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Abstract

As modern data centers grow in both size and complexity, the probabil-
ity that components fail becomes significant enough to affect user-facing
services [3]. These failures have the apparent consequence of invoking the
impossibility result for distributed consensus in the presence of even one
failure [15]. One way to solve the impossibility result is to use failure de-
tectors [8]. In this essay, we present the theoretical models that allow us to
solve consensus. Then, we discuss practical refinements to the models for
the purposes of implementing failure detectors in practice. Finally, we con-
clude by surveying common design patterns for building distributed failure
detectors.
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Chapter 1

Introduction

As modern data centers grow in both size and complexity, the probability
that components fail becomes significant enough to affect user-facing ser-
vices [3]. Indeed, the presence of failures has both theoretical and practical
consequences. When it comes to the problem of distributed consensus, the
impossibility result states that consensus cannot be reached in the presence
of even one faulty process [15]. In more practical terms, the failure of a
component can cause entire systems to stop working properly. Fortunately,
Chandra et al. [8] proved that if we have access to a suitable failure detector,
then we can solve consensus.

However, correctly implementing failure detection in a way that is both
accurate and efficient is no trivial task. For example, Facebook, in designing
the Cassandra distributed database, chose to base their implementation of
failure detection on the Φ accrual failure detector after determining that
a gossip-based model would be too slow to detect failures [23]. As many
readers may be aware, the sheer number of users on Facebook’s social net-
working platform means that using a too-slow failure detector would cause
service disruptions to a significant number of people. In another example,
Google’s Chubby service for distributed locks extensively used heartbeats to
detect failures [7]. The sheer scale of Google’s operations necessitated a hi-
erarchical design for failure detection in order to avoid crippling the network
from an overload of heartbeat messages. Indeed, there are many ways that
a näıve implementation of failure detection could unintentionally disrupt or
degrade a distributed application.

In this essay, we explore how failure detectors help us solve the problem
of distributed consensus. We start in Chapter 2 by defining the problem of
consensus in asynchronous systems, what it means to have an asynchronous
model of computation, and how the concept of failure detection helps us
solve the impossibility result. Next, in Chapter 3 we introduce the two basic
timeout-based methods for implementing failure detectors. In Chapter 4, we
adopt algorithms for estimating the optimal timeout to learn how to build
failure detectors that adapt to changing network conditions and application
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Chapter 1. Introduction

requirements. Finally, in Chapter 5 we end with a survey of common design
patterns for building distributed failure detectors.
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Chapter 2

The theory behind failure
detection and consensus

Failure detection was devised as a way to address the impossibility result for
distributed consensus [9]. The consensus impossibility result states that the
problem of distributed consensus in fully asynchronous systems cannot be
solved in the presence of even one faulty process, because we cannot deter-
mine whether a process has failed or is just very slow [15]. In this section,
we define the formal models of asynchronous computation in Section 2.1 and
failure detection in Section 2.2, followed by a description of the weakest fail-
ure detector for solving the problem of distributed consensus in Section 2.3.
We will see that the concept of failure detection shifts the dialog from the
impossibility of consensus towards the design of failure detectors.

2.1 The impossibility result for consensus

In our primal model of asynchronous computation, we consider a system
in which independent processes implement deterministic automata to per-
form serial computation on inputs received from the network. The network
reliably delivers messages between processes. The asynchrony in the sys-
tem implies that we make no assumptions about how much time it takes to
perform computation or to send and receive messages between processes.1

The impossibility result for distributed consensus from Fischer et al.
is fundamental a limitation in the asynchronous model of computation [15].
The formal proof of the impossibility result shows that no consensus protocol
P can ensure that N ≥ 2 processes all agree on the same value for an
arbitrary number of registers xi, where i identifies a single register, wherein
processes communicate by sending messages over the network and assign a
value to xi based on the contents of those messages.

1Alternatively, asynchrony could also describe an extreme instance of the General The-
ory of Relativity [28] in which no two processes exist in physical spaces with the same
relative time reference, making accurate time measurements between processes impossible.
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2.2. A model of failure detection

In the generalized proof, xi takes on a value in {b, 0, 1}, where b is the
initial value for xi that must transition to either 0 or 1. When the value for
xi is b at a process p, the process p is said to be in a bivalent state in that it
may transition to either xi = 0 or xi = 1. When the process p assigns xi a
value in {0, 1}, it is said to be in a univalent state in that there is only one
possible transition for the value of xi to the same value.

If any process q fails to receive a decision for the value of xi, either be-
cause it takes longer to respond to messages than other processes or through
long delays in message delivery, the consensus protocol P will never termi-
nate. As time is not measurable in the asynchronous model, P cannot
determine whether the process q has failed or is just very slow to respond.
No additional state exchange could guarantee the detection of the failed pro-
cess q and there remains the possibility that the process q has not failed and
thus remains in a bivalent state for xi, leading to the impossibility result for
consensus.

The impossibility result is only applicable in the asynchronous model of
computation. While it is tempting to disregard asynchrony and consider
time as an essential in a model of computation, the asynchronous model
lends well to simpler, more robust and portable software implementations
in many practical applications [9]. In the next section, we introduce the
theoretical concept of failure detection which allows us to continue using
the asynchronous model of computation to solve consensus.

2.2 A model of failure detection

Continuing our exploration of the impossibility result for consensus in the
asynchronous model of computation, we now introduce the concept of failure
detection. In this section, we consider failure detectors as all-knowing oracles
without assuming how they could be implemented in practice; we defer to
Chapters 3-5 for a review of concrete failure detectors and a discussion of
practical design patterns. Instead, this section describes the abstract classes
of failure detectors, their equivalences, and how the theoretical results allow
us to solve the problem of consensus.

Let us define failure as the event in which a process halts without prior
notice and failure detection to mean the event in which a failed process
is marked as suspected of failure. In addition, we also make available a
global, monotonically increasing virtual clock. Rather than describing phys-
ical time, the virtual clock advances only if some event occurs in the system.
From the viewpoint of the virtual clock, an event occurs in the system if

4



2.2. A model of failure detection

any process performs an arbitrary unit of computation, which may include
sending and receiving messages on the network or experiencing a failure.
The clock is not available to individual processes or the failure detectors
and exists only to aid in the analysis. In this section, we will refer to time
as defined by the virtual clock.

