
Cross-platform Data Integrity and Confidentiality with
Graduated Access Control

by

Feifan Chen

BASc Engineering Science Electrical and Computer Engineering, University of

Toronto, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

December 2016

c© Feifan Chen, 2016

Abstract

Security of data is tightly coupled to its access policy. However, in practice,

a data owner has control of his data’s access policies only as far as the bound-

aries of his own systems. We introduce graduated access control, which provides

mobile, programmable, and dynamically-resolving policies for access control that

extends a data owner’s policies across system boundaries. We realize this through

a novel data-centric abstraction called trusted capsules and its associated system,

the trusted data monitor.

A trusted capsule couples data and policy into a single mobile unit. A capsule

is backwards-compatible and is indistinguishable from any regular file to appli-

cations. In coordination with the trusted data monitor, a capsule provides data

integrity and confidentiality on remote devices, strong authentication to a trusted

capsule service, and supports nuanced and dynamic access control decisions on

remote systems.

We implemented our data monitor using ARM TrustZone. We show that grad-

uated access control can express novel and useful real world policies, such as re-

vocation, remote monitoring, and risk-adaptable disclosure. We illustrate trusted

capsules for different file formats, including JPEG, FODT, MP4 and PDF. We

also show compatibility with unmodified applications such as LibreOffice Writer,

Evince, GpicView and VLC. In general, we found that applications operating on

trusted capsules have varying performance, which depends on file size, application

access patterns, and policy complexity.

ii

Preface

The work presented in this thesis was conducted by the author in the Network,

Security and Systems Lab under supervision of Dr. Ivan Beschastnikh.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Glossary . viii

Acknowledgments . ix

1 Introduction . 1

2 Use Cases . 5

3 TrustZone & OP-TEE Overview . 7
3.1 TrustZone . 7

3.2 Linaro OP-TEE . 9

3.2.1 ARM Trusted Firmware 9

3.2.2 OP-TEE OS . 10

3.2.3 OP-TEE Linux Driver 11

3.2.4 OP-TEE Supplicant . 12

iv

4 Design . 13
4.1 Trusted Capsule Application . 15

4.2 Trusted Capsule Server . 19

4.3 Lua Policy Engine . 20

4.4 System Call Interceptor . 22

4.5 Security . 25

5 Implementation . 27

6 Evaluation . 29
6.1 Policy language . 29

6.2 Storage overhead . 32

6.3 System call microbenchmarks 32

6.4 Applications . 38

7 Related Work . 44

8 Future Work . 48
8.1 Bugs . 48

8.2 Optimization . 49

8.3 Engineering . 49

8.4 Research Directions . 51

9 Conclusion . 52

Bibliography . 53

v

List of Tables

Table 3.1 ARM processor modes. 8

Table 3.2 Linaro OP-TEE API. 11

Table 4.1 Lua policy extensions. 20

Table 6.1 LOC for example policies from Chapter 2. 31

Table 6.2 Storage overhead for test data files. 32

Table 6.3 Application Macrobenchmarks. 43

vi

List of Figures

Figure 1.1 Device-centric vs. data-centric access control 1

Figure 3.1 ARM TrustZone Boot Sequence. 10

Figure 4.1 Trusted capsule layout. 14

Figure 4.2 Trusted capsule data monitor system model. 15

Figure 4.3 Trusted capsule monitor operation. 16

Figure 4.4 Trusted capsule monitor session model. 16

Figure 4.5 Trusted capsule read. 18

Figure 4.6 Lua policy template. 22

Figure 4.7 System call interceptor state. 23

Figure 6.1 Sensitive merger document policy. 30

Figure 6.2 Redaction example result. 31

Figure 6.3 Private image policy. 31

Figure 6.4 System call interceptor overhead. 34

Figure 6.5 Tainted write overhead. 35

Figure 6.6 Trusted capsule chunk size microbenchmark. 36

Figure 6.7 Trusted capsule file size microbenchmark. 37

Figure 6.8 Trusted capsule cost breakdown 1MB/4KB. 39

Figure 6.9 Trusted capsule cost breakdown 1MB/1KB. 40

Figure 6.10 Trusted capsule cost breakdown 10KB/4KB. 41

vii

Glossary

TEE Trusted Execution Environment

OS Operating System

viii

Acknowledgments

First, I would like to thank my supervisor, Dr. Ivan Beschastnikh, for all his

help and guidance throughout the entirety of the project, without which this would

not have been possible. I am also grateful to Dr. Andrew Warfield who provided

valuable guidance in pushing the project forward and Dr. Norman Hutchinson for

being second reader for my thesis.

Secondly, I would also like to thank my labmates in the NSS lab (Networks,

Systems, and Security) for keeping me company. Especially I would like to thank

Amanda Carbonari who helped me finish my thesis on time. I would also like to

thank Haoran Yu and Thomas Liu for their contributions to the project.

This work was supported by the NSA National Information Assurance Lab and

by the UBC Computer Science Department.

ix

Chapter 1

Introduction

Today’s documents, pictures, videos, and other user-generated data are highly

mobile and only rarely live on a single device. This data is shared, backed-up, repli-

cated, synced, and in general moved from one device to another. While a datum’s

owner has full control over the data access control policies on his set of devices,

once his data has moved to a device he does not control, the data comes under the

access control policies set by the owner of the remote device. Paradoxically, the

data owner, who has the most vested interest and knowledge about the security re-

quirements of his data, gets no say over the access control policies for his data on

remote devices. This is represented visually in Figure 1.1(a): the owner’s access

control circle includes just his device(s).

As an example, consider how Bob might share a photo with Alice. Bob first

(a) (b)

Figure 1.1: (a) Device-centric access control, and (b) data-centric graduated
access control.

1

uploads the photo to Dropbox and then grants Alice access to the photo. With this

small action the access policy on his photo in the cloud changes to the policies

set by Dropbox. Further, once Alice downloads the photo, Alice’s copy of Bob’s

photo has yet another set of policies, dictated by Alice’s device and software stack.

In this scenario, Bob must blindly trust Alice to both know and adhere to Bob’s

desired access policies for his photos. For example, this may include maintaining

the photo’s privacy by not opening it at public places or deleting it when Bob

asks her to at a later point in time. Further, Bob also becomes vulnerable to any

compromise of Dropbox.

So, how can Bob ensure that his photo’s access control policies are met when

he shares the photo with Alice and uploads it to Dropbox, both of whom Bob do

not trust?

Existing commercial approaches offer one answer: extend Bob’s system bound-

ary across remote devices, including Dropbox servers and Alice’s devices. These

approaches require intrusive modifications to the remote software stack, either to

the platform [5, 9] or to the application [8], and are variants of the VPN model:

control data by not permitting it to leave the data owner’s system boundary. Aca-

demic solutions offer other variants, such as DIFC [17, 19, 31, 36, 38, 43, 44]

and taint-based solutions [21, 22, 26, 45], which have focused on ensuring data

security across different levels of the local stack, but like the previously described

commercial solutions, assume a single administrative domain.

Previous solutions are predominantly process-centric. That is, data access pol-

icy is controlled by the applications and the platform. This design is in conflict with

the fact that it is the data that is mobile. In this model, control of data access policy

is tied with data distribution — once the data leaves the data owner’s systems, he

can no longer control how his data is accessed.

In this work, we present a data-centric solution called graduated access con-
trol and realize it using a trusted capsule abstraction that ties policy to data, and

a secure data monitor for secure policy evaluation on remote devices. With grad-

uated access control a user can define data access policies on a continuum rather

than a binary can/cannot. Access is resolved dynamically and in a fine-grained

manner (in our implementation policies are evaluated at system call granularity).

Policies are stateful programs that can base access decisions on information like

2

location, time, and number of prior accesses. Figure 1.1(b) illustrates graduated

access control as a data-centric extension of a data owner’s device-centric access

control.

Our realization of graduated access control uses an abstraction called trusted

capsules, which consists of the data and a policy encapsulated into a single mobile

unit. This pairing ensures that control over the data in a trusted capsule is no longer

dependent on where and how the capsule is distributed. Capsules also provide

backward compatibility with existing applications (a capsule is a regular file) and

support a diverse set of policies that can be defined on remote devices as first-order

abstractions. Trusted capsules allow the data owner to express policies related

to risk-adaptable disclosure, compliance, revocation, data provenance, and data

integrity.

To enforce policies dictated by trusted capsules, we designed a data monitor.

The monitor operates at data-level granularity in a trusted execution domain within

ARM TrustZone [11], and transparently mediates access to data in the trusted cap-

sule by applications on remote platforms. Our data monitor uses a pragmatic threat

model that acknowledges the realities of today’s mobile devices — data shown on

the screen can be captured by cameras or read by third parties. The data monitor,

therefore, provides secure policy evaluation for data declassification on the remote

device. But, once the data is declassified the monitor makes no attempt to track

or control data movement, e.g., it does not prevent an application that was granted

data access from leaking the data.

We show that graduated access control and trusted capsules can express real

world policies for different file formats, including JPEG, FODT, and PDF. We also

show that unmodified applications, such as LibreOffice Writer, PDF reader Evince,

and video player VLC, work with capsules and can take advantage of graduated ac-

cess control. When using a capsule containing a JPEG, our system imposes a space

overhead of 1.42% and a slowdown of 45x when opening the image. This overhead

depends on how a policy is expressed and the data is being accessed. We also mea-

sured the read/write throughput and latency. A null policy has a throughput of 1.4

MB/sec, compared to the 500 MB/sec throughput without our system. The latency

per syscall operation varies but imposes an average slowdown of 391x, although

this does not reflect the perceived application slowdown.

3

Our contributions can be summarized as follows:

• A data-centric graduated access control abstraction for protecting sensitive

data across system boundaries.

• A backwards compatible trusted capsule abstraction and data monitor, which

transparently support flexible policies at data-level granularity on remote de-

vices.

• An evaluation of the performance and expressiveness of our system.

In the following, we build upon the motivation set forth in this chapter by

providing real world use cases in Chapter 2. Then we provide an overview of our

Trusted Execution Environment (TEE) in Chapter 3, the design and implementation

of our trusted capsules and its associated data monitor in Chapter 4 and 5, and the

summary of our results in Chapter 6. We discuss related work in Chapter 7 and

future work in Chapter 8.

