Parallax: Virtual Disks

for Virtual Machines

Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre,
Michael J. Feeley, Norman C. Hutchinson, and Andrew Warfield*

{dmeyer, gitika, brendan, geoffrey, feeley, norm, andy}@cs.ubc.ca
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada

ABSTRACT

Parallax is a distributed storage system that uses viratédn to
provide storage facilities specifically for virtual envinmoents. The
system employs a novel architecture in which storage feattnat
have traditionally been implemented directly on high-etatage
arrays and switches are relocated into a federatiaoofge VMs,
sharing the same physical hosts as the VMs that they senis. Th
architecture retains the single administrative domain @&dag-
nosticism achieved by array- and switch-based approaetigke
lowering the bar on hardware requirements and facilitatiiregde-
velopment of new features. Parallax offers a comprehersavef
storage features including frequent, low-overhead srapsftvir-
tual disks, the “gold-mastering” of template images, aredahility
to use local disks as a persistent cache to dampen burst desnan
networked storage.

Categories and Subject Descriptors

D.4.2 [Operating System$. Storage ManagementStorage Hier-
archies; D.4.7 [Operating System$. Organization and Design—
Distributed Systems

General Terms
Design, Experimentation, Measurement, Performance

1. INTRODUCTION

In current deployments of hardware virtualization, steréaril-
ities severely limit the flexibility and freedom of virtualachines.

Perhaps the most important aspect of the resurgence of virtu
alization is that it allows complex modern software—theraping
system and applications that run on a computer—to be coefyplet
encapsulated in a virtual machine. The encapsulationdstbby
the VM abstraction is without parallel: it allows whole systs to
easily be quickly provisioned, duplicated, rewound, andrated
across physical hosts without disrupting execution. Theebes of

*also of XenSource, Inc.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

EuroSys' 08, April 1-4, 2008, Glasgow, Scotland, UK.

Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

this encapsulation have been demonstrated by numerousstte
ing research projects that allow VMs to travel through sgade2,
13], time [4, 12, 32], and to be otherwise manipulated [30].

Unfortunately, while both system software and platformdrar
ware such as CPUs and chipsets have evolved rapidly in suppor
of virtualization, storage has not. While “storage virtmation” is
widely available, the term is something of a misnomer in thist
largely used to describe the aggregation and repartitipoirdisks
at very coarse time scales for use by physical machines. VWM de
ployments are limited by modern storage systems becausgahe
age primitives available for use by VMs are not nearly as témb
as the VMs that consume them. Operations such as remapging vo
umes across hosts and checkpointing disks are frequenihysg
and esoteric on high-end storage systems, and are simplgilina
able on lower-end commaodity storage hardware.

This paper describe@arallax, a system that attempts tige vir-
tualization in order to provide advanced storage senfiaesgirtual
machines. Parallax takes advantage of the structure ofiaiiired
environment to move storage enhancements that are traaliiio
implemented on arrays or in storage switches out onto theuron
ing physical hosts. Each host in a Parallax-based clustes au
storage VM, which is a virtual appliance [23] specifically for stor-
age that serves virtual disks to the VMs that run alongsid&tie
encapsulation provided by virtualization allows theseaie fea-
tures to remain behind the block interface, agnostic to tBetltat
uses them, while moving their implementation into a contbat
facilitates improvement and innovation.

Parallax is effectively a cluster volume manager for virtlisks:
each physical host shares access to a single, globallylevisibck
device, which is collaboratively managed to present irdigd vir-
tual disk images (VDIs) to VMs. The system has been designed
with considerations specific to the emerging uses of virtnat
chines, resulting in some particularly unusual directidvisst no-
tably, we desire very frequent (i.e., every 10ms) snapshotss
capability allows the fine-grained rewinding of the disk tbiaary
points in its history, which makes virtual machine snapsmotich
more powerful. In addition, since our goal is to presentualt
disks to VMs, we intentionally do not support sharing of VDIs
This eliminates the requirement for a distributed lock ngamaand
dramatically simplifies our design.

In this paper, we describe the design and implementatiomoef P
allax as a storage system for the Xen virtual machine moritter
demonstrate that the VM-based design allows Parallax tmpéek
mented in user-space, allowing for a very fast developmegciec
We detail a number of interesting aspects of Parallax: ttieniga-
tions required to maintain high throughput over fine graibkxatk
addressing, our fast snapshot facility, and the ability itgate
congestion of shared storage by caching to local disks.

1.1 Related Work Physical Hosts

Despite the many storage-related challenges presenttirakir | Storage Administration Domain storage .[v [vm | vm
ized envi ts, we are aware of only two other storage sys 1 ;o 29¢ functionality such as snapshot w |
Ized environments, . y g Yy . facilities that are traditionally ~—ft> Il
tems that cater specifically to VM deployments: Ventana g , implemented within storage devices !
VMware's VMFS [29]. 1 are pushed out into per-host storage (: VMM (Xen))
Ventana attempts to provide support for virtual machinethat |, 2PPliance VMs, which interact with a o
) . . i . simple shared block device and may |
file system Ie_vel,_ Qﬁecnvely virtualizing the fi I_e systeramespace ! also use local physical disks. - -
and allowing individual VMs to share underlying file objeustisere : Storage || VM Wy LM
possible. File system virtualization is a fundamentalffedent ap-] o
proach to the block-level virtualization provided by P&ral Ven- I s
tana provides an improved degree of “transparency” intactive : (@ | VMM (Xen))
tents of virtual disks, but sacrifices generality in ordeathieve i | Shared Block Device L :
it. Windows VMs, for instance, cannot be hosted off of the NFS | gg’;i‘f;n"gg,';'gﬁ';g;""e —_—
.) BIRS ' |
interface that. the Ventana server presents. Ventana'ormutio ' | Aok, GNBD, NFs-based St | (I M M
not evaluate its performance, but do mention that the syste&m .| file, Petal, etc. w |
fers as the number of branches (equivalent to snapshotsatidda ! TE :
increases. : C L LTUED)
)

VMFS is a commercial block-level storage virtualizatiorssy — «_ __ _ ______________ ;@_ =
tem intended for use with VMware ESX. VMFS is certainly the
most similar known system to Parallax; both approachesifspec Figure 1: Parallax is designed as a set of per-host storage pip
cally address virtualized environments by providing distred fa- ances that share access to a common block device, and present
cilities to convert one large shared volume into a numbeiirodial virtual disks to client VMs.
disks for use by VMs. As it is proprietary software, littlekisown
about the internals of VMFS’s design. However, it acts |brges o) o)
a cluster file system, specifically tuned to host image fildsus addition, among block-level virtualization systems, o6ljve [1]
disks themselves are stored within VMFS as VMDK [28] images. Nas & snapshot of comparable performance to ours. Olivejs-sn
VMDK is a image format for virtual disks, similar to QCOW [17] ~ Shots have more complicated failure semantics than thoBaral-
and VHD [18], which provides sparseness and allows images to |2 and the system imposes delays on write operations istured
be “chained”. The performance of chained images decayaripe ~ INd & Snapshot. o
as the number of snapshots increases in addition to imposierg WAFL [9] has very similar goals to those of Parallax, and as
heads for open file handles and in-memory caches for each open consequence resuilts in a very similar approach to blocteadd
image. In addition to chaining capabilities provided by VKD v!rtuallzatlon_. WAFL is concerned with maintaining histal ver-
VMFS employs a redo log-based checkpoint facility that has ¢ sions of the f!les in a network-attached stolrage systemeh tige-
siderable performance limitations [26]. Parallax dingetianages ~ P@sed mapping structures to represent divergences betmeen
the contents of disk images, and provides fine-grained spanid shots apd tq allow data to be. ertFeQ to arbltrgry Iocatlonsr[e
snapshots as core aspects of its design. underlylng d_|sk. Parallax appllgs ;lmllar te_chnlqu_es aman‘gran-

Another approach that addresses issues similar to thoseralf P ularity allowing snapshots_ of_lnd|V|duaI V|rtu_al disks fegdtively
lax has been undertaken in recent work by the Emulab devesope the analogue of a smg!e file in a WAFL en\(lronment. Moreover,
at the University of Utah [5]. In order to provide snapshatsXen- Parallax has been designed to support arbitrary numbernsapf s
based VMs, the researchers modified Linux LVM (Logical Volum ~ ShOtS, @s opposed to the hard limit of 255 snapshots availaish
Management) to provide a branching facility. No details eue current WAFL-based systems.
rently available on this implementation. Many other systems have provided snapshots as a storage sys-

Beyond VM-specific approaches, many other systems provide €M feature, ranging from file system-level support in ZF2 [B
virtual volumes in block-level storage, most notably FAB &nd block-level volume management systems like LVM2 [21]. In ev
its predecessor Petal [14]. Both systems, particularly F&iB to ery case these systems suffer from either a limited range:mf s
provide a SAN-like feature set at a low total system cost. hBot Ported environments, severely limited snapshot functiyneor
systems also support snapshots; the ability to snapshaiBnis both. These limitations make them ill-suited for genergildg-
best manifest in Olive [10, 1]. ment in virtualized storage infrastructures.