Processes form a failure detection group wherein each member process
shares information about process failures in the group. Each process main-
tains an instance of the failure detector that provides, possibly incorrect,
information about process failures in the group. Member processes in the
monitoring group share information gathered from their local failure detec-
tors. The global failure detector D describes the aggregate failure detection
capabilities of the failure detection group.

Within this model, Chandra and Toueg defined two completeness prop-
erties and four accuracy properties that the failure detector D may satisfy.
The completeness and accuracy properties are loosely related to the true
failure and false positive rates, respectively. We provide the informal defini-
tions here; curious readers are referred to [9] for the formal definitions and
proof of equivalence.

Completeness The failure detector D is said to have strong completeness
if every failed process is permanently suspected by every correct process.
On the other hand, if every failed process is only permanently suspected by
some correct process, D is said to have weak completeness.

We say that weak completeness is equivalent to strong completeness in
that one can emulate the other [9]. With weak completeness, at least one
correct process will suspect a failed process. That process can then share
that information with the rest of the failure detection group to achieve strong
completeness in aggregate. The reverse is trivially true: strong completeness
trivially satisfies the weak completeness property. This equivalence allows
us to focus solely on the four classes of failure detectors described by the
accuracy property.

Accuracy The failure detector D is said to have strong accuracy if no
process is suspected before it fails. Similarly, D is said to have weak accuracy
if only some correct process is never suspected of failure. It follows that
strong accuracy satisfies the weak accuracy property.

For both these properties, it may be difficult to guarantee that at least
one correct process is never suspected of failure. Thus, Chandra and Toueg
introduce the concept of eventual satisfiability for the accuracy properties.
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2.2. A model of failure detection

Accuracy
Completeness Strong Weak Eventual Strong Eventual Weak

Strong
Perfect

P
Strong

L
Eventually Perfect

�P
Eventually Strong

�L

Weak Q Weak
W

�Q Eventually Weak
�W

Table 2.1: Eight classes of failure detectors and their symbolic representa-
tions. Failure detectors on the same column are equivalent, while failure
detectors with weak accuracy are weaker than ones with strong accuracy.
Likewise, failure detectors with eventual accuracy are weaker than ones with
perpetual accuracy. See also Figure 2.1 for an illustration of equivalences.

Figure 2.1: The equivalences of failure detector classes. See Table 2.1 for a
mapping from the symbolic representations to the failure detection classes.

That is, the failure detector D satisfies eventual strong accuracy if there is a
time after which correct processes are not suspected by any correct process.
Likewise, D is said to have eventual weak accuracy if there is a time after
which only some correct processes are not suspect by any correct process.

The eight classes of failure detectors are listed with their symbolic repre-
sentations in Table 2.1 and their equivalences illustrated in Figure 2.1. We
will see in the next section that we are able to solve the consensus problem
using the weakest failure detector �W that satisfies the weak completeness
and eventual weak accuracy properties.
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2.3. The weakest failure detector

2.3 The weakest failure detector

In this section, we introduce the result from Chandra et al. [8, 9] showing
that the weakest failure detector D for solving consensus for n > 2f only
needs to satisfy the weak completeness and eventual weak accuracy proper-
ties, where n is the total number of processes in the failure detection group
and f is the number of failed processes in the group. We thus begin our
discussion by showing that we may use a strongly complete, weakly accurate
failure detector to solve the consensus problem.

Using a strongly complete, weakly accurate failure detector Let us
begin by considering Algorithm 2.1 which uses a strongly consistent failure
detector L satisfying the weak accuracy property. Recall from Section 2.1
that in our model of computation for the consensus problem, every process
maintains an arbitrary number of registers xi. Consensus is reached when
all processes agree and commit to a single, globally consistent value for xi.
For our discussion, let us generalize the consensus problem to allow xi to
accept any value.

Algorithm 2.1 consists of three phases. In the first two phases, the
algorithm collects all proposed values from correct processes. The strong
consistency and weak accuracy properties guarantee that all failed processes
are detected and at least one correct process is never suspected. This in turn
guarantees that all processes are able to construct a consistent view Vp at
the end of phase 2. In phase 3, processes deterministically decide on a value
for xi and the algorithm trivially solves the consensus problem.

Using a weakly complete, weakly accurate failure detector More
impressively, we can also solve the consensus problem using a weakly con-
sistent, weakly accurate failure detector W . Recall that we learned in the
previous section that a weakly complete failure detector can be converted
to a strongly complete failure detector by allowing processes to share failure
information. Thus, we can modify Algorithm 2.1 to use a weakly com-
plete, weakly accurate failure detector by instructing processes to broadcast
a message after detecting that a process has failed. By the weak complete-
ness property, a failed process is detected by at least one process and the
failure detector thus behaves as if it satisfies the strongly complete property.

Naturally, even with the strong completeness property, we could consider
it difficult to design a weakly accurate failure detector in which at least
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2.3. The weakest failure detector

Algorithm 2.1 Solving consensus using any failure detector L satisfying
the strong completeness and weak accuracy properties. Every processes p
executes the propose function to reach consensus on a value for xi.

function propose(vp)
Let Vp ← 〈⊥,⊥, . . . ,⊥〉 be p’s view of all proposed values

Phase 1: collect all proposed values
for all n− 1 other processes do

Send vp and Vp to all processes
Wait to receive vq and Vq from q or until D suspects q
for all processes q that did not fail do

. query the failure detector
for all processes k participating in consensus do

Update Vp[k]← Vq[k] where Vp[k] 6=⊥
end for

end for
end for

Phase 2: update Vp for failed processes
Send Vp to all processes
for all processes q in the failure detection group do

Wait to receive Vq from q or until D suspects q
if q did not fail then . query the failure detector

for all processes k participating in consensus do
Update Vp[k]← Vq[k] where Vp[k] 6=⊥

end for
end if

end for

Phase 3: deterministically decide on a non-⊥ value in Vp

end function
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2.3. The weakest failure detector

one correct process is never suspected. Instead, observe that the consis-
tency problem does not require that the failure detection properties hold
forever. Rather, a failure detector D only needs the properties to hold for
a sufficiently long time for the consensus algorithm to complete. Thus, it is
sufficient for D to eventually satisfy the weak accuracy property.

Let us now turn our attention to the second algorithm from Chandra
et al., which uses the weaker eventually weakly accurate failure detector to
solve the consensus problem with n > 2f processes, where n is the total
number of processes and f is the number of failed processes [9].

Using a strongly complete, eventually weakly accurate failure de-
tector Algorithm 2.2, adapted from [9], solves the consensus problem us-
ing a weakly consistent, eventually weakly accurate failure detector �L .