4

Chapter 2

Use Cases

In this section we introduce four use-cases which we use to motivate the need

for graduated access control, and to structure our evaluation (Chapter 6).

Sensitive documents. Employees such as lawyers, government administrators

and corporate executives routinely bring home sensitive documents (e.g., merger

documents) to review on their own devices. Usually, this convenience is in tension

with the employer’s need to protect sensitive information. The employer may wish

to attach risk-adaptable policies to sensitive documents, such as policies to redact

certain sensitive document regions based on location, time, and the employee’s role

within the organization. For example, a law firm may want to constrain access to

the merger document to within the confines of the office and to a lawyer’s home.

Outside of these geographic boundaries, the law firm may wish to redact the prin-

cipals of the merger from the text of the document when it is opened as a graduated

risk-adaptable policy. This prevents a careless lawyer from reviewing the sensitive

document in a public space where there may be curious eyes.

Identity protection. Social Security Numbers (SSN) in the USA have evolved

into a national personal ID, making it an identity theft target. Many US univer-

sities display student SSNs on college transcripts [10]. These transcripts must be

shared with other organizations, for example, to prove registration status. These

transcripts may then be kept on file for undetermined lengths of time. A malicious

employee or a compromised system may then reveal a student’s SSN information

at a later point in time. A student may want to attach risk-adaptable policies that

5

stops access after a reasonable period of time has elapsed.

Sharing photos & videos. Celebrities, such as the British royal family, need to

protect their private photos and videos [7]. However, personal data in the cloud is

vulnerable to human engineering efforts and attacks on the cloud’s software stack,

such as when the photos of the royal family were stolen from the iCloud [6] of

one royal family member. Ideally, if such personal data were to fall into the wrong

hands, a data policy would prevent access. Further, in the event of a stolen device

or changed social circumstance (e.g., break-up), the data owner can revoke access

by retroactively changing the access policy.

E-Health records (EHR). It has long been the ambition of any health care

authority to establish a national record of each citizen’s health history to improve

patient care. However, the centralization of sensitive health information has nu-

merous security concerns [12]. These include individuals who abuse privileged

medical information for personal gain and medical professionals who retroactively

change medical diagnosis to cover up mistakes. Trusted capsules allow a dis-

tributed model for EHR that would mitigate these concerns. The health authority

controls the EHR’s policy while the patient physically carries the EHR – similar to

a physical healthcare card. Devices belonging to health-care professionals and pa-

tients are provisioned with role-based identities by the HA. In this de-centralized

model, only health care professionals with the health-care provider role who are

given physical access to the the patient’s EHR would have access.

The HA may specify policies that only allow the EHR to be append-only to

prevent retroactive modifications. It can attach policies that only allow the current

doctor to view the health record. Further, they may have redact policies that hides

a top-level watermark for any person with the role of patient but is not redacted for

any person with the role of doctor to ensure the provenance and the integrity of the

distributed EHR.

6

Chapter 3

TrustZone & OP-TEE Overview

Trusted capsules allow advisory policies to be enforced on remote devices that

the data owner does not control. To protect sensitive operations such as trusted

capsule policy evaluation from remote users who can run an arbitrarily software

stack, we require a TEE that is resistant to potential compromise of both applica-

tions and OS running on the remote device. We use ARM TrustZone technology as

our TEE and Linaro OP-TEE as our TEE low-level software stack. Within this TEE,

we handle sensitive cryptographic operations, perform policy evaluation, securely

store policy state, and anchor a secure channel to the policy coordinator.

3.1 TrustZone
ARM TrustZone [11] is widely available on current commodity ARM proces-

sors. TrustZone physically partitions the CPU, memory and peripherals into two

isolated logical “worlds” – normal and secure. Each world has its own banked

system registers and MMU. To isolate the two worlds, all communications must

pass through a small and heavily verified secure monitor gate. To facilitate a world

switch, a special smc instruction is used to trap into the secure monitor. The secure

monitor saves the banked registers (e.g., return address, stack pointer) of the call-

ing world and loads the banked registers of the callee world prior to executing eret

to return to the last execution point in the callee world.

Where the smc traps to is controlled by the secure world through its exception

7

Secure Normal
EL0 Trusted Application Application
EL1 Secure Operating System (OS) Normal OS

EL3 Secure Monitor -

Table 3.1: ARM processor modes.

table register – VBAR, which holds the memory address of the exception table.

The memory that holds the exception table can also only be accessed by the secure

world.

The ARM TrustZone security model provides the following hardware-based

guarantee: the normal world cannot access the registers, memory or peripher-
als assigned to the secure world; but the secure world can access normal world
registers and memory.

For registers, this guarantee is provided through a Secure-Modify-Only NS-bit

in the ARM System Control Register (SCR), which controls the world-view for

banked registers. Control of this bit is retained exclusively by the secure world

enabling it to access banked system registers of both worlds, but not vice versa for

the normal world.

For memory, the secure world provides such a guarantee by either taking exclu-

sive control of on-chip memory such as secure SRAM [4] or by mapping a section

of the general off-chip memory and hiding it from the MMU of the normal world.

For peripherals, secure and normal world access are partitioned by interrupt

modes. ARM processors contain two interrupt modes – FIQ and IRQ. Each in-

terrupt mode can be individually assigned to trap to code in the normal or secure

world. Therefore, a peripheral can be assigned to a specific world by assigning

it to the corresponding interrupt mode. The usual set-up assigns FIQ to the se-

cure world and IRQ to the normal world, as most existing normal world drivers

currently operate using the IRQ mode.

For additional hardware protection for off-chip memory and device protection,

additional hardware, such as TrustZone Protection Controller (TZPC) and Trust-

Zone Address Space Controller (TZASC), can be added to extend the dual-world

abstraction to the AXI-bus, memory controllers and interrupt controllers.

8

The secure/normal paradigm operates orthogonally to the traditional concept

of privilege levels, see Table 3.1. The secure monitor operates in secure mode at

the highest privilege level (EL3), while untrusted application code and privileged

normal world OS operate in non-secure mode. The secure mode at privilege level

EL0 and EL1 is reserved for trusted applications and the trusted OS.

Architecturally, the privilege level of the CPU is controlled by a system register

called Saved Program State Register (SPSR). The SPSR register is banked between

different modes of operation for the ARM processor and is saved/reloaded during

a world switch before returning to the point of last execution. The current SPSR in

use is loaded into the Current Program State Register (CPSR).

TrustZone enables the applications and the OS running in the secure World

to remain protected even if the normal world OS or applications are arbitrarily

compromised.

3.2 Linaro OP-TEE
Linaro OP-TEE is an open-source software stack for ARM TrustZone. It pro-

vides a secure world OS (OP-TEE OS) for executing trusted applications, a low-

level secure monitor for world-switching (ARM Trusted Firmware) and a Trust-

Zone driver (OP-TEE Linux driver & OP-TEE Supplicant) for the normal world

OS, such as Linux, to access TrustZone and execute secure world RPCs. We use

Linaro OP-TEE as-is except for our custom extensions that enable direct access

to the network and the file system as RPCs by trusted applications in the secure

world. These secure world RPCs are executed by OP-TEE Supplicant which runs

in normal world user space as a single threaded application and are intermediated

by OP-TEE Linux Driver in the normal world kernel.

The following description is based on the HiKey system-on-chip (SoC) with

Linux as the normal world OS.

3.2.1 ARM Trusted Firmware

ARM Trusted Firmware (ATF) [2] is a set of reference boot and runtime

firmware designs for ARM TrustZone. It initializes the secure world through a

multi-staged boot sequence, as shown in Figure 3.1. A root-of-trust can be built by

9

Figure 3.1: ARM TrustZone Boot Sequence.

having each stage attest the image of the next.

3.2.2 OP-TEE OS

OP-TEE OS is capable of multi-threading, memory management, and running

and isolating trusted applications. OP-TEE OS does not have a scheduler. It oper-

ates as a slave in a master-slave relationship with the normal world OS. Therefore,

OP-TEE OS can only simultaneously run as many trusted application instances as

there are cores at any given time. On multi-core architectures, each CPU can in-

dependently perform a world switch. When an interrupt occurs that needs to be

handled by the normal world, OP-TEE OS transitions back into the normal world

and once the interrupt has being handled, returns to its last point of execution within

the secure world. Communication between the normal world and secure world oc-

curs through a piece of pre-allocated shared memory accessible by both worlds.

The shared memory is allocated by the secure world but is managed by the nor-

mal world. The secure world OS may access peripherals under the normal world’s

control and allocate shared memory through RPC calls into the normal world. For

example, OP-TEE OS uses these RPC calls to access the normal world file system,

with which it implements secure storage using a provisioned root key.

OP-TEE OS provides useful abstractions to build trusted applications that run

in secure world user space (Secure EL0). Trusted applications can be single-

instance or multi-session. OP-TEE OS applications conform to the GlobalPlat-

form Internal API [3] where each trusted application must implement a set of well-

10

Internal API Client API Function
CreateEntryPoint InitializeContext Initialize a context in TrustZone

driver
DestroyEntryPoint FinalizeContext Deletes a TrustZone context
OpenSessionEntryPoint OpenSession Creates an instance of the

trusted application
CloseSessionEntryPoint CloseSession Destroys an instance of the

trusted application
InvokeCommandEntryPoint InvokeCommand Call one of trusted application’s

functions
- RegisterSharedMemory Registers a chunk of memory

for use between the two worlds
- AllocateSharedMemory Allocate a chunk of memory

from the shared memory pool
- ReleaseSharedMemory Free a chunk of memory allo-

cated from the shared memory
pool

- RequestCancellation Request an instance of trusted
application to stop and return

Table 3.2: Linaro OP-TEE API. Internal APIs are used by trusted applica-
tions and are prefixed by TA . Client APIs are used by the normal world
and are prefixed by TEEC .

defined functions as entry-points. Client applications in the normal world invoke

these functions through a similar set of GlobalPlatform Client API [3]. The list of

functions are listed in Table 3.2. We use these APIs and secure storage provided

by OP-TEE OS to build our multi-session trusted capsule application at the core

of our trusted capsule monitor. Any call into trusted applications from the normal

world are serialized on the normal world side by the TrustZone device driver.