Parallax differs from these prior block-level virtual diskstems
in three ways. First, Parallax assumes the availability sinale 2. CLUSTERED STORAGE APPLIANCES
shared block device, such as an iSCSI or FiberChannel LUS-NF Figure 1 presents a high-level view of the structure of alRe¢a
based file, or Petal-like virtual disk, while FAB and similsys- based cluster. Parallax provides block virtualizationriigiiposing
tems compose a shared volume from a federation of storage de-petween individual virtual machines and the physical gfeflayer.
vices. Whereas other systems must focus on coordinatiom@mo The virtualized environment allows the storage virtualiza ser-

distributed storage nodes, Parallax focuses on coordgatis- vice to be physically co-located with its clients. From achétec-
tributed clients sharing a network attached disk. By regyon vir- tural perspective, this structure makes Parallax uniquestorage
tualized storage in this manner, we address fundameniéfigyeht system runs in an isolated VM on each host and is adminiestgti
challenges. Second, because we provide the abstractiolooéla separate from the client VMs running alongside it; effesiyPar-
disk to virtualized guest operating systems, we can makasore allax allows the storage system to be pushed out to inclidessl
able assumption that disk images will be single-writer.simpli- of each machine that uses it.

fies our system and enables aggressive performance opiibniza In this section, we describe the set of specific design censid

Third, Parallax’s design and virtualized infrastructuraleles us to ations that have guided our implementation, and then ptesen
rethink the traditional boundaries of a network storagéesys In overview of the system’s structure.

(Physical Host A

(Paravirtual VM (Fully Virtualized VM

) (Storage Appliance VM

|

emulator

device

tapdisk |(parallax
VDI VDI
/ P

blkfront physical physical phS(sicaI
blkt.
scsl 311" scsi [|Ethernet
driver driver driver
_ J J J
VMM (Xen) emulated] Shared Block Device
block requests ——
paravirtual block requests — J
. J

Figure 2: Overview of the Parallax system architecture.

2.1 Design Considerations

Parallax’s design is based on four high-level themes:

Agnosticism and isolation. Parallax is implemented as a col-
laborative set of storagappliances; as shown in Figure 1, each
physical host in a cluster containstarage VM which is responsi-
ble for providing storage to other virtual machines runnamgthat
host. This VM isolates storage management and deliveryitmées
container that is administratively separate from the régt®sys-
tem. This design has been used previously to insulate rgnriits
from device driver crashes [6, 15], allowing drivers to kengpar-
ently restarted. Parallax takes this approach a step fuulisolate
storage virtualization in addition to driver code.

Isolating storage virtualization to individual per-hosM¥ re-
sults in a system that is agnostic to both the OSes that ruther o

degree of concurrency management is still required, bytwhen
performing administrative operations such as creating Yi®is,
and in very coarse-grained allocations of writable areaslisk.
Locking operations are explicitly not required as part @ ttormal
data path or for snapshot operations.

Snapshots as a primitive operation. In existing storage sys-
tems, the ability to snapshot storage has typically beeteimented
as an afterthought, and for very limited use cases such asufie
port of backup services. Post-hoc implementations of s$ragda-
cilities are typically complex, involve inefficient tecljpies such
as redo logs [29], or impose hard limits on the maximum num-
ber of snapshots [9]. Our belief in constructing Parallax been
that the ability to take and preserve very frequent, lowrogad
shapshots is an enabling storage feature for a wide variéfivie

VMs on the host, and the physical storage that backs VM data. A felated applications such as high-availability, debuggand con-

single cluster-wide administrator can manage the Paraifdances
on each host, unifying the storage management role.

Blocks not files.In keeping with the goal of remaining agnostic
to OSes running within individual VMs, Parallax operateshs
block, rather than file-system, level. Block-level virtizakion pro-
vides a narrow interface to storage, and allows Parallaxdsgnt
simple virtual disks to individual VMs. While virtualizatn at the
block level yields an agnostic and simple implementatidm@/so
presents a set of challenges. The “semantic gap” introdbged
virtualizing the system at a low level obscures higherdlévior-
mation that could aid in identifying opportunities for simay, and
complicates request dependency analysis for the disk atdreds
discussed in Section 5.1.

Minimize lock management. Distributed storage has histori-
cally implied some degree of concurrency control. Writersha
ing of disk data, especially at the file system level, typicat-
volves the introduction of some form of distributed lock ragar.
Lock management is a very complex service to provide in a dis-
tributed setting and is notorious for difficult failure casand re-
covery mechanisms. Moreover, although write conflict netoh
is a well-investigated area of systems research, it is onelficch
no general solutions exist.

Parallax’s design is premised on the idea that data shamirg i
cluster environment should be provided by applicatioreleer-
vices with clearly defined APIs, where concurrency and cctsfli
may be managed with application semantics in mind. Theeefor
it explicitly excludes support for write-sharing of individual virtual

tinuous data protection. As such, the system has been a@eisign
incorporate snapshots from the ground up, representing \@ac
tual disk as a set of radix-tree based block mappings thatbeay
chained together as a potentially infinite series of copywoite
(CoW) instances.

2.2 System structure

Figure 2 shows an overview of Parallax’s architecture aluival
a brief discussion of components that are presented in nedegl d
throughout the remainder of the paper.

As discussed above, each physical host in the cluster csngai
storage appliance VM that is responsible for mediating s&e®to
an underlying block storage device by presenting individiraual
disks to other VMs running on the host. This storage VM allaws
single, cluster-wide administrative domain, allowing dtianality
that is currently implemented within enterprise storagelivare to
be pushed out and implemented on individual hosts. Thetrissul
that advanced storage features, such as snapshot fagitita/ be
implemented in software and delivered above commodity ostw
storage targets.

Parallax itself runs as a user-level daemon in the Storage Ap
pliance VM, and uses Xenldlock tap driver [31] to handle block
requests. The block tap driver provides a very efficientfate for
forwarding block requests from VMs to daemon processegtimat
in user space of the storage appliance VM. The user spademport
of block tap defines an asynchronous disk interface and spawn
a tapdisk process when a new VM disk is connected. Parallax is

disk images. The system ensures that each VDI has at most ondMpPlemented as a tapdisk library, and acts as a single bliotkai+

writer, greatly reducing the need for concurrency contr®bme

ization service for all client VMs on the physical host.
Each Parallax instance shares access to a single sharé&dleloc

vice. We place no restrictions as to what this device neecde,
long as it is sharable and accessible as a block target irca s
age VM instances. In practice we most often target iISCSloasyi
but other device types work equally well. We have chosen that
approach as it requires the lowest common denominator eégha
storage, and allows Parallax to provide VM storage on thadest
possible set of targets.

Virtual machines that interact with Parallax are presentét
entire virtual disks. Xen allows disks to be accessed usity b
emulated and paravirtualized interfaces. In the case ofaton,
requests are handled by a device emulator that presents&n ID
controller to the client VM. Emulated devices generally én@oor
performance, due to the context switching required to erauta
dividual accesses to device I/O memory. For performandents|
may install paravirtual device drivers, which are writtpesifically
for Xen-based VMs and allow a fast, shared-memory transport
which batches of block requests may be efficiently forwardgyl
presenting virtual disks over traditional block deviceeifidces as a
storage primitive to VMs, Parallax supports any OS capabiaere
ning on the virtualized platform, meeting the goal of agiuist.

The storage VM is connected directly to physical device hard
ware for block and network access. Including physical bldek
vice drivers in the storage VM allows a storage administréte
ability to do live upgrades of block device drivers in an eettlus-
ter. This is an area of future exploration for us, but a venyilsir
approach has been described previously [6].

3. VIRTUAL DISK IMAGES

Virtual Disk Images (VDIs) are the core abstraction prodidey
Parallax to virtual machines. A VDI is a single-writer vialudisk
which may be accessed in a location-transparent mannerdnym
of the physical hosts in the Parallax cluster. Table 1 pitssan
summary of the administrative operations that may be pexéadr
on VDIs; these operations are available through the comrtined
of the storage VM. There are three core operations, allowints
to be created, deleted, and snapshotted. These are thepmrly o
ations required to actively manage VDIs; once created, thay
be attached to VMs as would any other block device. In additio
to the three core operations, Parallax provides some canen
operations that allow an administrator to view cataloguegus,
snapshots associated with a particular VDI, and to “tagtipaiar
snapshots with a human-readable alias, facilitating meatf new
VDIs based on that snapshot in the future. An additional eenv
nience function produces a simple visualization of the Vidlthe
system as well as tagged snapshots.

3.1 VDIs as Block Address Spaces

In order to achieve the design goals that have been outliged r
garding VDI functionality, in particular the ability to takfast and
frequent snapshots, Parallax borrows heavily from tearesqised
to manage virtual memory. A Parallax VDI is effectively a-sin

Snapshot Log Data Blocks

parent_log

VDI Address Mapping Metadata

2007.3.2
23:10:12.59

Previous
2007.3.2 Radix Root

23:40:12.234

/
/7

VDI Record

last_snapshot
radix_root
capacity

Current
Radix Root

Radix mappings:
Read-only Link

Writable Link

Figure 3: Parallax radix tree (simplified with short addresses)
and COW behaviour.