The algorithm proceeds through three epochs. In the first epoch, more
than one decision value is possible. In the second epoch, a majority of
processes have accepted the coordinator’s proposed value and the value is
locked : no other decision value is possible. In the third epoch, processes
decide the locked value. In all epochs and phases, the strong completeness
property ensures that the algorithm makes progress. Progression through
the three epochs then relies on the eventual weak accuracy property to
ensure that the majority of correct processes eventually accept the locked
value in phases 3 for the leader to commit the value in phase 4.

In the first epoch, either the processes are unaware of other processes’
proposed values for xi (round rp = 1) or fewer than d(n+ 1)/2e have chosen
the same value for xi, leaving the possibility for more than one value for
xi to be chosen. In the second epoch, the eventual weak accuracy property
ensures that at least d(n+1)/2e processes eventually accept the coordinator’s
proposed value in phase 3. In the third epoch, once a majority of processes
agree on and lock the proposed value for xi, the coordinator is guaranteed
to choose the locked value in phase 2. From then on, by the eventual weak
accuracy property, a majority of processes will eventually accept the locked
value in phase 3 and decide on a consistent value after phase 4.

This algorithm is correct with the assumption that n > 2f , where n
is the number of processes participating in consensus and f is the number
of processes that fail. The constraint arises from this contradiction: if we
instead assume n ≤ 2f , then the algorithm could lock an inconsistent value
in the third epoch. As we are using an eventually weakly accurate failure
detector �W , the 2f suspected processes could actually be alive. The 2f
processes could have independently locked a value inconsistent with the

9



2.3. The weakest failure detector

n ≤ 2f correct processes, thereby violating consistency and resulting in the
contradiction. Thus, we require n > 2f to solve the problem of distributed
consensus with �W .

Similarly to Algorithm 2.1, we can modify Algorithm 2.2 to use a weakly
consistent, eventually weakly accurate failure detector �W by sharing failure
information between processes. The result in [8] shows that �W is indeed the
weakest possible failure detector capable of solving the consensus problem
with n > 2f processes.2

Relation to 2PC and 3PC Alert readers may notice the similarity of
Algorithms 2.1 and 2.2 to two-phase commit (2PC) and three-phase commit
(3PC), respectively. In 2PC’s prepare and commit phases, a coordinator
initiates a transaction in the prepare phase by asking processes if they can
commit a value. The coordinator notifies the participants in the commit
phase to either commit the value (if all processes replied yes) or to abort
the transaction (if one or more processes replied no) [4].

Whereas 2PC may block processes indefinitely if the coordinator fails be-
fore sending the commit or abort message, 3PC adds the pre-prepare phase
to prevent blocking. At the beginning of a transaction, the coordinator asks
processes to pre-prepare and, if all processes reply yes, the coordinator pro-
ceeds to the prepare and commit phases of 2PC, otherwise the transaction
is aborted. The pre-prepare phase avoids blocking processes indefinitely by
allowing processes to timeout on the coordinator during the prepare phase.

Indeed, the failure detector-based algorithms we have described could
be derived from 2PC and 3PC by replacing the explicit timeout handling
with a default response based on the failure information of a process from an
abstract failure detector. In both cases, the use of a sufficiently strong failure
detector allows us to simplify the termination protocol when failed processes
are detected [17]. For example, in Algorithm 2.1, the use of a weakly accurate
failure detector prevents the algorithm from blocking because the failure
detector will yield a “default” answer to abort the procedure. Likewise, the
eventually weakly accurate failure detector in Algorithm 2.2 prevents the
algorithm from blocking because failed processes are eventually detected.

In this section, we defined the formal models of computation leading to
an understanding of how failure detectors allow us to solve the impossibility
result for distributed consensus. We also showed that the weakly consistent,
eventually weakly accurate failure detector �W is capable of solving the

2We refer the reader to [8] for the full proof of this result.
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2.3. The weakest failure detector

Algorithm 2.2 Solving consensus using any failure detector �L satisfying
the strong completeness and eventual strong accuracy properties. Every
processes p executes the propose function to reach consensus on a value.

function propose(vp)
Let rp ← 0 be the current round number
Let tsp ← 0 be latest round number in which p updated vp
Let statep ← undecided
while statep = undecided do

Advance rc ← rc + 1 and elect a coordinator cp ← (rp + 1) mod n
Phase 1: all processes send their proposed values to cp
Send (p, vp, rp) to cp
Phase 2: cp gathers d(n+ 1)/2e proposals and sends a new value
if p = cp then

Wait to receive d(n+ 1)/2e proposals (q, vq, rq)
Update vp to the proposal vq with the highest rq if any
Send (p, rp, vp) to all

end if
Phase 3: all processes wait for the new proposal from cp
Wait to receive (cp, rp, vc) from cp or until D suspects cp
if cp failed then . query the failure detector

Send (p, rp, nack) to cp
else

Update vp ← vc and tsp ← rp
Send (p, rp, ack) to cp

end if
Phase 4: cp waits for d(n+ 1)/2e acks
if p = cp then

Wait to receive responses from d(n+ 1)/2e processes
if p received d(n+ 1)/2e acks then

Send (rp, vp, commit) to all
end if

end if
if p receives a (rp, vc, commit) message at between phases then

Update vp ← vc, tsp ← rp, and statep ← decided
end if

end while
end function
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2.3. The weakest failure detector

consensus problem with n > 2f processes, where n is the total number of
processes and f is the number of failed processes. Chandra et al. [8] further
proved that �W is the weakest class of failure detectors for solving consensus
with n > 2f processes.

While there exist weaker failure detectors, they provide even less infor-
mation than the model of failure detection we have presented here and solve
different classes of computational problems. For example, the Υ failure de-
tector solves the wait-free set agreement problem by informing that some
set of processes are cannot be the set of correct processes [18]. Of course,
the wait-free set agreement is not consensus. In the remainder of this es-
say, we introduce the concrete failure detection algorithms that satisfy these
properties.
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Chapter 3

Binary failure detection with
partial synchrony

In the asynchronous model of failure detection introduced in Chapter 2, we
assumed that there are no bounds on the message delay and that physical
time either could not be reliably measured or there is no way of deterministi-
cally predicting execution time. In addition, we also assumed that messages
are eventually reliably delivered. This last assumption is easy to ensure in
practice if all processes make infinitely many attempts to send and infinitely
many attempts to receive messages [15].3

Thus, if we know ahead of time that f processes will fail out of n total
processes, then solving the problem of consensus is trivial: we simply wait
to receive n− f messages before terminating the algorithm [29]. If we only
know that up to f processes may fail, then we have the unreliable failure
model described in Section 2.3 and only need to ensure that no more than
bn/2c processes fail [8]. Nevertheless, this solution is predicated on having
access to a failure detection oracle.