3.2.3 OP-TEE Linux Driver

OP-TEE Linux Driver provides the normal world OS (Linux) access to Trust-

Zone. It represents TrustZone as a device file, which can be accessed from the

normal world through the set of APIs listed in Table 3.2 from both user and ker-

nel space. The TrustZone driver is responsible for two main tasks – (1) calling

into trusted applications running in TrustZone and (2) handling RPC requests from

11

OP-TEE OS (e.g., file system, shared memory allocations). For trusted capsules,

we extended the limited set of RPC calls available to the OP-TEE OS to include

networking and direct file system operations. The TrustZone driver executes RPCs

by using the OP-TEE Supplicant.

When the TrustZone driver calls into the secure world, it uses two unique iden-

tifiers – ”session object” and ”function ID”. Each trusted application instance is

represented by a ”session” and each function that the trusted application can per-

form by a ”function ID”. Together, these two identifiers specify the entry point for

the call into secure world. Function parameters are passed by value or by reference

through shared memory between the two worlds.

3.2.4 OP-TEE Supplicant

OP-TEE Supplicant takes RPC invocations from OP-TEE Linux Driver and

executes the equivalent system calls through the normal world OS to access the

relevant peripheral devices. These peripheral devices can include file system block

devices and network cards for I/O. Linux dmabuf and mmap are used to pass data

between the user space OP-TEE supplicant and kernel space OP-TEE Linux Driver.

Only a single instance of the OP-TEE supplicant can run at any given time and this

is enforced by the OP-TEE Linux Driver. We do not intercept any systems calls

made by the OP-TEE Supplicant running in normal world user space. The OP-TEE

Supplicant never accesses decrypted trusted capsule data and it cannot write to a

capsule without the corruption being detected.

12

Chapter 4

Design

A trusted capsule consists of some data and the policy for accessing the data,

both encapsulated into a single encrypted file. The layout of a trusted capsule is

shown in Figure 4.1. It consists of a header and multiple chunks of encrypted

content. The header identifies a file as a trusted capsule and contains the size of the

trusted capsule and a unique ID. The content of the trusted capsule is composed

of chunks that consist of both the data and policy encrypted together. Each chunk

has its own hash. A hash of all the hashes is also stored in the header. We break

the content of the trusted capsule into chunks so that a modification of any one

part of the trusted capsule’s data does not require the entire file to be re-hashed

and re-encrypted. We assume that role-based credentials and cryptographic keys

associated with the trusted capsules are loaded into TrustZone’s secure storage

through a tertiary channel.

Figure 4.2 illustrates our data monitor system design. We illustrate the flow of

data and control between the various data monitor components for a read system

call in Figure 4.3.

The trusted capsule data monitor consists of multiple components located across

both secure and normal worlds. In the normal world, we implemented a system call

interceptor that redirects operations on trusted capsules to the trusted capsule ap-

plication. By mediating access to trusted capsules within the secure world, we

are able to securely and dynamically evaluate the programmable policies that they

carry across system boundaries. The system call interceptor operates in a transpar-

13

Figure 4.1: Trusted capsule layout.

ent manner, enabling compatibility with existing applications.

In our data monitor implementation, we do not trust the normal software stack.

Therefore, we make no guarantees on data that is decrypted to the normal world.

We consider any decrypted data revealed to the normal world as declassified. Fur-

ther, while dynamically resolving trusted capsule policy, we consider any local

state obtained through the normal world (e.g., GPS, time, system state) as also un-

trusted. Therefore any policy that adjudicates access based on such information is

an advisory policy and cannot be strongly enforced.

To make stronger guarantees would require intrusive modifications of the re-

mote software stack and limit our solution to specific classes of applications or data

types – impacting backward compatibility and generality. Therefore, our trusted

data monitor design point is based on a conscious decision to take a more pragmatic

approach. We provide only limited and advisory declassification capabilities, such

as limiting network and file system access, post-declassification of trusted capsule

data. Further, we acknowledge to data owners that such policies that use the local

device state are advisory in nature. Policies based on remote state from trusted

capsule server or local state in the trusted capsule’s secure storage, however, are

secure sources of information for policy evaluation.

In the following, we describe key components of our trusted capsule data mon-

14

Figure 4.2: Trusted capsule data monitor system model. The secure world
trusted capsule applications access peripheral I/O through RPC calls
to the OP-TEE Supplicant via the OP-TEE Linux Driver. Application
system calls that affect trusted capsules are intercepted and forwarded to
the trusted capsule application through the system call interceptor and
OP-TEE Linux Driver.

itor and how it creates an ecosystem for enabling uniform, programmable, and

dynamic policies along with data mobility.

4.1 Trusted Capsule Application
At the core of the trusted capsule monitor is the trusted capsule application run-

ning in the secure world. At a high level, a trusted capsule application implements

function methods that perform specific tasks. These function methods can be called

directly from the normal world once the trusted capsule application instance is cre-

ated. Only a single function may be executed at a time from the normal world.

These function methods execute synchronously and run to completion, although

during the execution, the trusted capsule application may temporarily switch to the

15

Figure 4.3: Trusted capsule monitor operation (shaded region operates in the
secure world). A. Application read system call is intercepted. B. In-
terceptor calls into secure world to invoke CAPSULE READ. C. The
trusted capsule application (TA) evaluates the read policy. It initializes
RPC calls to fetch encrypted trusted capsule data. D. The RPC call is ex-
ecuted by OP-TEE Supplicant and the results are returned to the secure
world. E. TA decrypts the encrypted data and applies any redactions. It
then returns the decrypted data to the normal world application.

Figure 4.4: Trusted capsule monitor session model. Each Trusted Capsule
Application maintains the session for a single trusted capsule. It sup-
ports multiple file handles per trusted capsule. The file handles consists
of the process ID and file descriptor.

16

normal world context to perform RPC or handle normal world interrupts.

The trusted capsule application maintains a runtime session for each trusted

capsule. Each trusted capsule application internally maintains its own crypto-

graphic and hashing handles, role-based credentials, hashes of the trusted capsule

contents and the file offsets of the policy and data sections. Functionally, it eval-

uates the policy of the trusted capsule, performs cryptographic and hashing com-

putations, and stores secure persistent state associated with the trusted capsule.

Further, the trusted application acts as the endpoint for secure communication with

a trusted capsule server for performing remote actions (e.g., fetching remote state

or initiating a policy change). The trusted capsule application handles sensitive

information and performs critical functions that must be protected against the un-

trusted normal world. Therefore we require this part of the trusted data monitor to

execute within TrustZone.

Trusted capsule can be accessed simultaneously by multiple processes. We

maintain a map of the process ID and file descriptor tuples to their current data

offset in the trusted capsule within each trusted capsule application instance, as

shown in Figure 4.4.

We use OP-TEE OS native secure storage capability to store our cryptographic

keys and persistent trusted capsule states. Cryptographic information is stored in

serialized binary while trusted capsule states are stored in key-value format. All

trusted capsule encryption keys are stored in a single secure key file. We allow

the key file to be accessible by multiple trusted capsule applications at a time so

that multiple sessions can be instantiated simultaneously to handle different trusted

capsules. In contrast, each trusted capsule get its own secure persistent state file.

Persistent state files can only be opened by the trusted capsule it is associated with

and by only a single trusted application at a time. This is enforced through the OP-

TEE OS and enables us to strongly enforce only a single trusted capsule instance

to handle each trusted capsule and each trusted capsule to only be able to access its

own persistent state file.

Trusted application methods are invoked by the system call interceptor based

on specific system calls. In this way, access control can be enforced dynamically

based on the local and remote state when such a system call is initiated. We de-

scribe several of these methods below.

17

Figure 4.5: Trusted capsule read of a capsule (shaded region). A read may
overlap several chunks (e.g., D1 and D2) and may not be aligned to the
cryptographic key size (e.g., D1 and D3).

CAPSULE OPEN. This function is invoked by the open system call. The

function performs several key tasks – (1) it finds the cryptographic keys for the

trusted capsule, (2) parses the trusted capsule policy and data, (3) verifies the cap-

sule contents and (4) loads and evaluates policy.

CAPSULE READ. This function is invoked by the read system call and its

variants. A read operation contains several stages – (1) we evaluate the read policy,

(2) we fetch the encrypted trusted capsule data, (3) recalculate the hash to check the

integrity of each chunk involved in the read, (4) decrypt, merge and redact the data.

A read may not be aligned on a chunk or key size boundary. In these cases, the

actual read buffer must be merged. This process may involve multiple read RPC

calls into the normal world for a single read system call. This process is shown in

Figure 4.5.

CAPSULE WRITE. This function is invoked by the write system call and its

variants. Similar to read, a write may not be align with the chunk or key size. A

singular write system call may also be broken into multiple independent aligned

writes. To ensure the integrity of a chunk during the course of a write, we make

modifications to a chunk in-memory. A write operation contains the following

stages – (1) we evaluate the write policy, (2) we read in the entire chunk into secure

world memory and verify its integrity, (3) we make the modifications in-memory,

(4) recalculate the hash of the chunk and of the file, (5) re-encrypt the modified

chunk and write-back the data and hashes to the underlying file.

CAPSULE WRITE EVALUATE. This function is called when a process makes

18

a write system call on another file or peripheral after having accessed a trusted cap-

sule. It evaluates the declassify policy of the trusted capsule and takes as its input

the stringified destination (e.g., “/home/user/text.txt” or “128.0.0.2:10”) and out-

puts whether the policy allows the declassifying write to occur.

CAPSULE LSEEK. This function is invoked by the lseek system call. It in-

ternally updates the data offset of the file handle identified by the process IDs and

file descriptor.

CAPSULE CLOSE. This function is invoked by the close system call. It in-

ternally removes the file handle identified by the proces ID and file descriptor.

4.2 Trusted Capsule Server
To provide data mobility yet maintain a uniform data owner policy, we use a

trusted capsule server, owned by the data owner, as a central policy coordinator for

one or more of the data owner’s trusted capsules. Its role within the trusted capsule

infrastructure serves two important functions.

First, it is a source of trusted information for policy evaluation that is secure

against compromise of remote device where the trusted capsule resides. For exam-

ple, a trusted capsule’s policy may specify that the policy obtain its current time

from the trusted capsule server instead of from the local device clock. Further,

trusted capsules may contain policies that require state that does not exist locally.

Second, the trusted capsule acts as a point of administration for trusted cap-

sule policy. The data owner can initiate policy changes, delete trusted capsules

remotely, or receive information about trusted capsule activity on remote devices

(e.g., whether a capsule has been opened).