2973 4 212 — 939 — 519GB). Adding a level to the radix tree ex-
tends this by a factor o’ to 256TB and has a negligible effect
on performance for small volumes (less than 512GB) as ondy on
additional metadata node per active VDI need be cached.I-Para
lax’s address spaces are sparse; zeroed addresses itldatates
range of the tree beyond the specified link is non-existednanst

be allocated. In this manner, the creation of new VDIs ingslv
the allocation of only a single, zeroed, root block. Parailall
then populate both data and metadata blocks as they aremdtt
the disk. In addition to sparseness, references can bedsharass
descendant radix trees in order to implement snapshots.

3.2 Snapshots

A snapshot in Parallax is a read-only image of an entire disk a
a particular point in time. Like many other systems, Paxailh
ways ensures that snapshots @ash consistent, which means that
snapshots will capture a file system state that could havstees
from a crash [1] [14] [19] [27] [20]. While this may necesséa
running an application or file system level disk check sucfsels,
itis unlikely that any block-level system can offer strongearan-
tees about consistency without coordination with appicest and
file systems.

Snapshots can be taken of a disk not currently in use, or they
can be taken on a disk during its normal operation. In thigdat
case, the snapshot semantics are striasiyichronous; snapshots
are issued directly into the stream of I/O requests in a masine
ilar to write barriers. The snapshot is said to be “completbén
the structures associated with the snapshot are corrdattggon
disk. These snapshot semantics enable Parallax to conasetg-
shot without pausing or delaying the 1/0 requests, by alhgioth
pre-snapshot and post-snapshot I/O to complete on th@iecdge
views of the disk after the completion of the snapshot. Suth a
approach is ideal when issuing snapshots in rapid succesgioe

gle block address space, represented by a radix tree that maps vir-the resulting snapshots have very little overhead, as weskhalv.

tual block addresses to physical block addresses. Virtlgresses
are a continuous range from zero to the size of the virtud, dis
while physical addresses reflect the actual location of akbtm
the shared blockstore. The current Parallax implememtatiaps
virtual addresses using 4K blocks, which are chosen to fiiaten
ally match block sizes used on x86 OS implementations. Meyspi
are stored in 3-level radix trees, also based on 4K blocksh B&
the radix metadata pages stores 512 64-bit global blockeaddr
pointers, and the high-order bit is used to indicate thank i
read-only. This layout results in a maximum VDI size of 512GB
(9 address bits per tree-level, 3 levels, and 4K data blo@Xsls/

To implement snapshots, we use the high-order bit of bloek ad
dresses in the radix tree to indicate that the block pointed t
read-only. All VDI mappings are traversed from a given radiat
down the tree, and a read-only link indicates that the estildree
is read-only. In taking a snapshot, Parallax simply copiesrbot
block of the radix tree and marks all of its references as-ceayl
The original root need not be modified as it is only referenogd
a snapshot log that is implicitly read-only. The entire @sgusu-
ally requires just three block-write operations, two of ehhtcan be
performed concurrently.

The result of a snapshot is illustrated in Figure 3. The figure

create(hame, [snapshot]) — VDI_id

Create a new VDI, optionally based on an existing snapshdéte grovided name is for administrativie
convenience, whereas the returned VDI identifier is glghatlique.

delete{/DlI_id) Mark the specified VDI as deleted. When the garbage colléstam, the VDI and all snapshots are fre€d.
snapshotyDI_id) — snap_id Request a snapshot of the specified VDI.
list() — VDI_list Return a list of VDIs in the system.

snap_list(VDI_id) — snap_list

Return the log of snapshots associated with the specified VDI

snap_labelénap_id, name)

Label the specified snapshot with a human-readable name.

tree() — (treeview of VDIs)

Produce a diagram of the current system-wide VDI tree (sger€i4 for an example.)

Table 1: VDI Administrative Interfaces.

NetBSD Pristine 3 snanshots NetBSD testbox
Sept 6 01:20:39 2007 s Sept 6 02:34:23 2007
10 snapshots snapid: (1050704,10) VDI id: 2
2 snapshots Fedora Core 6 Pristine 1 snapshots Fedora Core 6 install
Sept 6 10:19:03 2007 ps Sept 6 12:23:51 2007
snapid: (1871224,2) VDI id:1
W2K3image 1
Sept 7 11:13:51 2007
11 snapshots VDlid: 3
Windows 2003 Pristine 1 snapshots W2K 3 image 2
Sept 7 08:38:55 2007 Ps Sept 7 11:14:26 2007
snapid: (3746722,1) w‘ VDl id: 4
W2K 3 image 3
Sept 7 11:14:32 2007
VDI id: 5

Figure 4: VDI Tree View—Visualizing the Snapshot Log.

shows a simplified radix tree mapping six-bit block addressi¢h

two address bits per radix page. In the figure, a VDI has had a
shapshot taken, and subsequently had a block of data watten
virtual block addres411111 (binary). The snapshot operation
copies the radix tree root block and redirects the VDI redord
point to the new root. All of the links from the new root are read
read-only, as indicated by the * flags and the dashed grey arrows
in the diagram.

Copying a radix tree block always involves marking all links
from that block as read-only. A snapshot is completed usimg o
such block copy operation, following which the VM continues
run using the new radix tree root. At this point, data writesym
not be applied in-place as there is no direct path of writdibles
from the root to any data block. The write operation showrhin t
figure copies every radix tree block along the path from tiu to
the data (two blocks in this example) and the newly-copieohtin
of the radix tree is linked to a freshly allocated data blokklinks
to newly allocated (or copied) blocks are writable linkgpaing
successive writes to the same or nearby data blocks to redde
in-place modification of the radix tree. The active VDI thesults
is a copy-on-write version of the previous snapshot.

The address of the old radix root is appended, along with the
current time-stamp, to snapshot log. The snapshot log represents
a history of all of a given VDI's snapshots.

Parallax enforces the invariant that radix roots in snaplaig
immutable. However, they may be used as a reference to @eate
new VDI. The common approach to interacting with a snapshot i
to create a writable VDI clone from it and to interact withttha
VM'’s snapshot log represents a chain of dependent images fro
the current writable state of the VDI, back to an initial diskhen
a new VDI is created from an existing snapshot, its snapsigois|
made to link back to the snapshot on which it is based. Thexefo

the set of all snapshot logs in the system form a forest,imléill

of the radix roots for all VDIs, which is what Parallax’s VDlee

operation generates, as shown in Figure 4. This aggregaptogn
tree is not explicitly represented, but may be composed bkimg
individual logs backwards from all writable VDI roots.

From a single-host perspective, the VDI and its associatdok r
mapping tree and snapshot logs are largely sufficient foalRar
to operate. However, these structures present severabstitey
challenges that are addressed in the following sectionstidbe4
explains how the shared block device is managed to allowimult
ple per-host Parallax instances to concurrently accessvd#iout
conflicts or excessive locking complexity. Parallax’s ratiees,
described above, are very fine grained, and risk the inttaztuc
of a great deal of per-request latency. The system takesdewns
able effort, described in Section 5, to manage the requestratto
eliminate these overheads.

4. THE SHARED BLOCKSTORE

Traditionally, distributed storage systems rely on disttéd lock
management to handle concurrent access to shared datassuc
within the cluster. In designing Parallax, we have attemhpite
avoid distributed locking wherever possible, with the intten that
even in the face of disconnectiowr failure, individual Parallax
nodes should be able to continue to function for a reasorpeled
of time while an administrator resolves the problem. Thisrapch
has guided our management of the shared blockstore in daterm
ing how data is laid out on disk, and where locking is required

4.1 Extent-based Access

The physical blockstore is divided, at start of day, intodkeize
extents. These extents are large (2GB in our current impitame
tion) and represent a lockable single-allocator regionloators”
at the this level are physical hosts—Parallax instancegierdhan
the consumers of individual VDIs. These extents are typeth w
the exception of a special system extent at the start of thekbl
store, extents either contain data or metadata. Data exielt the
actual data written by VMs to VDIs, while metadata extentklho
radix tree blocks and snapshot logs. This division of extentent
is made to clearly identify metadata, which facilitatesbgaye col-
lection. In addition, it helps preserve linearity in the gdeent of
data blocks, by preventing metadata from becoming integhath
with data. Both data and metadata extents start with anaitot
bitmap that indicates which blocks are in use.

When a Parallax-based host attaches to the blockstore]lit wi
exclusively lock a data and a metadata extent for its use.hiat t
point, it is free to modify unallocated regions of the exteuith
no additional locking. In order to survive disconnection from the

This refers to disconnection from other hosts. A connediicthe
actual shared blockstore is still required to make forwaatyess.
This is a white lie — there is a very coarse-grained lock on the
allocation bitmaps used with the garbage collector, seé@et.3.

