1𝑉(1,1) 𝑈𝑃

0.9𝑉 1,1 + 0.1𝑉(1,2) 𝐿𝐸𝐹𝑇

0.9 𝑉 1,1 + 0.1𝑉(2,1) 𝐷𝑂𝑊𝑁

0.8 𝑉 2,1 + 0.1𝑉 1,2 + 0.1𝑉(1,1) 𝑅𝐼𝐺𝐻𝑇

➢ Example for state (1,1)



Value Iteration Rationale
➢ Given N states, we can write an equation like the one below 

for each of them

➢ Each equation contains N unknowns – the V values for the N states

➢ N equations in N variables (Bellman equations): It can be shown that they 

have a unique solution: the values for the optimal policy

➢ Unfortunately the N equations are non-linear, because of the max 

operator: Cannot be easily solved by using techniques from linear 

algebra

➢ Value Iteration Algorithm: Iterative approach to find the V values and 

the corresponding

➢ optimal policy

+=
'

111 )'(),|'(max)()(
sa

sVassPs R s V 

+=
'

222 )'(),|'(max)()(
sa

sVassPs R s V 
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Value Iteration in Practice

➢ Let V(i)(s) be the utility of state s at the ith iteration of the 

algorithm

➢ Start with arbitrary utilities on each state s:  V(0)(s)

➢ Repeat simultaneously for every s until there is “no change”

➢ True “no change” in the values of V(s) from one iteration to 

the next are guaranteed only if run for infinitely long.

• In the limit, this process converges to a unique set of solutions for the 
Bellman equations

• They are the total  expected rewards (utilities) for the optimal policy

+=+

'

(k)1)(k )'(),|'(max)()(
sa

sVassPs R s V 
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Example
• Suppose, for instance, that we start with values V(0)(s) that are 

all 0
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Example (cont’d)
➢ Let’s compute V(1)(3,3)



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Example (cont’d)
➢ Let’s compute V(1)(4,1)
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After a Full Iteration

-.04 -.04 0.76

-.04 -.04

-.04 -.04 -.04 -.04

3
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+1 

-1 

Iteration 1

➢ Only the state  one step away from a positive reward (3,3) has gained 

value, all the others are losing value
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Some steps in the second iteration
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-.04 -.04 0.76

-.04 -.04

-.04 -.04 -.04 -.04

Example (cont’d)
➢ Let’s compute V(2)(2,3)

➢ Steps two moves away from positive rewards start increasing 

their value
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State Utilities as Function of  Iteration #

➢ Note that values of states at different distances from (4,3) 

accumulate negative rewards until a path to (4,3) is found
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(3,3) (4,3)

(4,2)

(1,1) (3,1) (4,1)



Value Iteration: Computational 

Complexity

Value iteration works by producing successive 

approximations of the optimal value function. 

What is the complexity of each iteration?

…or faster if there is sparsity in the transition function. 
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B. O(|A||S|2) A. O(|A|2|S|) C. O(|A|2|S|2) 

+= +

'

(k)1)(k )'(),|'(max)()(:
sa

sVassPs R s Vs 



Relevance to state of the art MDPs

“ Value Iteration (VI) forms the basis of most of the 

advanced MDP algorithms that we discuss in the 

rest of the book. ……..”
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FROM :  Planning with Markov Decision 

Processes: An AI Perspective  Mausam

(UW), Andrey Kolobov (MSResearch) 

Synthesis Lectures on Artificial Intelligence 

and Machine Learning Jun 2012

Free online through UBC

http://www.morganclaypool.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield:(Mausam)
http://www.morganclaypool.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield:(Kolobov,+A)
http://www.morganclaypool.com/loi/aim
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Lecture Overview

Markov Decision Processes

• ……

• Finding the Optimal Policy

• Value Iteration

• From Values to the Policy

• Rewards and Optimal Policy



Value Iteration: from state values V to 

л*

➢ Now the agent can  chose the action that implements the 

MEU principle: maximize the expected utility of the 

subsequent state
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Value Iteration: from state values V to 

л*

➢ Now the agent can  chose the action that implements the 

MEU principle: maximize the expected utility of the 

subsequent state

states reachable 

from s by doing a

expected value 

of following 

policy л* in s’

Probability of getting to s’ from s via a

=
'

)'(),|'(maxarg)(*
*

sa

sVassP  s 
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Example: from state values V to л*

➢ To find the best action in (1,1)
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=
'

)'(),|'(maxarg)(*
*
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sVassP  s 



Optimal policy
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➢ This is the policy that we obtain….
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Learning Goals for today’s class

You can:

Define/read/write/trace/debug the Value Iteration (VI)

algorithm. Compute its complexity. 

• Compute the Optimal Policy given the output of VI

• Explain influence of rewards on optimal policy 
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TODO for Mon

• Read Textbook 9.5.6 Partially Observable 

MDPs

•Also Do Practice Ex. 9.C

http://www.aispace.org/exercises.shtml