The trusted capsule server’s IP and port are specified by the trusted capsule

policy. Using a trusted capsule server controlled by the data owner expands trusted

capsule’s policy capabilities at the cost of extra policy evaluation delay due to net-

work latency.

The communication between the trusted capsule server and the trusted capsule

application is mediated by the local device’s normal world. To prevent man-in-the-

middle attacks, all communication between these two endpoints are encrypted with

a randomly generated nonce to protect against replay attacks.

19

Custom lua function Description
getlocalstate(key) Get the value of state associated with this key from secure stor-

age
getdataoffset() Get the data offset and length of the current operation (e.g.

read/write)
getdatasize() Gets the size of the trusted capsule data
getgps() Get the longitude and latitude from the GPS device
gettime() Get the current time as an integer since January 1, 1970
getserverstate(key) Get the value of state associated with this key form the trusted

capsule server
reportlocid() Send the current location, time, identity, operation and data off-

sets to the trusted capsule server
checkpolicychange(
version)

Check with the trusted capsule server for policy updates

setstate(key, value) Set the value of state associated with this key in secure storage
delete() Delete the trusted capsule file

Table 4.1: Lua policy extensions.

4.3 Lua Policy Engine
To support general programmable and dynamically-resolving policies, we em-

bed a Lua interpreter into our trusted capsule application. Lua is an extensible,

Turing-complete, and interpreted language that is designed for easy integration

with C applications. It supports comparison and logical operators, arrays, condi-

tional statements, integer and floating point mathematics, and loops. New func-

tionality can be added to the Lua language in the form of custom functions.

We implement several key abstractions as custom functions (Table 4.1). These

abstractions form the core of our Lua-based policy language. Figure 4.6 illustrates

an example policy template.

We discusses the key features of our Lua-based policy language below.

Global Variables. Every Lua policy defines several key global variables.

These variables include the IP address and port of the trusted capsule server, the

replacement character to use for redactions, an array containing the byte ranges

within the file to redact and the current policy version. These global variables are

shown at the top of Figure 4.6. These variables are used as part of policy evalua-

tion. For example, checkpolicychange(version) uses the current policy version set

20

in the Lua global version to check for updates.

Revocation. A Lua policy can specify revocation in two different ways. First,

we allow the policy to instruct the trusted capsule application to delete the trusted

capsule file. This can be invoked remotely or locally. When the delete() Lua func-

tion is called, we immediately overwrite the trusted capsule file with zeros. This

is because the Linux OS does not actually delete the file until the file’s reference

count becomes zero. We then make an RPC call into the normal world to delete

the file and destroy the trusted capsule application session. Such a revocation is

permanent. Second, we allow retroactive policy changes via the trusted capsule

server. In this scenario, the policy specifies a condition under which checkpolicy-

change(version) is called. If a new policy exists at the trusted capsule server, it is

downloaded by the trusted capsule application. Policy changes are temporary as

the owner could always change the policy back. With trusted capsules, revocation

is not simply a binary, but graduated based on user needs.

Logging Trusted Capsule Activity. We extended the Lua language with the

ability to report information to the trusted capsule server. The policy can specify ar-

bitrary conditions under which the reportlocid() function is called. In this case, the

trusted capsule application reports the location, operation, local time and identity

to the trusted capsule server. This can be used to implement policies that inform

the data owner about accesses to his data. The data owner may use this information

as an audit trail or as a review mechanism to inform his policy decisions, such as

revocation.

State. Policy evaluation uses the state of the local and remote systems. These

states, at the time of policy evaluation, enable access control to be dynamically

resolved. First, we provide the ability to read and write to the state file uniquely

associated with the trusted capsule. This enables the Lua policy to use persistent

state, such as role-based credentials. Further, it provides an extremely useful ab-

straction which can be used to express novel remote policies. For example, policies

may specify a limited number of accesses. For security reasons, we do not provide

access to the file that stores the cryptographic keys or state files of other trusted

capsules. Second, we provide the ability to access state in peripheral devices. In

our current implementation, this includes the local device clock and GPS device.

This enables policies to be based on time and location. When combined with the

21

1 t r u s t e d s e r v e r = ” 1 9 8 . 1 6 2 . 5 2 . 2 4 4 ”
2 p o r t = 3490
3 r e p l a c e c h a r = ”#”
4 r e d a c t = {} ;
5 v e r s i o n = 1 ;

7 f u n c t i o n p o l i c y (op)
8 r e s = f a l s e ;
9 p o l c h a n g e d = f a l s e ;

11 i f op == 0 then
12 -- OPEN POLICY
13 e l s e i f op == 1 then
14 -- READ POLICY
15 e l s e i f op == 2 then
16 -- WRITE POLICY
17 e l s e i f op == 3 then
18 -- DECLASSIFY POLICY
19 e l s e i f op == 4 then
20 -- CLOSE POLICY
21 end

23 re turn r e s , p o l c h a n g e d ;
24 end

Figure 4.6: Lua policy template.

ability to persist state, this can create more complicated policies. For example,

a policy may specify a check on a certain condition periodically (e.g., policy up-

dates). Third, we allow the policy to access the session state within the trusted

capsule application. This includes the current data offset, current length of the read

or write function call and the stringified destination of a declassifying write. Fi-

nally, we also provide the ability to get information from a trusted capsule server.

This provides an unique and trusted information source for policy evaluation.

4.4 System Call Interceptor
The system call interceptor enables applications to transparently access trusted

capsules. The interceptor is dependent on the OP-TEE Linux Driver and interfaces

22

Figure 4.7: Session and process states used to keep track of trusted capsules
by the system call interceptor.

with it through the same client-side kernel API as shown previously in Table 3.2.

Internally within the interceptor, we maintain a session hash table that repre-

sents a trusted application instance and a process hash table to keep track of the

interceptor states. The session hash table contains session nodes that store the

OP-TEE trusted capsule application instance handle associated with each unique

trusted capsule based on their ID. The process hash table maintains a list of process

nodes that store the trusted capsules accessed by a particular process. The relation-

ship between the nodes of the these two hash tables is shown in Figure 4.7. The

process nodes maintain a list of file descriptors that correspond to trusted capsules

that they have accessed over their lifetime. These file descriptors store pointers to

the sessions that represent each trusted capsule application within the session hash

table.

To protect these data structures from concurrent access by multiple processes,

we use mutexes and spinlocks to enforce exclusive access. The current locking

mechanism is coarse, but can be improved with a more refined implementation. We

do not enforce exclusive access to the OP-TEE Linux Driver as it already serializes

all calls into TrustZone for a particular trusted capsule application session.

We briefly describe the actions of the interceptor for each system call we cur-

rently intercept.

open. We use the trusted capsule header to determine whether the system call

operates on a trusted capsule. If it is, we first check the session hash table to see if

a session for the trusted capsule already exists. If no session was found, we create

one by calling into the secure world using the TEEC OpenSession() API to create

another instance of the trusted capsule application. We then invoke the trusted

23

application’s CAPSULE OPEN function. If the open policy of the trusted capsule

is satisfied, a regular file descriptor is returned to the application. Finally, we add

the new process and session node to the hash table if they do not already exist and

update the session’s reference count.

close. We check the file descriptor against the capsule file descriptor list in the

process node to determine whether the file descriptor represents a trusted capsule.

If it does, the interceptor calls the CAPSULE CLOSE function. It then sets the

file descriptor in the process hash table to -1. However, it is important to note that

once the trusted capsule is closed by an application, it is not removed from the list

of trusted capsules that the application has accessed. In this case, the declassifica-

tion policy of the trusted capsule would still be evaluated for future writes as the

application may still maintain decrypted trusted capsule data within its memory.

lseek. We check the file descriptor against the capsule file descriptor list in

the process node to determine whether it is an operation on a trusted capsule. If

it is, the interceptor calls the CAPSULE LSEEK function. The trusted capsule

application internally updates the file position.

read. We check the file descriptor against the capsule file descriptor list in the

process node to determine whether the read is on a trusted capsule. If it is, the

interceptor calls the CAPSULE READ function. If the read system call policy of

the trusted capsule is satisfied, the trusted capsule application returns the decrypted

data, although the data may be redacted.

write. System calls that declassify information, such as write, affect trusted

capsules even when they are not directed at trusted capsules themselves. There-

fore, we must iterate through the process node’s capsule file descriptor list to eval-

uate the declassification policy for each trusted capsule the process had accessed.

We accomplish this by calling the secure world CAPSULE WRITE EVALUATE

function of each trusted capsule. If the write is allowed by all the trusted capsules’

declassify policy, the write is performed. In the case that the write is on a trusted

capsule, it calls the CAPSULE WRITE function. Otherwise, it falls through as a

normal write system call.

exit. We check the process node’s file descriptor list to determine all the trusted

capsules that this process had accessed. For each trusted capsule, we call the

TEEC CloseSession API to remove the trusted capsule application in the secure

24

world if its reference count has decremented to zero.

4.5 Security
We consider two important security aspects of our trusted capsule monitor.

Trusted Capsules. Operations on trusted capsules are mediated by the trusted

capsule monitor system. Any operations on the trusted capsules are forwarded to

the secure world trusted capsule application for execution. Therefore, the confi-

dentiality and integrity of the data within the trusted capsule is protected (at the

hardware-level) even against compromises of the normal world OS. A compro-

mised normal world OS may corrupt a trusted capsule, but the corruption will be

detected.

Further, persistent trusted capsule state is stored in secure storage by OP-TEE.

A compromised system may delete the encrypted files that contains the crypto-

graphic keys or trusted capsule states, but this will also render the system incapable

of accessing the trusted capsule.

Isolation between trusted capsule applications is enforced by the secure world

OP-TEE OS. We further isolate each trusted capsule by having unique trusted cap-

sules instantiate its own instance of the trusted capsule application and provisioning

it with its own uniquely accessible file for its own persistent states.

Policy Evaluation. We consider attacks on the normal world from the ex-

ecutable policy running within the trusted capsule application. Our Lua-based

policy language can contain arbitrary execution such as loops. It, therefore, may

perform denial-of-service attacks by never returning from policy evaluation or ex-

filtrate information to its trusted capsule server. We are mindful of this fact and use

the Lua interpreter as a sandbox. We disabled any Lua library that would allow the

interpreter to interact with external systems (e.g., I/O, packages, debug and OS). In

its place, we extended the Lua interpreter with functions that have much narrower

scopes. Our extensions to the Lua interpreter cannot interact with any files other

than the trusted capsule. Peripherals are read-only by Lua-based policies. Further,

Lua-based policies can only read and write to its own state file. It cannot for exam-

ple, read the key file – preventing the exfiltration of keys of other trusted capsules.