Extent 0 Extent 1
\

Extent 2 Extent n-2 Extentn-1
-

Locking in parallax ensures

r'I'ype: Super Type:Metadata

) Type:Data

Type:Metadata Type:Data

that writes cannot conflict Blocksore Global Lock
and keeps node allocation Extent Catalogue
from becoming a bottleneck 1 M Unlocked

Allocation bitmap

Allocation bitmap
All blocks in use

Allocation bitmap Allocation bitmap

on the data path. o
n-2 M plx2.cs.ubc

n-1 D plx2.cs.ubc

VDI Lock:

tl

- VDI Registry
All witable data referenced by a -
VDl is protected by the VDI lock, VDI 19
irrespective of the extent that it is in. Dutch’s W2K3tst
plx2.cs.ubc
VDI 19 locked by radix rt: D
snaplog:
host pix2. .
VDI 373
DSG Wiki VM
plx4.cs.ubc

VDI 373 locked by

radix rt:

host plx4 (not shown)

snaplog:

VDI 885
Testbed VM
[unlocked]
radix rt:
snaplog:

Inactive VDIs
remain
unlocked

Full extents remain locked, | Extent Locks:

Pl

and may not be claimed by 1 Extents are locked by a single host, as indicated in
any host 1 the extent catalogue. That host is free to allocate :
I new blocks in grey above within these.)

J Extents n-2 and n-1 locked by host plx2.

Figure 5: Blockstore Layout.

lock manager, Parallax nodes may lock additional unuseehest
to allow room for additional allocation beyond the capadcityac-
tive extents. We will likely optimize this further in the fute by
arranging for connected Parallax instances to each loclaie sif
the unallocated extents, further reducing the already lmeriged
need for allocation-related locking.

The system extent at the front of the blockstore containsadlsm
number of blockstore-wide data structures. In additionystiem-
wide parameters, like the size of the blockstore and thedfiex-
tents, it has a catalogue of all fixed-size extents in theesystheir
type (system, data, metadata, and unused), and their tloodn
holder. It also contains the VDI registry, a tree of VDI stsjeach
stored in an individual block, describing all active VDIsthe sys-
tem. VDIs also contain persistent lock fields and may be lddke
individual Parallax instances. Locking a VDI struct praesdtwo
capabilities. First, the locker is free to write data withire VDI
struct, as is required when taking a snapshot where the radtx
address must be updated. Second, with the VDI struct locked,
Parallax instance is allowed to issue in-place writearpblocks,
data or metadata, referenced as writable through the VBésr
root. The second of these properties is a consequence oadhe f
that a given (data or metadata) block is only ever markechlet
within asingle radix tree.

Figure 5 illustrates the structure of Parallax’s blockstoand
demonstrates how extent locks allow a host to act as a simifierw
for new allocations within a given extent, while VDI lockdaal
access to allocated VDI blocks across all extents on thekblore.

4.2 Lock Management

The protocols and data structures in Parallax have been care
fully designed to minimize the need for coordination. Loakis
required only for infrequent operations: to claim an extEom
which to allocate new data blocks, to gain write access tanan i
active VDI, or to create or delete VDIs. Unless an extent has e
hausted its free space, no VDI read, write, or snapshot tpera
requires any coordination at all.

The VDI and extent locks work in tandem to ensure that the VDI
owner can safely write to the VDI irrespective of its physicaa-
tion in the cluster, even if the VDI owner migrates from onetho

to another while running. The Parallax instance that hdidsvDI
lock is free to write to existing writable blocks in that VDhany
extent on the shared blockstore. Writes that require diloes,
such as writes to read-only or sparse regions of a VDI's addre
space, are allocated within the extents that the Parallstanice
has locked. As a VM moves across hosts in the cluster, its VDI
is managed by different Parallax instances. The only efiethis
movement is that new blocks will be allocated from a differex
tent.

The independence that this policy affords to each Paratiax i
stance improves the scalability and reliability of the entluster.
The scalability benefits are clear: with no lock managemacts
a bottleneck, the only limiting factor for throughput is thleared
storage medium. Reliability is improved because Parafiatainces
can continue running in the absence of a lock manager as long
as they have free space in the extents they have alreadyeclaim
Nodes that anticipate heavy block allocation can simplk lextra
extents in advance.

In the case that a Parallax instance has exhausted its fage sp
or cannot access the shared block device, the local disleadeh
scribed in Section 6.2.5 could be used for temporary stovagé
connectivity is restored.

Because it is unnecessary for data access, the lock marager ¢
be very simple. In our implementation we designate a singtien
to be the lock manager. When the manager process instantiate
writes its address into the special extent at the start obtbek-
store, and other nodes use this address to contact the logk ma
ager with lock requests for extents or VDIs. Failure recgygnot
currently automated, but the system’s tolerance for lockagar
failure makes manual recovery feasible.

4.3 Garbage Collection

Parallax nodes are free to allocate new data to any free $lock
within their locked extents. Combined with the copy-onte/ma-
ture of Parallax, this makes deletion a challenge. Our ambro
to reclaiming deleted data is to have users simply mark rambx
nodes as deleted, and to then run a garbage collector tleastra
metadata references across the entire shared blockstorizems
any unallocated blocks.

Algorithm 1 The Parallax Garbage Collector

1. Checkpoint Block Allocation Maps (BMaps) of extents.
2. Initialize the Reachability Map (RMap) to zero.
3. For each VDI in the VDI registry:
If VDI is not marked as deleted:
Mark its radix root in the RMap.
For each snapshot in its snaplog
If snapshot is not marked as deleted:
Mark its radix root in the RMap.
4. For each Metadata extent:
Scan its RMap. If a page is marked:
Mark all pages (in the RMap) that it points to.
5. Repeat step 4 for each level in the radix tree.
6. For each VDI in the VDI registry:
If VDI is marked as not deleted:
Mark each page of its snaplog in the RMap.
7. For each extent:
Lock the BMap.
For each unmarked bit in the RMap:
If it is marked in the BMap as well as in the
checkpointed copy of the BMap :
Unmark the BMap entry and reclaim the block.
Unlock the BMap.

Parallax’s garbage collector is described as Algorithm tlis |
similar to a mark-and-sweep collector, except that it haxedfi
static set of passes. This is possible because we know thatdk-
imum length of any chain of references is the height of théxrad
trees. As a result we are able to scan the metadata blockssk) (d
order rather than follow them in the arbitrary order thatthppear
in the radix trees. The key data structure managed by thegarb
collector is theReachability Map (RMap), an in-memory bitmap
with one bit per block in the blockstore; each bit indicatdwtiner
the corresponding block is reachable.

A significant goal in the design of the garbage collector & th
it interfere as little as possible with the ongoing work ofdiax.
While the garbage collector is running, Parallax instararesfree
to allocate blocks, create snapshots and VDIs, and delepsbkots
and VDIs. Therefore the garbage collector works on a “check-
point” of the state of the system at the point in time that dirtst
Step 1 takes an on-disk read-only copy of all block allocati@aps
(BMaps) in the system. Initially, only the radix roots of \\and
their snapshots are marked as reachable. Subsequent pasges
blocks that are reachable from these radix roots and so dbteim
5, the entire RMap is scanned every time. This results iragling
nodes that are high in the tree, a process that could be madge mo
efficient at the cost of additional memory. The only blockatth
the collector considers as candidates for deallocatiothase that
were marked as allocated in the checkpoint taken in SteppelSiEp
7). The only time that the collector interferes with ongofPagral-
lax operations is when it updates the (live) allocation linfor an
extent to indicate newly deallocated blocks. For this ofj@nait
must coordinate with the Parallax instance that owns thenexo
avoid simultaneous updates, thus the BMap must be locketem S
7. Parallax instances claim many free blocks at once whéirigo
at the allocation bitmap (currently 10,000), so this locexs little
contention.

We discuss the performance of our garbage collector dutimg o
system evaluation in Section 6.2.3.

4.4 Radix Node Cache

Parallax relies on caching of radix node blocks to mitigate t
overheads associated with radix tree traversal. Therenares-
pects of Parallax’s design that makes this possible. Fisgle-
writer semantics of virtual disk images remove the need fyr a
cache coherency mechanisms. Second, the ratio of data &olatet
is approximately 512:1, which makes caching a large propowf
the radix node blocks for any virtual disk feasible. With ourrent
default cache size of just 64MB we can fully accommodate &wor
ing set of nearly 32GB of data. We expect that a productiaugr
Parallax system will be able to dedicate a larger portionsdRiAM
to caching radix nodes. To maintain good performance, ochiea
must be scaled linearly with the working set of data.

The cache replacement algorithm is a simple numerical hgshi
based on block address. Since this has the possibility ashiimg
or evicting a valuable root node in favour of a low-level radode,
we have plan to implement and evaluate a more sophisticaigel p
replacement algorithm in the future.

45 Local Disk Cache

Our local disk cache allows persistent data to be written by a
Parallax host without contacting the primary shared swrathe
currentimplementation is in a prototype phase. We envisaveral
eventual applications for this approach. The first is togatie the
effects of degraded network operation by temporarily ugheglisk
as a cache. We evaluate this technique in Section 6.2.5. eln th
future we plan to use this mechanism to support fully diseated
operation of a physical host.

The local disk cache is designed as a log-based ring of waite r
quests that would have otherwise been sent to the primarggeto
system. The write records are stored in a file or raw partibiothe
local disk. In addition to its normal processing, Parallargsumes
write records from the front of the log and sends them to tlie pr
mary storage system. By maintaining the same write ordexieg
ensure that the consistency of the remote storage systeraiiis m
tained. When the log is full, records must be flushed to prymar
storage before request processing can continue. In the ef/en
physical host crash, all virtual disks (which remain lockeuist be
quiesced before the virtual disk can be remounted.