In practice, we rarely know f a priori, messages can be delayed indefi-
nitely, and we do not have access to a failure detection oracle. As a result, to
implement a suitable eventual weak failure detector �W to solve the problem
of consensus, we need to enrich our model of computation with additional
assumptions. In particular, we relax the asynchrony assumption for the
model of failure detection to allow processes to reach an approximate com-
mon notion of time to enable the use of timeouts. As we cannot achieve full
synchrony in the sense that we cannot guarantee that computation, includ-
ing the delivery of network messages, will complete within an explicit time
bound, the use of timeouts gives us what is called a partially synchronous
system. In the partially synchronous model, an upper bound on computa-
tion and network delays exists (or is enforced), but is not known in advance
[13].

3We will revisit this inefficiency in Chapter 5.
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3.1. Pull failure detection

This subtle distinction on the application of partial synchrony allows
us to restrict the concept of physical time to the failure detection model,
while maintaining the simpler asynchronous model of computation for solv-
ing consensus. In essense, we are allowing algorithms for solving consensus
to disregard the concept of time and continue to assume that any failed
processes will “notify” the algorithm of its failure.

With partial synchrony, the unidirectional pull and push models form
the basis of all currently known failure detector algorithms [14, 20]. In this
section, we define and compare the pull and push models and conclude with
a description of the more flexible dual that combines features from both
push-pull models.

3.1 Pull failure detection

A failure detector implementing the pull model of interaction periodically
sends liveness requests to processes [14, 20]. If a process responds to the re-
quest before a timeout, the failure detector considers it alive. Otherwise, the
process is marked as suspected of failure. The pull control flow is illustrated
in Figure 3.1a while the flow of the monitoring messages are illustrated in
Figure 3.1b.

When used as part of a distributed failure detector, it is also easy to
see that we can achieve the results from Section 2.3 without requiring all
processes to monitor all other processes. Instead, we achieve strong com-
pleteness by allowing individual failure detectors to share failure informa-
tion. While individual failure detectors may make mistakes, given a long
enough timeout, we can ensure that the distributed failure detector is even-
tually weakly accurate. Thus, the pull model for failure detection satisfies
the properties of the weakest failure detector capable of solving the problem
of consensus.

A benefit of using the pull model is that it is simple to implement because
monitored processes are passive participants. That is, processes only need
to react to external liveness requests. They do not need to maintain a local
clock to send regular messages and may operate within the asynchronous
model of computation. In the next section, we describe the push model
of interaction, which does necessitates that processes and failure detectors
both have access to a clock, for a more efficient way to implement failure
detection.

14



3.2. Push failure detection

Failure detector Processes

pull
(“Are you alive?”)

 yes⟻

(a) The pull models of failure detection in which the failure detector regularly polls
processes to ask if they are alive.

“Are you

alive?”

“Are you

alive?”

“Are you

alive?”
yes yes

Failure

Failure detector

Process

Timeout Timeout Suspect

Time ⟶

(b) Monitoring messages in the pull model of failure detection.

Figure 3.1: The pull model of failure detection illustrated.

3.2 Push failure detection

In the push model of failure detection, monitored processes become active
participants. They periodically send heartbeat messages to the failure de-
tector [14, 20]. Processes are suspected of failure when they stop sending
heartbeat messages and become quiescent. The push control flow is illus-
trated in Figure 3.2a while the flow of the monitoring messages are illustrated
in Figure 3.2b.

When used as part of a distributed failure detector, the push model
does not require that all processes monitor all other processes. Rather, we
may organize processes into a sufficiently structured monitoring topology
to ensure that all processes are associated with at least one individual fail-
ure detector. Individual failure detectors then share failure information to
achieve the strong completeness and eventual weakly accurate properties [1].

The result from [1] shows that the push model does not require the
explicit use of timeouts and instead counts the total of heartbeat messages
received from each process, marking a as suspected of failure when its heart-
beat counter stops increasing. However, the heartbeat messages are still
required to have some degree of periodicity for this method to work. This
means that processes must adopt a more complex partially synchronous
model of computation. In exchange, the push model halves the number of
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3.3. Push-pull failure detection
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(a) The push model of failure detection in which processes regularly broadcast a
message saying they are alive.
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(b) Monitoring messages in the push model of failure detection.

Figure 3.2: The push model of failure detection illustrated.

network messages needed to implement a failure detector suitable for solving
the consensus problem [1, 24].

3.3 Push-pull failure detection

In a heterogeneous environment, it may be desirable (or necessary) to de-
ploy both push- and pull-based failure detectors. For such scenarios, Felber
et al [14] proposed the dual model of failure detection that combines the
push and pull models. A failure detector implementing the dual strategy
accommodates both models by accepting heartbeat messages when available
and sending liveness requests otherwise.

The dual model could be particularly useful, for example, to allow two
data centers separated by an intercontinental network connection to effi-
ciently monitor processes for failure across the both systems. Within each
data center, we can efficiently synchronize process clocks and reliably sup-
port the push model of failure detection. Between the data centers, net-
work delays make it more difficult for heartbeat messages to be reliably and
periodically delivered. Instead, we send liveness requests over the intercon-
tinental link for the reason that the pull model does not require accurate
timekeeping.
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Figure 3.3: The push-pull model of failure detection illustrated. Both the
push and pull models of interaction are represented.

Figure 3.3 illustrates an example of the dual model in which process p1

is push-aware and process p2 is pull-aware. When the failure detector is
started, it accepts heartbeat messages from p1. After a timeout, it detects
that p2 is not sending heartbeat messages and starts periodically sending
liveness requests to p2. Failures are then detected using the appropriate
model of failure detection [14].