Further, denial-of-service attacks can be stopped as the normal world can cancel a

25

command that does not return promptly through the TEEC RequestCancellation()

API, which stops long-running trusted capsule applications and returns immedi-

ately to the normal world.

26

Chapter 5

Implementation

We prototyped our system using the LeMaker HiKey [4] development board,

which comes with 8 ARM Cortex-A53 processors, 8 GB of eMMC Flash, and 1

GB of RAM. The board has TrustZone unlocked.

We modified the Linaro OP-TEE OS version 1.0 to be our TrustZone software

stack and deployed our system call interceptor as a loadable kernel module. In

our current implementation, we intercept open, read, write, lseek, fstat, close, exit

system calls and their variants. All intercepted system calls that do not affect a

trusted capsule operate as-is. In order to intercept these system calls, we rootkit

the normal world OS system call table and replaced the function pointers with

our interceptor equivalents. Our modifications to the OP-TEE components across

the software stack in both worlds consist entirely of additional RPCs that enable

trusted capsule applications to access the file system and network directly. These

modifications are minimal compared to the original OP-TEE code base.

As our HiKey board does not have a GPS, we built a virtual GPS device within

OP-TEE Linux Driver that returns predefined longitude and latitude values. In the

normal world, we run a pre-alpha release of a custom HiKey Debian OS based

on Linux kernel 3.18.0. We used 128-bit AES and SHA-256 for encrypting and

hashing trusted capsules.

Our current implementation supports the following composable actions based

on policy evaluation:

• Allowing or denying the operation on the trusted capsule.

27

• Initializing or modifying persistent state (e.g., counter).

• Performing system-level byte-based redaction that partially discloses trusted

capsule data. A data-type specific pre-processor can be used to generate the

byte offsets.

• Reporting the operation, location, time, role-identity of the device to a global

policy coordinator.

• Hard access revocation by deleting the capsule, triggered locally or remotely;

and, soft revocation by arbitrarily changing the policy.

• Prevent declassification through the network or file system.

In total, our trusted capsule application has 3.2K lines of non-comment C code

and our system call interceptor has 1K lines of non-comment C code.

28

Chapter 6

Evaluation

We evaluated four aspects of our system: (1) the utility and simplicity of the

policy language, (2) the storage overhead of trusted capsules, (3) latency at the

system call layer, and (4) perceived latency at the application layer.

All performance evaluations were performed on our HiKey development board.

For the evaluation we used real file types and applications, including JPEG/G-

picView image viewer, MP4/VLC video player, FODT/LibreOffice Writer, and

PDF/Evince PDF reader.

6.1 Policy language
In our policy language evaluation we aimed to answer two questions: is the

policy language adequate for expressing useful policies? Further, are these policies

easy to express?

We answered our first question by writing trusted capsule policies for the ex-

ample use-cases from Chapter 2. For our second question, we measured the LOC

for each policy that we wrote and show the result in Table 6.1.

The ability to easily express complex policies tersely is important both as a

proxy of simplicity and to bound the memory overhead of the Lua interpreter in

the secure world. We found that with a few lines of code we were able to express

complex policies such as redaction and revocation.

We focus on two such policies. The first policy is used in the context of a sensi-

29

1 . . .
2 r e p l a c e c h a r = ”#”
3 r e d a c t s e n s i t i v e = {45379 , 45393 , 45532 , 45549 , 45705 ,

45726 , 45880 , 45905 , 46081 , 46094 , 46178 , 46185 ,
46293 , 46309 , 46380 , 46385 , 46449 , 46458 , 46528 ,
46533 , 46606 , 46609 , 46676 , 46682 , 46768 , 46769 ,
46835 , 46844 , 46953 , 46963 , 47124 , 47141 , 47225 ,
47235 , 47343 , 47348 , 47419 , 47427 , 47491 , 47496 ,
47571 , 47586 , 47659 , 47662 , 47729 , 47735 , 47821 ,
47822 , 47888 , 47897 , 48006 , 48018 , 48682 , 48684 ,
48751 , 48757 , 48843 , 48847 , 49003 , 49008 , 49705 ,
49715 , 49926 , 49928 , 50077 , 50079 , 50136 , 50139 ,
50950 , 50957 , 51078 , 51080 , 51266 , 51268 , 51325 ,
51328 , 52810 , 52823 , 54542 , 54559} ;

4 r e d a c t = {} ;
5 . . .
6 -- READ
7 e l s e i f op == 1 then
8 l o c a l long , l a t = g e t g p s () ;
9 i f ((l a t − 2130 >= 10) or (2130 − l a t >= 10)) or ((l a t

− 22223 >= 10) or (22223− l a t >= 10)) then
10 r e d a c t = r e d a c t s e n s i t i v e ;
11 end
12 end
13 . . .

Figure 6.1: Sensitive merger document policy.

tive merger document. We highlight one component of the policy, the system-level

redaction policy in Figure 6.1. This policy redacts all data within the byte offsets

specified by redact sensitive. These byte offsets were translated by a policy pre-

processor from < Sensitive > XML-like tags used to define the merger document.

This redaction only occurs if the document is opened outside of the office, as de-

termined by the GPS coordinates. The original data is replaced with the character

defined by replace char. We show the results in Figure 6.2.

The second policy is for photos stored in the cloud. The policy, shown in

Figure 6.3, allows only devices provisioned with the role-based identity “Kate” to

access the photo. As described previously, with trusted capsules, an attacker who

gains access to photos will not be able to access the capsule contents. On every

30

(a) Unredacted merger document. (b) Redacted merger document.

Figure 6.2: Before vs. after redaction.

1 . . .
2 i f g e t l o c a l s t a t e (” c r e d ”) ˜= ” k a t e ” then
3 r e s = f a l s e ;
4 end
5 -- OPEN
6 i f op == 0 then
7 v i e w s t a t u s == g e t s e r v e r s t a t e (” d e l e t e ?”) ;
8 i f (v i e w s t a t u s == ” t r u e ”) then
9 d e l e t e () ;

10 end
11 end
12 . . .

Figure 6.3: Private image policy.

open system call, the monitor checks with the policy coordinator for updates to a

remote state (line 7 in Figure 6.3). If the remote server returns true, the photo is

deleted from the device.

For these and other policies we found that the Lua policy interpreter needed

less than 2KB of allocated memory.

Policy LOC
Merger Document 24
Transcript 25
Royal Image 30
EHR Patient 41

Table 6.1: LOC for example policies from Chapter 2.

31

Data (KB) Capsule (KB) Overhead
PDF Doc 137.34KB 139.38KB 1.42%
JPEG Image 204.10KB 207.00KB 1.42%
MP4 Video 4142.40KB 4175.94KB 0.80%
LibreOffice Doc 54.80KB 56.70KB 3.47%

Table 6.2: Storage overhead for test data files.

6.2 Storage overhead
Converting regular data into trusted capsules incurs storage overhead that is

proportional with the policy size and chunk size. We evaluate the associated over-

head for different types of data.

Table 6.2 lists the storage overhead for a PDF, JPEG, MP4, and FODT files

used in our evaluation. These data types were converted to trusted capsules with

4KB chunk sizes. We found the storage overhead to be negligible.

6.3 System call microbenchmarks
In considering system call level microbenchmarks, we focus on three questions.

Are operations on regular files affected? We measured the performance of

system call operations with and without the system call interceptor for both latency

and throughput under similar conditions. We found that the performance of system

calls on regular data is not impacted, except for the open syscall. This is due to the

overhead of checking whether the target file is a trusted capsule. The results are

shown in Figure 6.4a and 6.4b.

In addition, once a process has accessed a trusted capsule, write throughput on

regular data also decreases linearly with number of trusted capsules accessed by

that process due to the need to evaluate each trusted capsule’s declassify policies.

The results are shown in Figure 6.5.

What is the latency and throughput of the system calls we intercept for
operations on trusted capsules? We measured the latency and throughput of

syscall operations on trusted capsules. For latency measurements, we measured

the end-to-end time for a syscall and averaged over 100 runs. For throughput mea-

surements, we randomly read and wrote 4KB of data to a trusted capsule for 10

32

seconds. We varied the chunk size and data size of our trusted capsule to capture

the different effects these factors had on trusted capsule performance at the sys-

tem call level. For each test trusted capsule, we attached an empty null policy that

always evaluated to true. We present our results in Figure 6.6 and 6.7.

We were able to achieve 1.4MB/s throughput for read and 0.7MB/s throughput

for write across all file and chunk sizes. While we initially expected some impact to

read and write performance at smaller chunk sizes, our results showed otherwise.

We believe this may be due the fact that the cost of extra round trips between

normal and secure world to fetch the same quantity of data is not significant overall.

We also incur significant costs for the open syscall, especially at larger file sizes.

While we do not expect the open syscall to be called often by applications that

interact with a trusted capsule, its poor performance nevertheless requires further

optimization. In our current implementation, an open syscall makes a pass over the

entire data of the trusted capsule to validate the trusted capsule contents against its

hash. This results in longer latencies as the file size increases. As can be seen, we

were able to obtain reasonable results for open calls on file sizes that were less than

100KB. However this latency increases dramatically for larger file sizes.

What is the contribution of various aspects of the trusted capsule moni-
tor to per-operation latency overhead? We evaluated the cost of the (1) normal

world data monitor components (interceptor and linuxdriver), (2) world switch, (3)

hashing, (4) encryption, (5) secure storage operations, (6) direct file system opera-

tions and (7) policy engine initialization. We average our results over 100 iterations

of the same system call. Our test capsule had an empty null policy and used 4KB

or 1KB chunksizes, and consisted of 1MB or 10KB of data. We show the results

for (3)-(7) in Figure 6.8a, 6.9a, and 6.10a. We measured costs of these components

end-to-end. For example, a secure storage operation in Figure 6.8a would include

the cost of world switches, userspace and kernel space boundary crossings, copy-

ing data between layers of the software stack and RPCs. All measurements are

based on a 1.2 MHz monotonic counter.