A drawback to this approach is that it incorporates the pafsi
host’s local disk into the failure model of the storage syst&sers
must be willing to accept the minimum of the reliability o&tlocal
disk and that of the storage system. For many users, thisng#in
that a single disk is unacceptable as a persistent cachéhairithe
cache must be stored redundantly to multiple local disks.

5. THE BLOCK REQUEST STREAM

While Parallax’s fine-grained address mapping trees peoffi-
cient snapshots and sharing of block data, they risk imgasimngh
performance cost on block requests. At worst, accessingck loin
disk can incur three dependent metadata reads that prdwede-t
tual data access. Given the high cost of access to blocketgvic
it is critical to reduce this overhead. However, Parallagrissent-
ing virtual block devices to the VMs that use it; it must beefat
to provide the semantics that OSes expect from their diskss T
section discusses how Parallax aggressively optimizesitiok re-
quest stream while ensuring the correct handling of blo¢&.da

5.1 Consistency and Durability

Parallax is designed to allow guest operating systemstue issd
receive I/O requests with the same semantics that they woudd
local disk. VMs see a virtual SCSI-like block device; our reunt
implementation allows a guest to have up to 64 requestsghtfli

and in-flight requests may complete in any order. Parallas ot
currently support any form of tag or barrier operation, @ltgh this

is an area of interest for future work; at the moment guestsOSe
must allow the request queue to drain in order to ensure that a
issued writes have hit the disk. We expect that the additfdrao
riers will further improve our performance by better satingthe
request pipeline.

While in-flight requests may complete out of order, Parattast
manage considerable internal ordering complexity. Cansidat
eachlogical block request, issued by a guest, will result in a num-
ber of component block requests to read, and potentially update
metadata and finally data on disk. Parallax must ensurelibaet
component requests are carefully ordered to provide batltah-
sistency and durability expected by the VM. These expexiati
may be satisfied through the following two invariants:

1. Durability is the guest expectation that acknowledgeitewr
requests indicate that data has been written to HiBi pro-
vide durability, Parallax cannot notify the guest opergtin
system that a logical I/0 request has completed until all-com
ponent I/O requests have committed to physical storage.

. Consistency is the guest expectation that its indivithladk
requests are atomic—that while system crashes may lose in-
flight logical requests, Parallax will not leave its own meta
data in an invalid state.

In satisfying both of these properties, Parallax uses wieaet
fectively soft updates [16]. All dependent data and metadaé
written to disk before updates are made that reference #is d
from the radix tree. This ordering falls out of the copy-oritey
structure of the mapping trees, described in the previoosose
For any VDI, all address lookups must start at the radix réétien
a write is being made, either all references from the top efttee
down to the data block being written are writable, in whickecthe
write may be made in-place, or there is an intermediate eater
that is read-only or sparse. In cases where such a refergiste, e
Parallax is careful to write all tree data below that refegeto disk
before updating the reference on disk. Thus, to satisfy consigtenc
for each logical request, Parallax must not modify nodesénon-
disk tree until all component requests affecting lower lews the
tree have been committed to disk.

We refer to the block that contains this sparse or read-afly r
erence as aommit node, as updates to it will atomically add all of
the new blocks written below it to the lookup tree. In the cafsa
crash, some nodes may have been written to disk withoutdbmir
mit nodes. This is acceptable, because without being likieda
tree, they will never be accessed, and the correspondirig wiil
have failed. The orphaned nodes can be returned to the hdoeks
through garbage collection.

5.2 Intra-request Dependencies

Logical requests that are otherwise independent can share c
mit nodes in the tree. During writes, this can lead to nodemup
which multiple logical requests are dependent. In the cdse o
shared commit node, we must respect the second invariabofor
nodes independently. In practice this is a very common oenge.

This presents a problem in scheduling the write of the shared
commit node. In Figure 6, we provide an example of this behavi
The illustration shows a commit node and its associated afata
four monotonically increasing times. At each time, nodes data

30r has at least been acknowledged as being written by thégahys
block device.

To

[e R i |

Figure 6: Example of a shared write dependency.

blocks that are flushed to disk and synchronized in memorgapp
darker in color, and are bordered with solid lines. Thoselsdo
that appear lighter and are bordered with dashed lines hese b
modified in memory but those modifications have not yet rediche
disk.

The illustration depicts the progressofogical write requests,
ao througha.,, all of which are sequential and share a commit node.
For simplicity, this example will consider what is effedly a radix
tree with a single radix node; the Parallax pipeline behavedo-
gously when a full tree is present. At timg, assume for the pur-
pose of illustration that we have a node, in memory and synchr
nized to disk, that contains no references to data blocksthiat
time we receive the requests in a single batch, we begin process-
ing the requests issuing the data blocks to the disk, andtimgda
the root structure in memory. At time we have made all updates
to the root block in memory, and a write of one of the data bdock
has been acknowledged by the storage system. We would like to
complete the logical request as quickly as possible but we can-
not flush the commit node in its given form, because it stilitains
references to data blocks that have not been committed ko ldis
this example, we wait. At time., all data blocks have success-
fully been committed to disk; this is the soonest time thatcar
finally proceed to flush the commit node. Once that request com
pletes at time s, we can notify the guest operating system that the
associated I/O operations have completed successfully.

The latency for completing reques is thus the sum of the time
required to write the data for the subsequentl requests, plus the
time required to flush the commit node. The performance itnpac
can be further compounded by the dependency requirements im
posed by a guest file system. These dependencies are ottdlevisi
to Parallax in that the guest file system may stop issuingasigu
to Parallax due to the increased latency on some previosshed
operation.

For this reason, commit nodes are the fundamental “dial” for
trading off batching versus latency in the request pipelimethe
case of sequential writes, where all outstanding writesaoith
there are a finite number) share a common commit node, it is pos
sible in our current implementation that all in-flight regtemust
complete before any notifications may be passed back to te&,gu
resulting in bubbles while we wait for the guest to refill tieguest

pipeline in response to completion natifications. We intemdd-
dress this by limiting the number of outstanding logicaluests
that are dependent on a given commit node, and forcing the teod
be written once this number exceeds a threshold, likely dfatie
maximum in-flight requests. Issuing intermediate versiohthe
commit node will trade off a small number of additional wsiter
better interleaving of notifications to the guest. This téghe was
employed in [8]. As a point of comparison, we have disabled th
dependency tracking between nodes, allowing them to beeftlish
immediately. Such an approach yields a 5% increase in séglen
write performance, thought it is obviously unsafe for noroyzer-
ation. With correct flushing of intermediate results we mayble

to close this performance gap.

5.3 Snapshots in the Pipeline

Our snapshot semantics enable Parallax to complete a @tapsh
without pausing or delaying I/O requests, by allowing botb-p
shapshot and post-snapshot operations to complete omelpic-
tive views of the disk after the completion of the snapshatisT
capability is facilitated by both our single-writer assuiops and
our client-oriented design. In systems where distributetdes
to shared data must be managed, a linearizability of 1/Oesigu
around snapshots must be established, otherwise thereecaa b
consensus about the correct state of a snapshot. In othtensys
this requires pausing the 1/O stream to some degree. A siagple
proach is to drain the 1/0 queue entirely [14], while a moreneo
plicated approach is to optimistically assume successetng IfO
that conflicts with the snapshot [1]. Linearization in PEsatomes
naturally because each VDI is being written to by at most dnysp
ical host.

6. EVALUATION

We now consider Parallax’s performance. As discussed wi-pre
ous sections, the design of our system includes a numbectofr &
that we expect to impose considerable overheads on penficena
Block address virtualization is provided by the Parallaerdan,
which runs in user space in an isolated VM and therefore scur
context-switching on every batch of block requests. Addiilly,
our address mapping metadata involves 3-level radix trebigh
risks a dramatic increase in the latency of disk accessemdeeks
on uncached metadata blocks.

There are two questions that this performance analysisptte
to answer. First, what are the overheads that Parallax iespos
the processing of 1/0O requests? Second, what are the penfimen
implications of the virtual machine specific features thatafax
provides? We address these questions in turn, using séajueat
and write [3] (in Section 6.1.1) and PostMark [11] (in Senti1.2)
to answer the first and using a combination of micro and macro-
benchmarks to address the second.

the maximum number of block requests, from 32 to 64, that atgue
may issue at any given time, by allocating an additionalethaing
page in the split block (blkback) driver. The standard 32-8hgs
were shown to be a bottleneck when connecting to iSCSI over a
high capacity network.

6.1 Overall performance

It is worth providing a small amount of additional detail cach
of the test configurations that we compare. Our analysis com-
pares access to the block device from Xen's domain 0 (domO in
the graphs), to the block device directly connected to atguek
using the block back driver (blkback), and to Parallax. RPaxa
virtualizes block access through blktap [31], which fdatiés the
development of user-mode storage drivers.