Thus far, we have assumed that we know the optimal timeout delays a priori
as global, unchanging values. This assumption presupposes that the network
delays are predictable and that we have access to clocks with negligible
drift to time those delays [10, 21]. In practice, both these assumptions are
impractical. In Chapter 5, we will explore the topic of how to implement
practical failure detection in more detail. Leading up to that discussion,
we will explore in Chapter 4 the more sophisticated class of graded failure
detectors that output a numeric estimate of a process’s failure, rather than a
simple binary answer. We will see shortly that these graded failure detectors
give us much flexibility in implementing failure detection as a shared service.
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Chapter 4

Accrual failure estimation for
adaptive failure detection

In Chapter 3, we relaxed our asynchronous model of computation to make
it possible to implement concrete failure detectors. The partial synchrony
in the revised model manifested as the timeouts used in the push and pull
models of failure detection. However, we assumed that the timeout durations
were known a priori, possibly by measuring the expected message delay in
the network. The use of a single, unchanging timeout also presupposes that
we have access to clocks with negligible drift for reliable failure detection
[10, 21]. In this section, we instead relax these assumptions and explore
algorithms for adaptively estimating the optimal timeout for the purposes
of failure detection.

The goal of estimating the optimal timeout is simple. The longer we
wait to timeout, the longer it takes to detect a failure. On the other hand,
if we timeout too early, we make more mistakes when reporting suspected
processes. Thus, we begin the chapter by describing three algorithms for
estimating network delays: an algorithm estimating the round-trip time
for the pull model of failure detection in Section 4.1 and two algorithms for
estimating heartbeat arrival times in the push model in Section 4.2. We then
conclude the chapter by presenting the accrual class of failure detectors that
reimagines the use of timeout estimation to return a probabilistic estimate
of a process’s failure status, rather than a simple binary answer.

4.1 Estimating round-trip time

In the pull model of failure detection, Jacobson’s algorithm, used in the
Transmission Control Protocol (TCP) for estimating the round-trip time
(RTT), is likely the most widely used [22]. As we’ll see in Section 4.2,
Jacobson’s algorithm is of particular interest to us because it is used in
Bertier et al.’s algorithm for estimating the next arrival time for heartbeat
messages [6].
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Figure 4.1: Round-trip time estimation based on previous round-trip delays.
The shaded area to the right of the rightmost ping message sent from the
failure detector represents the weighted historical RTT estimate. The next
two shaded areas represent the weighted RTT contributions from the two
most recent RTT delays.

Jacobson’s algorithm Illustrated in Figure 4.1, Jacobson’s algorithm
calculates a running estimate of the RTT, giving more weight to more re-
cently observed RTT delays. The RTT estimation algorithm is formally
described in Equations 4.1-4.3.

A = γA+ (1− γ)M (4.1)

D = βD + β(|M −R| −D) (4.2)

R = A+ φD (4.3)

Here, A is an estimate of the mean RTT, M is the most recent RTT sample,
and D is an estimate of the mean deviation in the RTT. R is the esti-
mated RTT that incorporates both the observed average and deviation in
the RTT. The parameters γ and β determine how much weight to give past
RTT samples and have suggested values of 0.9 and 0.125, respectively [22].
The parameter φ determines how much deviation from the mean RTT to
tolerate and has a suggested value of 2. The algorithm makes relatively
few assumptions about the network and adapts to changing conditions as
rapidly as the values of γ, β, and φ allow.

As round-trip time estimation algorithms are widely discussed elsewhere
in the literature, we limit our discussion to Jacobson’s algorithm here. In the
next section, we discuss Chen’s algorithm for estimating the next heartbeat
arrival times for use with the push model of interaction, followed by Bertier’s
algorithm, which combines Chen’s algorithm with Jacobson’s algorithm to
adapt to changing network conditions.
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4.2. Estimating heartbeat arrival times
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Figure 4.2: Heartbeat estimation based on previous arrival times. The
shaded area to the right of the rightmost heartbeat represents the next
estimated heartbeat delay based on the weighted mean of the three most
recently measured heartbeat intervals.

4.2 Estimating heartbeat arrival times

For the push model of failure detection, Chen et al. [10] first proposed
an adaptive algorithm based on probabilistic analysis of network traffic to
estimate the arrival time of the next heartbeat in the push model of failure
detection.4 The basic idea behind heartbeat estimation is illustrated in
Figure 4.2. Due to network fluctuations, we can expect the time between
heartbeats to vary over time. The timeout ttimeout at the failure detector is
set based on an estimation of the mean and variance in the observed delays
between heartbeats, with the addition of a constant safety margin α. As
a follow-up, Bertier et al. [6] then proposed to combine Chen’s estimation
algorithm with Jacobson’s estimation of round-trip time. We describe both
algorithms in this section.

Chen’s algorithm Algorithm 4.1 describes Chen’s algorithm. The core
functionality of the algorithm depends on the accuracy of EA`+1, the esti-
mated arrival time for the next heartbeat, where ` is the sequence number
of a heartbeat. The failure monitor p estimates EA`+1 by

EA`+1 ≈
1

n

(
n∑
i=1

Ai − ηsi

)
+ (`+ 1)η (4.4)

4Chen et al. [10] actually described two estimation algorithms: one that depends on
highly accurate synchronized GPS and Cesium clocks and one that does not make this
assumption. As we are interested in methods for relaxing the requirement for synchronized
clocks, we describe only the latter in this review.
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4.2. Estimating heartbeat arrival times

where s1, . . . , sn are the sequence numbers of heartbeats received from p and
Ai, . . . , A

′
n the receipt times of those messages. In the summation compo-

nent, the estimation function takes the average of the difference between the
expected arrival time and the actual arrival time (Ai − ηsi). This average
essentially describes the drift in q’s local clock relative to p’s local clock.
The estimated drift is then added to the next expected heartbeat arrival
time ((`+ 1)η). Based on their algorithmic analysis and simulation results,
Chen’s algorithm provides good estimates of the arrival time for the next
heartbeat.

In both the main algorithm and the estimation function for EA`+1, η is
the configurable heartbeat interval and α is a constant safety margin. Chen
et al. additionally provide methods for calculating the parameters α and η.
We refer curious readers to [10] for more information.

Bertier’s algorithm Algorithm 4.2 describes Bertier’s algorithm. Whereas
Chen’s algorithm assumes a constant, probabilistic value for the error mar-
gin α, Bertier’s algorithm uses Jacobson’s algorithm to estimate α.

In addition, Bertier’s algorithm specially handles the initialization of the
failure detector, in which there are fewer than n previous heartbeat arrival
times with which to calculate EA′i. The initial estimates for EA′i use the
algorithm described in Equations 4.5 and 4.6.