We found accessing secure storage to be an extremely expensive operation, ac-

counting for a large number of cycles. This occurs when policy evaluation needs

to access state and on instantiation of the trusted capsule session when the crypto-

graphic information is fetched. Further, the moderate costs associated with direct

33

open lseek read write close
0

5

10

15

L
at

en
cy

(m
ic

ro
se

co
nd

s)

no interceptor load
no interceptor no load

interceptor load
interceptor no load

(a) The average latency per operation on a regular 1M file in varying system state (load
and interceptor) with 95% error bars.

read write
0

100

200

300

400

500

600

T
hr

ou
gh

pu
t

(M
B

/s
ec

) no interceptor load
no interceptor no load
interceptor load
interceptor no load

(b) The throughput measured over a ten second period on a regular 1M file in varying
system state (load and interceptor).

Figure 6.4: System call interceptor overhead. The system was loaded by ac-
cessing 8 different trusted capsules simultaneously

34

0 1 2 3
Number of Capsules Open

0.0

0.5

1.0

1.5

2.0

2.5
T

hr
ou

gh
pu

t
(M

B
/s

ec
)

Figure 6.5: The throughput cost to a process for having multiple capsules
open while accessing a regular file.

file system operations is in-line with our observation that decreasing chunk size

(increasing the number of direct file system operations) did not affect performance

extensively. Surprisingly, encryption and hashing was not as a significant com-

ponent of the overall cost as we thought. Further, initializing the Lua interpreter,

the normal world data monitor components (interceptor and linuxdriver) and world

switching represented marginal costs. We measured the cost of both the normal

world data monitor components and evaluated the null policy to be few dozen cy-

cles and a world switch to cost only a single cycle.

Perhaps the most interesting observation is that all these aspects (1) to (7) com-

bined accounted for only ∼30% of total cost of any syscall operation. These oper-

ations represent all the transitions that may occur between the trusted application

and the remainder of the software stack (normal world components, OP-TEE OS,

etc.), except for memory allocations (both between secure and normal world, and

between userspace and kernel space within the secure world) and trusted applica-

tion code. This leads us to believe that a significant portion of the slowdown is due

to memory management across the stack and the in-memory copies and loops in

the trusted application.

To further evaluate the impact of world switch overhead, we measured the num-

ber of world switches for each operation. We broken down the world switch for

different purposes. For any operation, we found that it required at most ∼100

35

5.0e+05
1.0e+06
1.5e+06
2.0e+06
2.5e+06

1KB
2KB

3KB
4KB

open lseek read write close
0

2000
4000
6000
8000

10000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(m
ic

ro
se

co
nd

s)

(a) Average latency varied by chunk size. The bars represent 95%.

read write
0.0

0.5

1.0

1.5

2.0

T
hr

ou
gh

pu
t

(M
B

/s
ec

) 1KB
2KB

3KB
4KB

(b) Throughput varied by chunk size.

Figure 6.6: System call performance varied by chunk size. Test trusted cap-
sules had a data size of 1M.

36

1.0e+06
2.0e+06
3.0e+06
4.0e+06
5.0e+06
6.0e+06 10KB

100KB
1M
10M

open lseek read write close
0

5000

10000

15000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

(m
ic

ro
se

co
nd

s)

(a) Average latency varied by file size. The bars represent 95%.

read write
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
hr

ou
gh

pu
t

(M
B

/s
ec

) 10KB
100KB

1M
10M

(b) Throughput varied by file size.

Figure 6.7: System call performance varied by file size. Test trusted capsules
created using 4KB chunk size.

37

world switches at a cost of 1-2 cycles per world switch. We show the results

in Figure 6.8b, 6.9b, and 6.10b. We make an interesting observation that most

world switches are used to handle RPCs and their associate shared memory alloca-

tions. For example, the read and write operation in Figure 6.9b require more world

switches than similar operations in Figure 6.8b due to the greater number of RPC

calls required to read at a smaller chunk granularity. Similarly, the open operation

in Figure 6.10b require a smaller number of world switches for the similar reason.

6.4 Applications
We evaluate the performance of our trusted capsules at the macro-level di-

rectly with unmodified applications. We investigated how the overhead incurred

by trusted capsules at the system call level impacts performance at the application

level. For this purpose we used our use case trusted capsules. We measured the

impact under three different conditions: with an empty null policy, with our use

case policies, and without trusted capsules (as a baseline). Some of our use case

policies, such as those on the PDF and JPEG, required a trusted capsule server in

order to fetch remote state and report logged information.

We used a Canon Rebel II DSLR to film certain interactions between the trusted

capsule and applications. We then measured the latency between the start of an

action (e.g. open a document) and when the action is completed. We filmed at

60 FPS and used the difference in timestamps to calculate the application latency.

We present our results in Table 6.3 and provide the raw footage online: https:

//www.youtube.com/playlist?list=PL5uF0tAnlwkwl5yDQMIJwMOB0aJ4FgbTf.

We note that while overhead improves significantly at the application layer as

compared to the system call layer, nevertheless, the cost may be prohibitive de-

pending on policy choice. For various data types, a null policy had much less sig-

nificant or almost imperceivable impact to usability at the application level. How-

ever, our use-case policies, some of which contain expensive policy checks (e.g.,

access to state storage or going over the network to talk to the policy coordinator)

on frequent operations such as read or write, resulted in noticeable performance

degradation. For example, our MP4 video played smoothly with a null policy in

VLC (which did not interact with the trusted capsule server), but degraded to ex-

38

https://www.youtube.com/playlist?list=PL5uF0tAnlwkwl5yDQMIJwMOB0aJ4FgbTf
https://www.youtube.com/playlist?list=PL5uF0tAnlwkwl5yDQMIJwMOB0aJ4FgbTf

2.32.42.52.62.72.82.93.03.1
policy eval
rpc
secure storage

hashing
encryption

open lseek read write close
0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
s

(x
1
03

)

(a) Operations.

open lseek read write close
0

20

40

60

80

W
or

ld
Sw

it
ch

es

network
file system
finish op.

shared mem.
direct fs
other

(b) World Switches.

Figure 6.8: Breakdown of number of cycles spent performing specific oper-
ations and number of world switches for operations on trusted capsule
with 1MB of data at 4KB chunk sizes.

39

2.0
2.1
2.2
2.3
2.4 policy eval

rpc
secure storage

hashing
encryption

open lseek read write close
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
s

(x
1
03

)

(a) Operations.

open lseek read write close
0

20

40

60

80

W
or

ld
Sw

it
ch

es

network
file system
finish op.
shared mem.
direct fs
other

(b) World Switches.

Figure 6.9: Breakdown of number of cycles spent performing specific oper-
ations and number of world switches for operations on trusted capsule
with 1MB of data at 1KB chunk sizes.

40

2.9
3.0
3.1
3.2
3.3
3.4
3.5 policy eval

rpc
secure storage

hashing
encryption

open lseek read write close
0.0
0.5
1.0
1.5
2.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
s

(x
1
03

)

(a) Operations.

open lseek read write close
0

20

40

60

80

100

120

W
or

ld
Sw

it
ch

es

network
file system
finish op.

shared mem.
direct fs
other

(b) World Switches.

Figure 6.10: Breakdown of number of cycles spent performing specific oper-
ations and number of world switches for operations on trusted capsule
with 1MB of data at 1KB chunk sizes.

41

treme jitter once we added a policy that reported actions to a policy coordinator and

accessed secure storage for every read operation. This effect was particularly acute

for the PDF reader, which repeatedly read the data in small chunks frequently and

even when the user was idle. Each read by the PDF incurred the cost of a single

round-trip to the trusted capsule server, requiring on average 5ms each. We believe

that such performance degradations can be mitigated with more efficient policy

code, for example policies that run at coarser granularity or use caching to mitigate

expensive checks.

42

Data Type Application Interaction Data Null Use-Case
PDF Doc Evince Open document 0.87s 3.20s 110.40s
JPEG Image Gpicview Open image 0.45s 6.45s 20.23s

Rotate image 0.23s 0.88s 1.43s
Save image 0.17s 3.43s 11.38s

MP4 Video VLC Video buffer time 3.21s 3.92s 25.72s
FODT LibreOffice Writer Open document 1.63s 12.42s 21.67s

Table 6.3: Application level performance. Data column represents results
gathered from regular data. Null column indicates trusted capsule results
with NULL policy. Use-Case column indicates trusted capsule results
with use case policies.

43

Chapter 7

Related Work

Both past research into tamper-resistant hardware and general data security are

relevant to our work. We discuss such work within the context of several general-

ized categories below.

Mobile Data. Recent academic research has also sought to address the tension

between data mobility and security. The vision of policy carrying data was first put

forth in [35], but the authors left the implementation as an open question.

One such solution uses attribute-based encryption [39, 41] to establish remote

SLAs with an untrusted entity. However ABE encryption is computationally inten-

sive and does not actually enforce the user’s policies. Malicious or unintentional

exfiltration of the data can still occur without remedy or the user’s knowledge. We

view our trusted capsule implementation as providing a stronger level of assurance.

Access is not granted statically based on the agreement of certain pre-conditions

but can be granted dynamically based on current and remote state.

Another class of works, such as P3 [37], are data-type specific and targeted

towards untrusted cloud providers. Trusted capsules are data-type agnostic, with

the exception of the pre-processor that translates data-specific redaction policies

to byte offsets. Further, trusted capsules extend their access boundary to data on

remote user devices in addition to the cloud provider. Finally, trusted capsules

enable diverse policy capabilities on these remote user devices, such as revocation.

Other solutions such as Ryoan [27] are targeted towards a specific class of ap-

plications (e.g., return oriented). In Ryoan, both the application and platform are

44

untrusted. Ryoan provides enforcement over data derivatives by preventing declas-

sification through tertiary channels. By contrast, trusted capsules target interactive

user applications where the data must be declassified to analog holes (e.g., screen),

making giving confidentiality guarantees on data derivatives post declassification

impossible. Instead, we take a pragmatic approach and enforce advisory policies

which can be used to orient behaviour to those desired by the data owner.

Finally, within industry, a recent startup called Sandstorm abstracts data as a

grain – a package of all the apps, libraries, and configuration files needed to op-

erate on a single piece of data locally within a container. Sandstorm then creates

an enclosure around the container and interposes on all operations to enforce the

grain’s access policies. Unlike trusted capsules, which operates at the granular-

ity of a piece of data, Sandstorm operate at the granularity of an entire software

ecosystem for the data.