Accessing block devices from domO has the least overhead, in
that there is no extra processing required on block requesls
domO has direct access to the network interface. This camafiigm
is effectively the same as unvirtualized Linux with respgedbdlock
performance. In addition, in domO tests, the full system Rahdl
both hyperthreads are available to domO. In the followingesa
the memory and hyperthreads are equally divided betweerddom
(which acts as the Storage \PMand a guest VM.

In the “Direct” case, we access the block device from a guest
VM over Xen'’s blkback driver. In this case, the guest runsackl
driver that forwards requests over a shared memory ring tovard
(blkback) in domO0, where they are issued to the iISCSI stackn®
receives direct access to the relevant guest pages, sasnereopy
overhead, but this case does incur a world switch betweetlitra
VM and domO for each batch of requests.

Finally, in the case of Parallax, the configuration is simtia
the direct case, but when requests arrive at the dom0 kerog! m
ule (blktap instead of blkback), they are passed on to thell@ar
daemon running in user space. Parallax issues reads ars verit
the Linux kernel using Linux’s asynchronous /O interfaliiea(o),
which are then issued to the iISCSI stack.

Reported performance measures a best of 3 runs for each cate-
gory. The alternate convention of averaging several rusiglt®in
slightly lower performance for domO and direct configurasioel-
ative to Parallax. Memory and CPU overheads were shown to be
too small to warrant their inclusion here.

6.1.1 Sequential I/0

For each of the three possible configurations, we ran Bornie+
twice in succession. The first run provided cold-cache daiat®,
while the second allows Parallax to populate its radix nauehé.
The strong write performance in the warm cache case denabestr
that Parallax is able to maintain write performance neaseffec-
tive line speed of a 1Gbps connection. Our system performanc
is within 5% of dom0. At the same time, the 12% performance

In all tests, we use IBM eServer x306 machines, each node with degradation in the cold cache case underscores the impertdn

a 3.2 GHz Pentium-4 processor, 1 GByte of RAM, and an Intel
1000 GbE network interface. Storage is provided by a NetApp
FAS3070" exporting an iSCSI LUN over gigabit links. We access

the filer in all cases using the Linux open-iSCSI softwaréiani

tor (v2.0.730, and kernel module v1.1-646) running in donti

caching in Parallax, as doing so limits the overheads im@iwn
radix tree traversal. As we have focused our efforts to dattio-
ing the write path, we have not yet sought aggressive opaitioizs
for read operations. This is apparent in the Bonnie++ testya
can see read performance slipping to more than 14% lower than

We have been developing against Xen 3.1.0 as a base. One nothat of our non-virtualized domO configuration.

table modification that we have made to Xen has been to double

“We chose to benchmark against the FAS 3070 because it is sim-"We intend to explore a completely isolated Storage VM configu

ply the fastest iSCSI target available to us. This is the UBE C
department filer, and so has required very late-night beackim
ing efforts. The FAS provides a considerable amount of NVRAM
on the write path, which explains the asymmetric perforradre-
tween read and write in many of our benchmark results.

ration as part of future work on live storage system upgrades

8In the read path, this may also have some effect on our filer's
caching; however, considering the small increase in reamitfn-

put and the fact that a sequential read is easily predictaldeon-
clude that these effects are minimal.

Bonnie Benchmark - Parallax vs. Direct Attached Disk vs. Dom 0

120000 115043 116201
1 111910

110000 4 110718 110656
& 100000 - 97090
Q
¥ 90000 |
Qo
S 80000
@
= 70000 — 68008 64928 67429
£ 60000 | 56347 58019 58162
=2
3 50000 1
=
40000 —
2
£ 30000 |
o
D 20000

10000

0 - T T T T
Write TI Read Tt Write Tl sl Read Tl
(Cold Cache) (Cold Cache) (Warm Cache) (Warm Cache)
B Pparallax Direct Dom0

Figure 7: System throughput as reported by Bonnie++ during
a first (cold) and second (warm) run.

Postmark Benchmark — Parallax vs. Direct Attached Disk

_ 12
2 11
N 0.987 0.987
© 0.909 0.911 0.911
£ 09 -
© 0.8
£ 07 4
o
5 06
& 05
E 0.4 —
£ 03 4
8 02
a 01 4
0 d
Overall File Read Append Delete Data
Creation Read Write
B Direct W Parallax

[% Time Spent on Operations
Mixed with Transactions

[l % Time Spent on Operations
Mixed with Transactions

Figure 8: PostMark results running against network available
filer (normalized).

6.1.2 PostMark

Figure 8 shows the results of running PostMark on the Paral-

lax and directly attached configurations. PostMark is desigto

model a heavy load placed on many small files [11]. The perfor-

mance of Parallax is comparable to and slightly lower thai ¢
the directly connected configuration. In all cases we fathimi
10% of a directly attached block device. File creation anig-de
tion are performed during and after the transaction phasheof
PostMark test, respectively. We have merged both phasds|-an
lustrated the relative time spent in each.

6.1.3 Local Disk Performance

To demonstrate that a high-end storage array with NVRAM is

not required to maintain Parallax’s general performancsilpy

60000 —Bonnie Benchmark - Parallax vs. Direct Attached Disk vs. Dom 0

'g 50000 | 48515 47888 47515 48749 47785 47907
n 45037 45527 45090
< 42014 42447
@ 40000 —
5 36780
Q
@
5
9 30000 —
=
=)
=1
<
IE 20000 —
2
=
c
S
m 10000 |
0 - T T T T
Write TI Read Tt Write Tl sl Read Throughput
(Cold Cache) (Cold Cache) (Warm Cache) (Warm Cache)
B Pparallax Direct Dom0

Figure 9: System throughput against a local disk as reported
by Bonnie++ during a first (cold) and second (warm) run.

Postmark Benchmark — Parallax vs. Direct Attached Disk

12
T 11
N
T 0.926 0.926
E . 092 0.875 0.875
£
S o.
=
o
5 O
o
@ 0.
< 0.
[
EC
@ 0.
o
a 0.

0

Overall File Read Append Delete Data Data
Creation Read Write
B Direct W Parallax

E % Time Spent on Operations
Mixed with Transactions

[% Time Spent on Operations
Mixed with Transactions

Figure 10: PostMark results running against a local disk (n@-
malized).

with a local disk, as above. Similarly, the results show g emhall
performance penalty when Parallax is used without the ddges
of striping disks or a large write cache.

6.2 Measuring Parallax’s Features

6.2.1 Disk Fragmentation

While our approach to storage provides many beneficial prope
ties, it raises concerns over how performance will evolve laleck-
store ages. The natural argument against any copy-on-baged
system is that the resulting fragmentation of blocks witly@ detri-
mental to performance. In Parallax, fragmentation occursmthe
block addresses visible to the guest VM are sequentiallgepla
but the corresponding physical addresses are not. Thisaae ¢

we ran the same tests using a commodity local disk as a target.as a result of several usage scenarios. First, when a sria@psho
Our disk was a Hitachi Deskstar 7K80, which is an 80GB, 7,200 deleted, it can fragment the allocation bitmaps forcingifeitse-

RPM SATA drive with an 8MB cache. The results of Bonnie++ are

shown in Figure 9. Again, the importance of maintaining aheac
of intermediate radix nodes is clear. Once the system hasibee

use for a short time, the write overheads drop to 13%, whiel re
overheads are shown to be less than 6%. In this case, P&rallax

somewhat higher I/0 requirements increase the degree thwliné
local disk acts as a bottleneck. The lack of tuning of readatpms
is not apparent at this lower throughput.

quential writes to be placed non-linearly. Second, if awattdisk
is sparse, future writes may be placed far from other bldcisare
adjacent in the block address space. Similarly, when siapsine
used, the CoW behaviour can force written blocks to diveydin
cations on the physical medium. Third, the interleaving dfes to
multiple VDIs will result in data for each virtual disk beiqdaced
together on the physical medium. Finally, VM migration vailuse
the associated Parallax virtual disks to be moved to newighlys

In Figure 10 we show the results of running the PostMark test hosts, which will in turn allocate from different extentshus data

15 _The Effects of Random Block Placement on Read Performance

14
13
12 1167
11
— 0.982
09
08
07
06
05
0.4
03 — 0.269
02 o

Normalized Read Performance Score

0.111

0.1 — 0.063
0.013

PostMark PostMark
Local Disk Filer

PostMark
Filer, 2nd run

Bonnie++
Filer, 2nd run

Bonnie++ Bonnie++
Local Disk Filer

B Parallax O Dpirect

Figure 11: The effects of a worst case block allocation schem
on Parallax performance.

allocations after migration will not be located near thdsat toc-
curred before migration. Note however that fragmentatidhnot
result from writing data to blocks that are not marked reat;@s
this operation will be done in place. In addition, sequéntidgtes
that target a read-only or sparse region of a virtual disknerhain
sequential when they are written to newly allocated regidrtss
is true even if the original write-protected blocks were limetar on
disk, due to fragmentation.

Thus, as VDIs are created, deleted, and snapshotted, we intu

itively expect that some fragmentation of the physical raedalill
occur, potentially incurring seeks even when performirgusatial
accesses to the virtual disk. To explore this possibilitytfer, we
modified our allocator to place new blocks randomly in thepkt
simulating a worst-case allocation of data. We then benckeda
local disk and filer read performance against the resultibd, #s
shown in Figure 11.