Ui+1 =
t

i+ 1
· i

i+ 1
· Ui (4.5)

EA′i+1 = Ui +
i+ 1

2
· η (4.6)

The values U0 and EA′0 are initially set to 0 and both quantities are calcu-
lated at the same time. When i > n, EAi+1 is calculated using Equation 4.4.
Based on their network measurements, Bertier’s algorithm is competitive
with Chen’s algorithm, trading shorter detection times (by adjusting the
timeout lower as network conditions allow) for an increase in the number of
false failure detected (because the estimated timeout will not immediately
respond to increases in the network delay).

Chen’s and Bertier’s algorithms for estimating the optimal timeout have
real practical implications: having a good estimate of the optimal timeout
allows us to use a wider variety of clocks with non-insignificant drift and
possibly lower cost. In the next section, we introduce the accrual failure
detectors that further refine the idea of timeout estimation to decouple the
interpretation of failure data from the failure monitoring mechanism [21].
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4.2. Estimating heartbeat arrival times

Algorithm 4.1 Chen’s algorithm for estimating the arrival time of the next
heartbeat. η and α are configuration parameters and EAi is the estimated
arrival time for the heartbeat at the ith sequence. The algorithm for esti-
mating EAi is provided in the text.

function heartbeat(p) . using p’s local clock
for all i ≥ 1 do

Send heartbeat mi to q at time i · η
end for

end function

function monitor(q) . using q’s local clock
τ0 ← 0 . the expected arrival time of the next heartbeat
`← −1 . the largest sequence number received from p
loop

if t = τ`+1 then . t is the current time
Suspect p as failed . heartbeat not received

else if q receives a message mj from p and j > ` then
`← j . save new sequence number
τ`+1 ← EA`+1 + α . next estimated arrival time

. (see Equation 4.4)
if t < τ(`+ 1) then . t is the current time

Trust p as alive . heartbeat received
end if

end if
end loop

end function
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4.2. Estimating heartbeat arrival times

Algorithm 4.2 Bertier’s algorithm for estimating the arrival time of the
next heartbeat. The parameters η is the same as in Chen’s algorithm and
the parameters γ, β, and φ are described in Section 4.1. The algorithm for
estimating EA′i is provided in the text.

function heartbeat(p) . using p’s local clock
for all i ≥ 1 do

Send heartbeat mi to q at time i · η
end for

end function

function monitor(q) . using q’s local clock
τ0 ← 0 . the expected arrival time of the next heartbeat
`← −1 . the largest sequence number received from p
loop

if t = τ`+1 then . t is the current time
Suspect p as failed . heartbeat not received

else if q receives a message mj from p and j > ` then
`← j . save new sequence number

. estimate α using Jacobson’s algorithm
errorj ← t− EA′j−1 − αj−1

delayj+1 ← delayj + γ · errorj
varj+1 ← varj + γ · (|errorj | − varj)
αj+1 ← β · delayj+1 + φ · var+1

τ`+1 ← EA′`+1 + αj+1 . next estimated arrival time
if t < τ(`+ 1) then . t is the current time

Trust p as alive . heartbeat received
end if

end if
end loop

end function
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4.3. Accrual failure detection
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Figure 4.3: As compared to the architecture of binary failure detectors (a),
accrual failure detectors (b) decouple monitoring from interpretation to al-
low client applications to tune the behavior of the failure detector. The
parametric action modulates its behavior based on the in suspicion level, for
example by sending alerts with varying levels of urgency to system admin-
istrators based on the suspicion level.

4.3 Accrual failure detection

In contrast to the binary failure detectors that we have discussed thus far,
accrual failure detectors output a continuous range of values [12, 21]. While
returning a binary value (trust or suspect) is more convenient to the client
application in that there is no ambiguity as to the interpretation of the failure
information, not all applications have the same failure tolerance and may
benefit from finer interpretations of the data. Indeed, there is an inherent
trade-off between the speed and accuracy of failure detection [12].

Part of the motivation behind the design of accrual failure detectors is
to decompose failure detection into three components:

• Monitoring component gathers information about processes.

• Interpretation component decides the failure status of a process based
on gathered data.

• Actions are executed based on the failure status of a process.

Whereas the architecture of binary failure detectors tightly couples the mon-
itoring and interpretation components, accrual failure detectors decouple
monitoring from interpretation. These differences are illustrated in Fig-
ure 4.3.

Informally, the reported values from accrual detectors represent the con-
fidence level that a process has failed since the last time the detector received
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4.3. Accrual failure detection

a message from the process. The suspicion output of a heartbeat-based ac-
crual failure detector is illustrated in Figure 4.3. More precisely, an accrual
failure detector outputs a suspicion level susp levelp(t) (a floating point
number) at time t for process p such that it exhibits the following proper-
ties:

1. Asymptotic completeness – if a process p is faulty, susp levelp(t) in-
creases to infinity as t increases to infinity. That is, as time passes and
the faulty process stops indicating that it is alive, we can be increas-
ingly confident that the process is truly faulty.

2. Eventual monotonicity – if a process p is faulty, there is a time after
which susp levelp(t) increases monotonically. This is because, as de-
fined, the only way for the susp levelp(t) to decrease is when it is reset
to zero by property 4.

3. Upper bound – process p is correct if and only if there is an upper bound
on susp levelp(t) for all t. That is, the suspicion level of a correct
process p never increases above a definite threshold as a consequence
of (4).

4. Reset – if p is correct, then susp levelp(t) = 0 for some t ≥ t0, such as
when the failure detector receives a message from p to confirm that it
is alive.

In this section, we introduce two failure detectors with these properties: the
Φ accrual detector [21] and Satzger’s failure detector [31].

The Φ accrual failure detector The Φ accrual failure detector was the
first failure detector described to satisfy these properties and accompanied
the work that defined the accrual class of failure detectors [20]. The failure
detector outputs a probabilistic estimate Φ that a process has failed based
on the last time the detector received a heartbeat message from the process.
The output value Φ is calculated using the equation

Φ(tnow)
def
= − log10 (Plater (tnow − Tlast)) (4.7)

where tnow is the current time at which Φ is calculated and Tlast is the last
time the failure detector received a heartbeat message from the process in
question. The value Plater(t) is calculated using the equation

Plater(t) =
1

σ
√

2π

∫ +∞

t
e−

(x−µ)2

2σ2 dx = 1− F (t) (4.8)
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Figure 4.4: Suspicion level estimation is calculated based on the time since
the last heartbeat message was received. The suspicion level of a process is
illustrated as rising with the “graphs” above the failure detector line. An
application sets the suspicion threshold based on their quality of service
requirements. When a process’s suspicion level crosses the application’s
threshold, the process is considered as suspected of failure.

where F (t) is the cumulative distribution function of a normal distribution
with mean µ and variance σ2. The mean and variance describe the net-
work delay and is either provided a priori or estimated using the methods
described in Section 4.2. The value of F (t) is usually determined using a
lookup table of precalculated values.