Hardware-based Security. Many other commercial and research projects

have also used tamper-resistant hardware to provide a secure environment [13–

16, 20, 23, 30, 33, 34, 40, 42].

In Terra [23], it provides software-based isolation based on building a root-

of-trust from tamper-resistant hardware for running applications as isolated VMs.

In [40], a .NET runtime was installed in ARM TrustZone to run the security-

sensitive parts of an application and protect sensitive information such as pass-

words, credentials and credit cards. In [20, 30], they created isolated TEEs for

executing third-party applications and to store their data. They also provided a

mechanism for distributing keys through secure channels into the TEEs of remote

devices – an mechanism that can also be adopted for the distribution of trusted

capsule keys and credentials. However, all these solutions are meant to strictly

provide isolation between the security-sensitive and un-secure components of an

application. In trusted capsules, we do not attempt to decompose the application

into its secure and un-secure components. Instead, once an application has ac-

cessed a trusted capsule, we enforce the trusted capsule’s policy by interposing on

all future operation by the application. In this way, trusted capsules are compatible

with existing applications and can be applied to applications whose security and

function cannot be decomposed separately, such as a text editor. More recently,

in [15], the authors explored using ARM TrustZone as the TEE to validate the

45

device and to disable select peripherals upon entry into a secure space such as a

federal building or exam center. In [16, 33], tamper-resistant hardware TPMs have

been used to provide root-of-trust for distributed systems. TPMs are more limited

in their range of capabilities compared to TrustZone, which are capable of general

execution and can access main memory. Rather than protecting against malicious

or exploitable applications, other works such as [13, 14, 42] focused on using the

higher-privileged TEE to protect the host OS from attacks by interposing on all

privileged instructions (e.g., pagetable modifications, access to MMU) and redi-

recting them to the TEE for monitoring. Alternatively, TEEs have also been used

to protect the integrity of peripheral devices [34]. In trusted capsules, we use our

secure environment to protect both sensitive data and enforce our advisory policies.

Data Confidentiality. Within academia, a well studied approach to providing

data confidentiality has been label-based solutions such as DIFC [17, 19, 31, 36,

38, 43, 44]. They use labels to specify access control, capabilities, and author-

ity. These labels are used to track the flow of information at various levels of the

software stack. By not allowing data to move to processes that do not have the

right labels, DIFC prevents sensitive data from being exfiltrated. DIFC solutions

can be enforced statically at compile time, through extension of the programming

language [36], or dynamically during execution [19, 31, 43]. Alternatively a DIFC

solution can use a combination of both techniques [17, 38]. Depending on im-

plementation, data flow can be tracked at the granularity of address spaces [31],

process [19], etc. DIFC solutions operate on the principle of least privilege in an

effort to minimize exploitable flaws in applications. It allows a process to gain

the minimum privileges it needs in order to perform its execution. In DIFC, labels

create a natural ecosystem for composition that allow a process to access multiple

pieces of data. Trusted capsules are less composable. If two trusted capsules have

contradictory policies, they cannot be accessed by a process at the same time. This

may or may not be a desirable property. However, trusted capsules have its advan-

tages. First, DIFC requires customized operating systems or radical modifications

to existing applications, which trusted capsules do not. Second, composition is

extremely complex as the system administrator must reason about the security lat-

tice between all the processes and data on a system. This is because, in DIFC,

”policy” is not a first-order entity, but implicitly expressed as a combination of the

46

capabilities, authorities, secrecy and integrity labels assigned to the processes and

data on the system. With trusted capsules, policy is a first-order abstraction that

singularly embodies all the label, capabilities and privileges needed to access the

trusted capsule’s data. As a result, trusted capsules do not have a complex security

lattice to consider. Second, trusted capsules are backward compatible and do not

require extensive modifications across the software stack as opposed to DIFC.

Another popular approach is tainting [21, 22, 26, 45]. It tracks information flow

by interposing on the system operations at the instruction-level. These solution

can track the flow of information at extremely fine granularity. However they are

resource intensive, both in memory and CPU.

A common issues with academic solutions is the lack of compatibility with

existing applications. Traditional isolation-based solutions are the only class of

practical solutions currently adopted by industry for this reason. These solutions,

such as VPN, VMWare Ace [1], Secure Spaces [9] and Hypori [5], attempt to pre-

vent sensitive data from leaving in the first place by enforcing policy at the network

boundary between external and internal systems. For example, VPNs enforce pol-

icy by acting as the sole gateway to internal systems, while Hypori converts all

remote devices into thin clients, while the apps and sensitive data exist as virtual

devices on a secure internal server. In these cases, policies that restrict movement

of sensitive data can still be defeated by transformations, such as encryption and

compression. In addition, some of these solutions incur substantial network cost as

they do not support offline operations.

Finally, other work has sought to ensure data confidentiality by enforcing ap-

plication structures [25, 32], limiting data lifetimes [18, 28] and providing recourse

actions such as backtracing intrusions [24, 29].

47

Chapter 8

Future Work

The future work for the trusted capsule system can be summarized along four

axis: bug fixes, optimization, engineering and new research directions.

8.1 Bugs
BUG #1. When a trusted capsule is constructed with chunk size greater than

4KB, the trusted capsule application is unable to read bytes in the range of 3KB→4KB

correctly.

BUG #2. The exit system call does not decrement the reference count for a

trusted capsule session correctly

BUG #3. Unknown interceptor interaction with init and gnome. Removing

the interceptor module seems to be buggy. Shuting down with interceptor module

inserted is buggy due to some init failure. Gnome cannot start some applications

with the interceptor inserted, although you can still launch applications from xterm

(e.g., xterm).

BUG #4. Extremely weird problem where openat returns -2 instead of -1. This

occurs when the interceptor is inserted and the system call is made on a non- trusted

capsule file. Some applications fail as they look for -1 for failure and assume -2 is

a valid file descriptor which then fails when they read it.

48

8.2 Optimization
Improving capsule open. We currently verify the hash of the entire trusted

capsule on file open. This does not scale with larger file sizes. The original in-

tention was to ensure the integrity of the trusted capsule on open. We disregarded

performance as we assumed an application would not need to open a file multiple

times. However, our strace results showed that an application repetitively calls the

open system call on a file during a single access. This expensive verification may

be unnecessary as we already verify the integrity of a read and write at a much finer

granularity (e.g., just the chunks being read or written to).

A further problem in our current implementation is the fact that we keep the

hashes of all the chunks in memory. The original intention was to minimize the

number of RPCs we have to make. However, for large files with small chunk sizes,

the hash list became a memory bottleneck in the secure world. To enable the trusted

capsule monitor to handle larger file sizes, we may need to trade more RPCs for

memory space.

Improving capsule read & write. We currently perform read and write on a

single chunk at a time. In the future, for optimization purposes, we should look to

read and write multiple chunks at a time to reduce the number of RPCs from the

secure world. Simultaneously, this would allow us to potentially read more data

than what is required and cache the decrypted contents ahead of time. The exact

caching and eviction strategy will depend on application access patterns.

8.3 Engineering
Shadow file in normal world. This would enable faster read/write and enable

interception of mmap syscalls. But it would move integrity to advisory since there

is the possibility a malicious or compromised OS may wait and write to the shadow

copy.

Support more system calls. Applications may use other system calls to in-

teract with trusted capsules such as mmap, pipes, execv family and other variants

of the system calls that we already intercept (e.g., pwrite). Some of these system

calls present challenges, such as mmap which may specify a write back policy to

the normal world OS and proceed to make modifications in-memory. In this case,

49

we might not intercept a write onto the trusted capsule.

Multi-threaded applications. Our current system call interceptor uses the

thread group ID as the process ID. We may need to expand the tuple to also include

the process ID pid variable inside of the Linux task struct data structure. This

would enable us to also handle concurrent operations from applications that are

multi-threaded.

Finer-grained locking. Our system call interceptor maintains extremely coarse-

grained locks. This should be replaced with finer locks as it is unlikely our trusted

capsule monitor will handle more than a few dozen trusted capsules at a time.

Insertion with redactions. Currently our trusted capsule data section is con-

tiguous. We may need to restructure our trusted capsule into redactable and unredacted

sections to support writes. The issue that on a contiguous write, an application that

reads redacted data may actually overwrite read trusted capsule data with the redac-

tion replacement character. Combined with revocation, such as a policy change, a

data owner may then accidentally disclose redacted information if he is unaware

that a redacted section has been written over or shifted locally. This is an artifact of

our implementation where the data in a trusted capsule is contiguous. A potential

solution is reformatting the data into specific sections.

Porting to OP-TEE 2.0. We should shift our build environment to the 64-

bit QEMU. Simultaneously we should upgrade our development environment for

Hikey and QEMU to use the repo build that is supplied by the current OP-TEE

github. This will also move us from OP-TEE 1.0 to OP-TEE 2.0. This may in-

volve re-implementing some of our modifications to the OP-TEE software stack.

It may be worth noting that the OP-TEE Linux Driver has been moved into the

Linux kernel itself and the kernel API removed. In the future, we may have to call

the relevant TrustZone device functions directly from our system call interceptor.

Finally, the new Linux build may be much more stable than our pre-Alpha release

we currently use. However, it is also more secure, placing the system call table

in read-only memory. We will have to temporarily modify some page table bits in

order to insert our system call interceptor module.

Robust error handling. We should make error handling more robust across

the software stack in both worlds. Currently, we make negligible attempts to ensure

smooth operation in the event of unexpected behaviour.

50

More policy abstractions. To enable policy to express deterministic bounds

on policy evaluation, we need two more abstractions for the lua-based policy lan-

guage. First, the ability to kill a process that has accessed a trusted capsule. Second,

the ability to schedule a callback to trusted world after certain amount of time has

elapsed.

8.4 Research Directions
Hardening the normal world OS. Several of our trusted capsule monitor com-

ponents reside in the normal world. We may explore methods to attest the normal

world OS and applications to detect compromises that may affect policy enforce-

ment. This follows the path of works in [13, 14, 42], where the authors attempt

to harden the normal world OS by basing the detection mechanisms in the secure

world. In this case, we may make stronger statements about our advisory policies.