Even though this test is contrived to place extreme stresisén
performance, the figure presents three interesting redtittst, al-
though it would be difficult to generate such a degenerate idis
the normal use of Parallax, in this worst case scenario,omnd
block placement does incur a considerable performanceltgena
especially on a commodity disk. In addition, the test condittrat
the overheads for Bonnie++, which emphasizes sequensialad-
cess, are higher than those for PostMark, which emphasizaites
reads from a wider range of the disk. Interestingly, thedth@sult
is that when the workload is repeated, the filer is capablegdin-
ing most of the lost performance, and even outperforms Pa#tM
with sequential allocation. Although a conclusive anaysicom-
plicated by the encapsulated nature of the filer, this referton-
strates that the increased reliance on disk striping,alized block
addressing, and intelligent caching makes the fragmentgtiob-
lem both difficult to characterize and compelling. It puratas
the observation made by Stein et al [25], that storage staaks
become incredibly complex and that naive block placemeesdo
not necessarily translate to worse case performance -dritean
prove beneficial.

As a block management system, Parallax is well positioned to

tackle the fragmentation problem directly. We are curkesth-
hancing the garbage collector to allow arbitrary block rppiag.
This facility will be used to defragment VDIs and data exsgmaind
to allow the remapping of performance-sensitive regionslisk
into large contiguous regions that may be directly refeeenat

Write completion latency (ms)

Writable Sparse Faulted
Parallax Parallax Parallax
Block Block Block

Figure 12: Single write request latency for domO, direct at-
tached disks, and three potential Parallax states. A 95% cdir
dence interval is shown.

higher levels in the metadata tree, much like the concepueof s
perpages in virtual memory. These remapping operationsnare
dependent of the data path, just like the rest of the garbaligce
tor. Ultimately, detailed analysis of these features, ciomdb with

a better characterization of realistic workloads, will lee@ssary to
evaluate this aspect of Parallax’s performance.

6.2.2 Radix tree overheads

In order to provide insight into the servicing of individuabck
requests, we use a simple microbenchmark to measure ttosari
overheads. There are three distinct kinds of nodes in a taetx
A node may be writable, which allows in-place modification. |
may be sparse, in that it is marked as non-existent by its\pafée
nally, it may be read-only, requiring that the contents bgied to
a newly block in order to process write requests. We instniete
Parallax to generate each of these types of nodes at thevielpfe
the tree, to highlight their differences. When non-writabbdes
are reached at lower levels in the tree, the performancedngi
be less notable. Figure 12 shows the results. Unsurprisinglen
a single block is written, Parallax performs very similattythe
other configurations, because writing is done in place. Wden
sparse node is reached at the top of the radix tree, Paraliak m
perform writes on intermediate radix nodes, the radix rant] the
actual data. Of these writes, the radix root can only corepdter
all other requests have finished, as was discussed in Séctidme
faulted case is similar in that it too requires a serializedleybut it
also carries additional overheads in reading and copyitegrire-
diate tree nodes.

6.2.3 Garbage collection

As described in Section 4.3, the Parallax garbage colleaidks
via sequential scans of all metadata extents. As a reselpen
formance of the garbage collector is determined by the spéed
reading metadata and the amount of metadata, and is indeqptend
of both the complexity of the forest of VDIs and their snafgsho
and the number of deleted VDIs. We've run the garbage caoltect
on full blockstores ranging in size from 10GB to 50GB, and we
characterize its performance by the amount of data it caogs®o
(measured as the size of the blockstore) per unit time. itf®ope
mance is linear at a rate of 0.96GB/sec. This exceeds thepieed
of the storage array, because leaf nodes do not need to béoread
determine if they can be collected.

Baseline Snapshot Latency

1 I I I |
15 2 25

Latency (ms)

I
T
1

Figure 13: Snapshot latency of running VM during constant
checkpointing.

The key to the good performance of the garbage collectomis th
the Reachability Map is stored in memory. In contrast to tleeB
Allocation Maps of each extent which are always scannedesequ
tially, the RMap is accessed in random order. This puts atcaing
on the algorithm’s scalability. Since the RMap contains bit@er
blockstore block, each 1GB of memory in the garbage coltecto
allows it to manage 32TB of storage. To move beyond those con-
straints, RMap pages can be flushed to disk. We look forward to
having to address this challenge in the future, should wedbe c
fronted with a sufficiently large Parallax installation.

6.2.4 Snapshots

To establish baseline performance, we first measured the gen
eral performance of checkpointing the storage of a runnirigdbe
VM. We completed 500 checkpoints in a tight loop with no delay
A histogram of the time required by each checkpoint is given i
Figure 13. The maximum observed snapshot latency in this tes
was 3.25ms. This is because the 3 writes required for mogt sna
shots can be issued with a high degree of concurrency andtare o
serviced by the physical disk’s write cache. In this testrertban
90% of snapshots completed within a single millisecond; e,
it is difficult to establish a strong bound on snapshot lagefhe
rate at which snapshots may be taken depends on the perfeman
of the underlying storage and the load on Parallax’s 1/0 estju
pipeline. If the 1/O pipeline is full, the snapshot requesiynbe
delayed as Parallax services other requests. Averagelsidps
tency is generally under 10ms, but under very heavy load we ha
observed average shapshot latency to be as high as 30ms.

Next we measured the effects of varying snapshot ratesglurin
the decompression and build of a Linux 2.6 kernel. In Figurevi
provide results for various sub-second snapshot intervalkile
this frequency may seem extreme, it explores a reasonahtze sp
for applications that require near continuous state captlarger
snapshot intervals were tested as well, but had little effiager-
formance. The snapshot interval is measured as the avénage t
between successive snapshots and includes the actuaktjmiesd
to complete the snapshot. By increasing the snapshot rate fr
1 per second to 100 per second we incur only a 4% performance
overhead. Furthermore, the majority of this increase @asrwe
move from a 20ms to 10ms interval.

Figure 15 depicts the results of the same test in terms of data
and metadata creation. The data consumption is largely éixed
all tests because kernel compilation does not involve ongng
previously written data, thus the snapshots have littlectfbn the
number of data blocks created. In the extreme, taking siépsh

Snapshot Overhead

e e i i G G G \

Figure 14: Measuring performance effects of various snapsit
intervals on a Linux Kernel decompression and compilation.

800 _Storage Consumption versus Snapshot Frequency

750
700 — metadata

B data

11 —
13 —
16 —
19 —
26 —

Figure 15: Measuring data consumption at various snapshot
intervals on a Linux Kernel decompression and compilation.

every 10ms, 65,852 snapshots were created, each consuming j
5.84KB of storage on average. This accounted for 375 MB omet
data, roughly equal in size to the 396 MB of data that was &mitt

877.921 second
764.117 second

1188.59 MB
790.46 MB

Snapshot per Write
Snapshot per Batch

T

Table 2: Alternate snapshot configurations.

To further explore the potential of snapshots, we createdatw
ternate modes to investigate even more fine-grained staterean
Parallax. In the first case we snapshot after each batch oéses)
this enables data retention without capturing the uncimandisk
states between writes. In our second snapshot mode, wepexfo
shapshot after every write request. Owing to the experiaterat-
ture of this code, our implementation is unoptimized. Exeugh
the results are good, we expect there is significant roomnfer i
provement. The impact on the performance of the kernel compile
is shown in Table 2. When taking a snapshot after every date,wr
for every data block we consume 3 metadata blocks for the radi
tree nodes and a few bytes for the entry in the snapshot log.

"Our current implementation does not support concurrenp-sna
shots; we will remove this restriction in the future.

Local Cache Performance
80
70 o
60
50 —
40
30

Megabytes/Sec

20 — Filer

10 - Throughtput

0 T T T T T T 1
20 25 30 35
Seconds

Figure 16: Performance of bursted write traffic.

_Local Cache Performance

Filer
Throughtput
— Percieved
System
Throughtput

Megabytes/Sec

30 35

Seconds

Figure 17: Performance of bursted write traffic with local disk
caching.

6.2.5 Local Disk Cache

We evaluated our local disk cache to illustrate the advantdg
shaping the traffic of storage clients accessing a centdliet-
work storage device. We have not yet fully explored the perfo
mance of caching to local disk in all scenarios, as its imglem
tation is still in an early phase. The following experimesiniot
meant to exhaustively explore the implications of this téghe,
merely to illustrate its use and current implementatioraddition,
the local disk cache demonstrates the ease with which neurésa
may be added to Parallax, owing to its clean isolation froth itioe
physical storage system and the guest operating systemlodle
disk cache is currently implemented in less than 500 linedé.

In Figure 16, we show the time required to process 500MB of
write traffic by 4 clients simultaneously. This temporaryusation

6.2.6 Metadata consumption

While there are some large metadata overheads, particitarl
the initial extent, we expect that metadata consumptioraialRx
will be dominated by the storage of radix nodes. Measuritg th
consumption is difficult, because it is parameterized by oy
the image size, but also the sparseness of the images, tieensys
wide frequency and quality of snapshots, and the degreeaningh
involved. To simplify this problem, we consider only theeraif
radix nodes per data block on an idealized system.