Thus, given a value Φ for process p, we may then decide to suspect p when
Φ crosses above a threshold. Hayashibara et al. estimate that for Φ = 1, the
probability that p has not failed is about 10%, 0.1% for Φ = 2, and 0.01%
for Φ = 3, etc. While the Φ accrual detector’s application of the normal
distribution yielded an elegant and adaptive implementation of a failure
detector, the method is relatively computationally intensive compared to
the simpler method used by Satzger et al. [31].

Satzger’s failure detector The failure detector by Satzger et al. [31]
satisfies the properties of accrual failure detector, but with much lower com-
putational costs than the Φ failure detector’s use of the normal distribution.
Instead, Satzger’s algorithm maintains a history of the durations between
past heartbeat messages to calculate an accrual failure value. Algorithm 4.3
describes the failure detector, with η being the window size for heartbeat
intervals, which in turn determines the max size of the historical list of
heartbeat intervals S, and α is a scaling factor. Remarkably, Satzger’s fail-
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4.3. Accrual failure detection

ure detector matches and exceeds the performance of Φ failure detector in
simulation and is competitive with Chen’s failure detector from Section 4.2.

Algorithm 4.3 Satzger’s algorithm for accrual failure detection. Here, η
is the window size for heartbeat intervals, which in turn determines the
maximum size of the historical list of heartbeat intervals Sq for all processes
q, and α is a scaling factor.

function heartbeat(p) . using p’s local clock
loop

Send heartbeat message to q every ∆i interval
end loop

end function

Sq ← [] . list of past durations between heartbeats at q
fq ← t0 . receipt time of the last heartbeat at q

function monitor(q) . using q’s local clock
loop

t∆ ← t− fq
fq ← t
Append t∆ to Sq
if size of Sq > η then

Remove the head of Sq
end if

end loop
end function

function probability(q) . get failure probability of q at time t
t∆ ← t− fq
S

(t∆·α)
q ← subset of Sq such that each measured interval is before t∆ ·α

return |S(t∆·α)
q | ÷ |Sq|

end function

A major benefit of accrual failure detectors is that they allow multiple
client applications to simultaneously tune the failure detection to suit their
needs. In the next chapter, we’ll define what this tuning means as part of
the discussion on deploying failure detection as a shared service.
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Chapter 5

Failure detection as a service

In Chapter 2, we learned that there exists a weakest class of failure detectors
for solving the problem of consensus. In practice, the failure detection algo-
rithms described in Chapters 3 and 4 rely on timeouts. However, the task
of tuning these timeouts for optimal performance is a nontrivial task [16].5

In this section, we revisit failure detection from a system designer’s perspec-
tive and describe general strategies that have been used to implement failure
detection in practice.

We begin by describing what it means for a failure detector to be “per-
formant”, we discuss the three commonly used completeness, accuracy, and
timeliness metrics. Then, we discuss the practical lower bounds on the
metrics. Finally, we conclude with a survey of common design patterns
for implementing failure detection as a fundamental service in distributed
systems [30].

5.1 Measuring quality of service

The completeness and accuracy properties we introduced in Chapter 2 make
a good basis for measuring the quality of service of failure detectors. The
properties roughly translate into the true positive failure detection rate and
false positive (mistaken) failure detection rate and describe the fundamental
trade-offs when tuning failure detectors. When failure detectors are tuned
with high failure detection rates, they usually make more mistakes, and
vice-versa. The failure detection algorithms we surveyed in Chapters 3-4
all used these metrics as a basis for comparing the novel designs against
existing algorithms. In addition to completeness and accuracy, timeliness is
also an important factor to consider when implementing failure detectors in
practice [6, 19, 21, 30, 31].

Indeed, a major goal of the adaptive and accrual failure detectors from
Chapter 4 is to reduce or bound the time to detect a failure, while maximiz-

5The majority of modern networks exhibit variable delays and make no guarantee of
reliable message delivery. This makes manually tuning the timeout very difficult for human
operators [16].
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5.2. Common design patterns

ing the failure detection rate and minimizing the mistake rate [10]. These
failure detection algorithms likewise favor the push model of interaction be-
cause it allows for faster failure detection with fewer network messages. On
the other hand, the pull model of interaction allows for on-demand failure
detection and reduces the load on the network when failure detection is not
regularly needed [20].

Regardless of which model of interaction we use for failure detection, the
network itself bounds how completely, accurately, and quickly we are able to
detect failures. Intuitively, the more messages we send, the more likely the
network will fail to reliably and timely deliver those messages in practice
[20]. In turn, the network unreliability affects the true failure detection
rate (due to delayed messages) and causes the failure detector to return less
accurate results (due to dropped messages). Likewise, the lower bound on
the failure detection time is given by

tdetect ≥ tsend delay + tnetwork + treceive delay (5.1)

where tsend delay is the computational delay at process p in preparing and
sending a network message to process q, tnetwork is the message delivery delay
imposed by the network, and treceive delay is the computational delay at q in
receiving and processing a network message from p [16]. In most physical
networks, the network delay tnetwork manifests as a random variable that is
difficult to predict [16].

It should be clear that the task of implementing a reliable and efficient
failure detector is nontrivial. As such, it would be practically useful to
decouple the implementation of failure detection from the algorithms that
rely on it, such as for solving consensus [32]. In the next section, we discuss
commonly used design patterns to that end.

5.2 Common design patterns

In Chapters 3-4, we progressively introduced the design dimensions of in-
teraction (pull and push), dynamism (static and dynamic round-trip time
estimation), and interpretation (binary and accrual). In this section, we
expand on that list to incorporate the design dimensions described in [30].
Our adaptation of the design dimensions are listed in Table 5.1.

Interaction As described in Chapter 3, there are two basic models of
interaction for failure detection: pull and push. In the pull model, the
failure detector periodically sends liveness requests to processes and suspect
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5.2. Common design patterns

Parameter Options

Interaction Pull
Push
Passive

Dynamism Static
Adaptive

Interpretation Binary
Accrual

(a) Design dimensions discussed in
previous chapters.