Further, we can explore giving the secure world control of peripheral drivers

along a line of work similar to [34]. This would also allow us to make stronger

guarantees about policies that require peripheral state from the local device.

De-classification. We make the conservative assumption that once decrypted

data is released from the secure world, it becomes declassified. Further, our advi-

sory policies on de-classification currently assume an entire process is tainted for

its entire life-time once it has accessed decrypted data. Such an enforcement mech-

anism does not protect de-classification by a compromised or malicious normal

world OS. Therefore, an avenue for future research is whether we can make finer

grained and stronger de- classification guarantees. This may involve giving control

of peripherals capable of de-classification (e.g., network, block devices) to the se-

cure world and some form of information flow tracking similar to [17, 21, 31, 38]

or containerized solutions such as [8, 27].

51

Chapter 9

Conclusion

Data security on remote devices that the data owner cannot control represent

a unique challenge in our data promiscuous world. Systems exchange data indis-

criminately and do not offer the data owner any ability to control access policy on

remote devices. At best, data is encrypted to prevent declassification.

We introduced graduated access control and realized it using a trusted capsule

abstraction and a data monitor that runs inside ARM’s TrustZone trusted execution

environment. Our solution builds on the file abstraction and does not require any

modification to applications, is gradually deployable, and can be ported to other

kinds of trusted execution environments.

52

Bibliography

[1] About VMware ACE.
https://www.vmware.com/support/ace/doc/whatsnew ace.html. Accessed:
2016-11-26. → pages 47

[2] Arm trusted firmware.
https://github.com/ARM-software/arm-trusted-firmware. Accessed:
2016-04-30. → pages 9

[3] Global platform api specifications. http://www.globalplatform.org/.
Accessed: 2016-02-15. → pages 10, 11

[4] Lemaker hikey. http://www.securespaces.com/. Accessed: 2016-04-30. →
pages 8, 27

[5] Hypori. http://www.hypori.com/. Accessed: 2016-04-30. → pages 2, 47

[6] Images of duchess of cambridge and children stolen in icloud hack.
https://www.theguardian.com/lifeandstyle/2016/sep/23/images-of-duchess-
of-cambridge-and-children-stolen-in-icloud-hack. Accessed: 2016-09-03.
→ pages 6

[7] Royals seek prince george paparazzi photo ban after children targeted.
http://www.belfasttelegraph.co.uk/news/uk/royals-seek-prince-george-
paparazzi-photo-ban-after-children-targeted-31451393.html. Accessed:
2016-09-03. → pages 6

[8] Sandstorm. https://sandstorm.io/. Accessed: 2016-06-30. → pages 2, 51

[9] Secure spaces. http://www.securespaces.com/. Accessed: 2016-04-30. →
pages 2, 47

[10] Secure transcript survey us universities use ssn academic transcripts titus.
urlhttps://www.privacyrights.org/blog/secure-transcript-survey-us-

53

https://www.vmware.com/support/ace/doc/whatsnew_ace.html
https://www.theguardian.com/lifeandstyle/2016/sep/23/images-of-duchess-of-cambridge-and-children-stolen-in-icloud-hack
https://www.theguardian.com/lifeandstyle/2016/sep/23/images-of-duchess-of-cambridge-and-children-stolen-in-icloud-hack
http://www.belfasttelegraph.co.uk/news/uk/royals-seek-prince-george-paparazzi-photo-ban-after-children-targeted-31451393.html
http://www.belfasttelegraph.co.uk/news/uk/royals-seek-prince-george-paparazzi-photo-ban-after-children-targeted-31451393.html

universities-use-ssn-academic-transcripts-titus. Accessed: 2016-06-30. →
pages 5

[11] T. Alves and D. Felton. Trustzone: Integrated hardware and software
security. ARM white paper, 3(4):18–24, 2004. → pages 3, 7

[12] R. J. Anderson. A security policy model for clinical information systems. In
Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages
30–43. IEEE, 1996. → pages 6

[13] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and
W. Shen. Hypervision across worlds: Real-time kernel protection from the
arm trustzone secure world. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 90–102.
ACM, 2014. → pages 45, 46, 51

[14] A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang, and P. Ning.
Skee: A lightweight secure kernel-level execution environment for arm.
2016. → pages 46, 51

[15] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R. Sadeghi.
Regulating arm trustzone devices in restricted spaces. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applications, and
Services, pages 413–425. ACM, 2016. → pages 45

[16] C. Chen, H. Raj, S. Saroiu, and A. Wolman. ctpm: a cloud tpm for
cross-device trusted applications. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), 2014. → pages 45, 46

[17] W. Cheng, D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,
D. Curtis, L. Shrira, and B. Liskov. Abstractions for usable information flow
control in aeolus. In Presented as part of the 2012 USENIX Annual
Technical Conference (USENIX ATC 12), pages 139–151, 2012. → pages 2,
46, 51

[18] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spotless machine:
Protecting privacy with ephemeral channels. In Presented as part of the 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12), pages 61–75, 2012. → pages 47

[19] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris. Labels and event

54

processes in the asbestos operating system. In ACM SIGOPS Operating
Systems Review, volume 39, pages 17–30. ACM, 2005. → pages 2, 46

[20] J.-E. Ekberg, N. Asokan, K. Kostiainen, and A. Rantala. Scheduling
execution of credentials in constrained secure environments. In Proceedings
of the 3rd ACM workshop on Scalable trusted computing, pages 61–70.
ACM, 2008. → pages 45

[21] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2):5, 2014. → pages 2, 47, 51

[22] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and M. McCauley. Towards
practical taint tracking. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-92, 2010. → pages 2, 47

[23] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A
virtual machine-based platform for trusted computing. In ACM SIGOPS
Operating Systems Review, volume 37, pages 193–206. ACM, 2003. →
pages 45

[24] A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara. The taser intrusion
recovery system. In ACM SIGOPS Operating Systems Review, volume 39,
pages 163–176. ACM, 2005. → pages 47

[25] R. Herbster, S. DellaTorre, P. Druschel, and B. Bhattacharjee. Privacy
capsules: Preventing information leaks by mobile apps. In Proc. of MobiSys,
2016. → pages 47

[26] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical
taint-based protection using demand emulation. In ACM SIGOPS Operating
Systems Review, volume 40, pages 29–41. ACM, 2006. → pages 2, 47

[27] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed
sandbox for untrusted computation on secret data. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association. → pages 44, 51

[28] J. Kannan and B.-G. Chun. Making programs forget: Enforcing lifetime for
sensitive data. In HotOS, 2011. → pages 47

[29] S. T. King and P. M. Chen. Backtracking intrusions. ACM SIGOPS
Operating Systems Review, 37(5):223–236, 2003. → pages 47

55

[30] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board
credentials with open provisioning. In Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pages
104–115. ACM, 2009. → pages 45

[31] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and
R. Morris. Information flow control for standard os abstractions. In ACM
SIGOPS Operating Systems Review, volume 41, pages 321–334. ACM,
2007. → pages 2, 46, 51

[32] S. Lee, D. Goel, E. L. Wong, A. Kadav, and M. Dahlin. Privacy preserving
collaboration in bring-your-own-apps. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 265–278, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4525-5.
doi:10.1145/2987550.2987587. URL
http://doi.acm.org/10.1145/2987550.2987587. → pages 47

[33] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. Trinc: Small
trusted hardware for large distributed systems. In NSDI, volume 9, pages
1–14, 2009. → pages 45, 46

[34] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software abstractions for trusted
sensors. In Proceedings of the 10th international conference on Mobile
systems, applications, and services, pages 365–378. ACM, 2012. → pages
45, 46, 51

[35] P. Maniatis, D. Akhawe, K. R. Fall, E. Shi, and D. Song. Do you know
where your data are? secure data capsules for deployable data protection. In
HotOS, volume 7, pages 193–205, 2011. → pages 44

[36] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology
(TOSEM), 9(4):410–442, 2000. → pages 2, 46

[37] M.-R. Ra, R. Govindan, and A. Ortega. P3: Toward privacy-preserving
photo sharing. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 515–528,
2013. → pages 44

[38] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. Laminar:
practical fine-grained decentralized information flow control, volume 44.
ACM, 2009. → pages 2, 46, 51

56

http://dx.doi.org/10.1145/2987550.2987587
http://doi.acm.org/10.1145/2987550.2987587

[39] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed data:
A new abstraction for building trusted cloud services. In Presented as part
of the 21st USENIX Security Symposium (USENIX Security 12), pages
175–188, Bellevue, WA, 2012. ISBN 978-931971-95-9. → pages 44

[40] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using arm trustzone to build a
trusted language runtime for mobile applications. In ACM SIGARCH
Computer Architecture News, volume 42, pages 67–80. ACM, 2014. →
pages 45

[41] S. Saroiu, A. Wolman, and S. Agarwal. Policy-carrying data: A privacy
abstraction for attaching terms of service to mobile data. In Proceedings of
the 16th International Workshop on Mobile Computing Systems and
Applications, pages 129–134. ACM, 2015. → pages 44

[42] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity oses. In ACM SIGOPS
Operating Systems Review, volume 41, pages 335–350. ACM, 2007. →
pages 45, 46, 51

[43] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
information flow explicit in histar. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 263–278. USENIX
Association, 2006. → pages 2, 46

[44] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing distributed
systems with information flow control. In NSDI, volume 8, pages 293–308,
2008. → pages 2, 46

[45] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat, A. C.
Snoeren, G. M. Voelker, and S. Savage. Neon: system support for derived
data management, volume 45. ACM, 2010. → pages 2, 47

57

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 Use Cases
	3 TrustZone & OP-TEE Overview
	3.1 TrustZone
	3.2 Linaro OP-TEE
	3.2.1 ARM Trusted Firmware
	3.2.2 OP-TEE OS
	3.2.3 OP-TEE Linux Driver
	3.2.4 OP-TEE Supplicant

	4 Design
	4.1 Trusted Capsule Application
	4.2 Trusted Capsule Server
	4.3 Lua Policy Engine
	4.4 System Call Interceptor
	4.5 Security

	5 Implementation
	6 Evaluation
	6.1 Policy language
	6.2 Storage overhead
	6.3 System call microbenchmarks
	6.4 Applications

	7 Related Work
	8 Future Work
	8.1 Bugs
	8.2 Optimization
	8.3 Engineering
	8.4 Research Directions

	9 Conclusion
	Bibliography