In a full tree of height three with no sparseness we must ereat
a radix node for every 512 blocks of data, an additional nade f
every 262,144 blocks of data, and finally a root block for thle
disk. With a standard 4KB blocks size, for 512GB of data, weimu
store just over 1GB of data in the form of radix nodes. Natyrfar
a non-full radix tree, this ratio could be larger. Howeveg, believe
that in a large system, the predominant concern is the wesatad
by duplication of highly redundant system images — a problem
explicitly address.

7. CONCLUSIONS AND FUTURE WORK

Parallax is a system that attempts to provide storage Vizaia
tion specifically for virtual machines. The system movesfion-
ality, such as volume snapshots, that is commonly impleetent
on expensive storage hardware out into a software impleatient
running within a VM on the physical host that consumes the sto
age. This approach is a novel organization for a storagesyst
and allows a storage administrator access to a cluster-adden-
istration domain for storage. Despite its use of severamally
high-overhead techniques, such as a user-level implet@mntnd
fine-grained block mappings through 3-level radix treesalax
achieves good performance against both a very fast shavet)st
target and a commodity local disk.

We are actively exploring a number of improvements to the sys
tem including the establishing of a dedicated storage VM, ube
of block remapping to recreate the sharing of common datads V
diverge, the creation of superpage-style mappings to dkeidver-
head of tree traversals for large contiguous extents, apdséxg
Parallax’s snapshot and dependency tracking featuresrasiypes
to the guest file system. As an alternative to using a singlear&
available disk, we are designing a mode of operation in wRiat
allax itself will manage multiple physical volumes. Thisynaove
a lower cost alternative to large sophisticated arrays.

We are continually making performance improvements tolPara
lax. As part of these efforts we are also testing Parallax widar
array of hardware. We plan to deploy Parallax as part of aerexp
imental VM-based hosting environment later this year. Tiils
enable us to refine our designs and collect more realisti olat
Parallax’s performance. An open-source release of Parallidh

of the shared storage resource may come as a result of analinusu ¢y rrent performance data, is available at:
and temporary increase in load, such as occurs when a system i ¢ p://dsg. cs. ubc. cal paral | ax/ .

initially brought online. This scenario results in a degtoh of
per-client performance, even as the overall throughpuigis.h

In Figure 17 we performed the same test with the help of our
local disk cache. The Storage VMs each quickly recognized in
creased latency in their 1/0 requests to the filer and enatbleid
local caches. As a result, clients perceived an aggregatedse
in throughput, because each local disk can be accesseduitho
terference from competing clients. In the background, esrihat

Acknowledgments

The authors would like to thank the anonymous reviewerstieir t
thorough and encouraging feedback. They would also likeaok
Michael Sanderson and the UBC CS technical staff for thehmen
siastic support, which was frequently beyond the call ofdiihis
work is supported by generous grants from Intel Researchrand

had been made to the local cache were flushed to network storag National Science and Engineering Research Council of Ganad

without putting too much strain on the shared resource. n@®lie
processed the workload in significantly less time (18-2®@sds).
A short time after the job completed, the cache was fullyrodj
though this background process was transparent to users.

8. REFERENCES

[1] M. K. Aguilera, S. Spence, and A. Veitch. Olive: distribd
point-in-time branching storage for real systems. In
Proceedings of the 3rd USENIX Symposium on Networ ked
Systems Design & Implementation (NSDI 2006), pages
367-380, Berkeley, CA, USA, May 2006.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of
virtual machines. IfProceedings of the 2nd USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 2005), May 2005.

[3] R. Coker. Bonnie++. http://www.coker.com.au/bonnie+

[4] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: Enabling intrusion analysis through
virtual-machine logging and replay. Proceedings of the 5th
Symposium on Operating Systems Design & Implementation
(OSDI 2002), December 2002.

[5] E. Eide, L. Stoller, and J. Lepreau. An experimentation
workbench for replayable networking research. In
Proceedings of the Fourth USENIX Symposium on
Networked Systems Design & Implementation, April 2007.

[6] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfiehd, a
M. Williamson. Safe hardware access with the xen virtual
machine monitor. IfProceedings of the 1st Workshop on
Operating System and Architectural Support for the
On-Demand IT Infrastructure (OAS S 1), October 2004.

[7] S. Frglund, A. Merchant, Y. Saito, S. Spence, and A. C.
Veitch. Fab: Enterprise storage systems on a shoestring. In
Proceedings of HotOS 03: 9th Workshop on Hot Topicsin
Operating Systems, Lihue (Kauai), Hawaii, USA, pages
169-174, May 2003.

[8] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes,

S. Hovsepian, A. Matsuoka, and L. Zhang. Generalized file
system dependencies. Bnoceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP'07),

pages 307-320, October 2007.

[9] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. roceedings of the USENIX
Winter 1994 Technical Conference, pages 235-246, San
Fransisco, CA, USA, January 1994.

M. Ji. Instant snapshots in a federated array of brjcks.

January 2005.

[11] J. Katcher. Postmark: a new file system benchmark, 1997.

[12] S.T. King, G. W. Dunlap, and P. M. Chen. Debugging

operating systems with time-traveling virtual machines. |

ATEC' 05: Proceedings of the USENIX Annual Technical

Conference 2005, pages 1-15, Berkeley, CA, April 2005.

M. Kozuch and M. Satyanarayanan. Internet

Suspend/Resume. Rroceedings of the 4th IEEE Workshop

on Mobile Computing Systems and Applications, Calicoon,

NY, pages 40-46, June 2002.

E. K. Lee and C. A. Thekkath. Petal: Distributed virtual

disks. InProceedings of the Seventh International

Conference on Architectural Support for Programming

Languages and Operating Systems, pages 84-92,

Cambridge, MA, October 1996.

[15] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmatlifie
device driver reuse and improved system dependability via
virtual machines. IfProceedings of the 6th Symposium on
Operating Systems Design & Implementation (OSDI 2004),
pages 17-30, December 2004.

[16] M. K. McKusick and G. R. Ganger. Soft updates: A

[10]

[13]

[14]

technique for eliminating most synchronous writes in the fa
filesystem. IFREENIX Track: 1999 USENIX Annual TC,
pages 1-18, Monterey, CA, June 1999.

[17] M. McLoughlin. The QCOW image format.
http://www.gnome.org/markmc/gcow-image-format.html.

[18] Microsoft TechNet. Virtual hard disk image format
specification. http://microsoft.com/technet/virtualss/
downloads/vhdspec.mspx.

[19] Z. Peterson and R. Burns. Ext3cow: a time-shifting file

system for regulatory compliancACM Transactions on

Sorage, 1(2):190-212, 2005.

B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualizatio

aware file systems: Getting beyond the limitations of virtua

disks. InProceedings of the 3rd USENIX Symposium on

Networked Systems Design & Implementation (NSDI 2006),

pages 353-366, Berkeley, CA, USA, May 2006.

Red Hat, Inc. LVM architectural overview.

http://www.redhat.com/docs/manuals/enterprise/RHEL -

manual

/Cluster_Logical_Volume_Manager/LVM_definition.html.

[22] O. Rodeh and A. Teperman. zFS — A scalable distributed fil
system using object disks. MSS’03: Proceedings of the
20th |EEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 207—-218, Washington, DC,
USA, April 2003.

[23] C. Sapuntzakis and M. Lam. Virtual appliances in the
collective: A road to hassle-free computing.Rroceedings
of HotOS 03: 9th Werkshop on Hot Topicsin Operating
Systems, pages 55-60, May 2003.

[24] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. $nLa

and M. Rosenblum. Optimizing the migration of virtual

computers. IrProceedings of the 5th Symposium on

Operating Systems Design & Implementation (OSDI 2002),

December 2002.

L. Stein. Stupid file systems are betterHOTOS 05:

Proceedings of the 10th conference on Hot Topicsin

Operating Systems, pages 5-5, Berkeley, CA, USA, 2005.

[26] VMware, Inc. Performance Tuning Best Practices for ESX
Server 3.
http://www.vmware.com/pdf/vi_performance_tuning.pdf

[27] VMWare, Inc. Using vmware esx server system and vmware
virtual infrastructure for backup, restoration, and dieas
recovery. www.vmware.com/pdf/esx_backup_wp.pdf.

[28] VMWare, Inc. Virtual machine disk format.
http://www.vmware.com/interfaces/vmdk.html.

[29] VMware, Inc. VMware VMFS product datasheet.

http://lwww.vmware.com/pdf/vmfs_datasheet.pdf.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,

A. Snoeren, G. Voelker, and S. Savage. Scalability, fidelity

and containment in the Potemkin virtual honeyfarm. In

Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP’ 05), pages 148-162, Brighton,

UK, October 2005.

[31] A. Warfield.Virtual Devices for Virtual Machines. PhD
thesis, University of Cambridge, 2006.

[32] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
debugging as search: Finding the needle in the haystack. In
Proceedings of the 6th Symposium on Operating Systems
Design & Implementation (OSDI 2004), pages 77-90,
December 2004.

[20]

[21]

[25]

[30]