Parameter Options

Architecture Centralized
Distributed

Isolation Baseline
Sharing

Configuration Coarse-grained
Fine-grained

Specialization Homogeneous
Heterogeneous

Monitoring All-to-all
Randomized
Neighborhood

Propagation One-to-all
Structured
Gossip

(b) Additional design dimensions
adapted from [30].

Table 5.1: Design dimensions for failure detection.

processes of failure if they fail to respond within a timeout. In the push
model, processes periodically send heartbeat messages to the failure detector
and are suspected of failure when they stop sending messages after a timeout.
As was shown in [14], both the pull and push models of interaction can
coexist in a system.

Dynamism As we discussed in Chapter 4, we can enhance the perfor-
mance of failure detectors by adapting to network conditions. In contrast
to static failure detectors that require prior knowledge of the network de-
lay, adaptive failure detectors are able to automatically adjust to transient
network delays [5, 10, 22]. As networks predominantly do not guarantee the
reliable and timely delivery of network messages, adaptive failure detectors
are much more useful in practice [16, 33].

Interpretation In Section 4.3, we described the accrual failure detectors
that decouple failure interpretation from failure monitoring. In contrast
to binary failure detectors that either suspect or don’t suspect a process
of failure, accrual failure detectors return a probabilistic estimate that a
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process has failed. Clients are then free to set their own threshold, according
to their quality of service needs, for considering whether a process has failed.

Architecture As in [30], we describe the general architecture of a failure
detector as the architecture design dimension. In the centralized architec-
ture, the failure detector is implemented as a single, monolithic component.
Centralized failure detectors are easy to maintain, but represent a single
point of failure. As such, modern implementations of failure detection em-
ploy the distributed architecture in which multiple instances of the failure
detector improve the availability of the service.

Isolation With the distributed architecture, failure detectors have the
choice of whether to operate in isolation. In the baseline model of isolation,
the failure detector makes an independent decision about failures without
consulting other instances of the failure detector. On the other hand, in the
sharing model, instances of the failure detector share information in order
to make decisions about failures [30, 34]. The main benefit of the shar-
ing model is that neighboring processes may cooperatively monitor a third
process to improve the combined quality of service for failure detection.

Configuration Complementary to the dynamism design dimension, the
configuration design dimension applies to parameters to the failure detector
that cannot be determined without operator intervention. The heartbeat
interval, for example, is best set based on how quickly an application needs
to detect a failure, while still balancing computational resources. This in-
formation is not readily adapted from environmental measurements.

We say that a failure detector supports coarse-grained configuration
when it only allows for a single, global configuration value. Conversely, we
say that it supports fine-grained configuration if it supports multiple config-
uration values. The dichotomy between binary and accrual failure detectors
illustrate the coarse-grained and fine-grained approaches, respectively.

Specialization When all processes run an instance of the failure detector,
we say the design is homogeneous. On the other hand, in the heterogeneous
model, failure detectors are independent agents that monitor processes of
interest, which may include themselves [25–27]. In the context of providing
failure detection as a shared service, heterogeneity may manifest as a way
to prevent application failures from affecting the failure detection service or
to aggregate failure detection requests to reduce computational costs.
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Monitoring Within the architectural design dimension, we can further
categorize distributed failure detectors based on their monitoring patterns:
all-to-all, randomized, and neighborhood-based.

In the all-to-all approach, all failure detectors monitor all other pro-
cesses [30]. With a small number of processes, this method is sufficiently
efficient. However, with increasing numbers of processes, the number of uni-
cast messages sent over the network increases exponentially. While hardware
multicast could be used to efficiently implement all-to-all, the feature is not
always available in practice [11].

The randomized monitoring pattern is related to the epidemic literature
in that failure detectors randomly select processes to monitor, yielding an
increasingly smaller probability of not being monitored at any given time as
the number of failure detector instances increases [11].

In contrast to randomized monitoring, neighborhood-based monitoring
patterns deterministically organize failure detectors and the monitored pro-
cesses into localized groups to take advantage of the locality between pro-
cesses [5, 30]. This approach is especially applicable when processes reside
in physically separated networks with slow interlinks [20].

Propagation Finally, propagation is the last design dimension on our tour
of failure detectors. Related to the monitoring design dimension, when a
failure detector has news of a failure (or lack thereof), it needs to share that
information with the interested parties. Here, we describe three common
propagation patterns: one-to-all, gossip, and structured.

As with all-to-all monitoring, the one-to-all propagation method is lim-
ited to small groups of processes or requires the availability of hardware
multicast to be efficiently implemented, neither of which is always practical.

Gossip-based propagation is based on the study of epidemics and, as
with the randomized monitoring pattern, a process (running an instance of
the failure detector) randomly selects another processes with which to share
failure updates. The probability that a process does not receive an update
decreases exponentially as the number of processes in the system increases
[11, 25].

The structured propagation pattern, like the neighborhood-based mon-
itoring pattern, organizes processes with a sufficiently structured network
overlay to reduce the number of messages needed for any one process to
send to reach all other processes. For example, hierarchical failure detectors
implement the structured pattern by organizing processes into a hierarchy
[5, 20, 30].
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5.3 Practical considerations

Armed with an understanding of that failure detectors can help us solve
a number of distributed problems, such as consensus, we must not forget
that failure detectors also have real limitations. For example, we have only
considered failures in the crash model. That is, we expect processes to
fail by permanently halting computation, without necessarily giving prior
notice. Our model of failure detection may not always provide sufficient
information to solve consensus in these other failure models [16]. In fact,
Aguilera et al. [2] provided an algorithm for solving consensus in the crash-
recovery model and solutions for consensus in other failure models exist in
the literature. Freiling et al. [16] also bring our attention to the fact that
there were alternatives to the Chandra-Toueg model of failure detection we
introduced in Chapter 2. While we do not explore these alternative models
or solutions, we would like to leave the reader with the knowledge that the
literature on failure detection is far richer than what is contained in this
essay.

33



Chapter 6

Summary

In Chapter 2, we presented the seminal work by Chandra et al. [9] describing
the theory behind failure detection and its utility in solving the problem of
distributed consensus [8, 15]. We then presented in Chapter 3 the basic pull
and push interaction patterns used in implementing real failure detectors. In
Chapter 4, we described the increasingly sophisticated algorithms used to
make failure detectors work in practice, leading to the elegant accrual class
of failure detectors. Finally, we surveyed the common design patterns used
in implementing failure detection as a shared service. We hope that readers
of this essay have gained a better understanding of the failure detection
abstraction and its utility in solving distributed consensus.
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