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Abstract

Modern web applications make extensive use of JavaScript, which is now esti-

mated to be one of the most widely used languages in the world. Callbacks are a

popular language feature in JavaScript. However, they are also a source of compre-

hension and maintainability issues. We studied several features of callback usage

across a large number of JavaScript applications and found out that over 43% of

all callback- accepting function call sites are anonymous, the majority of callbacks

are nested, and more than half of all callbacks are invoked asynchronously.

Promises have been introduced as an alternative to callbacks for composing

complex asynchronous execution flow and as a robust mechanism for error check-

ing in JavaScript. We use our observations of callback usage to build a developer

tool that refactors asynchronous callbacks into Promises. We show that our tech-

nique and tool is broadly applicable to a wide range of JavaScript applications.
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Chapter 1

Introduction

Callbacks, or higher-order functions, are available in many programming languages,

for instance, as function-valued arguments (e.g., Python), function pointers (e.g.,

C++), and lambda expressions (e.g., Lisp). In this thesis we study JavaScript

callbacks since JavaScript is the dominant language for building web applica-

tions. For example, a recent survey of more than 26K developers conducted by

Stack Overflow found that JavaScript is the most-used programming language [56].

The callback language feature in JavaScript is an important factor to its success.

For instance, JavaScript callbacks are used to responsively handle events on the

client-side by executing functions asynchronously. And, in Node.js1, a popular

JavaScript-based framework, callbacks are used on the server-side to service mul-

tiple concurrent client requests.

Listing 1.1 illustrates three common challenges with callbacks. First, the three

callbacks in this example (on lines 2, 3, and 5) are anonymous. This makes the

callbacks difficult to reuse and to understand as they are not descriptive. Second,

the callbacks in the example are nested to three levels, making it challenging to

reason about the flow of control in the code. Finally, in line 5 there is a call to

conn.query, which invokes the second callback parameter asynchronously. That

is, the execution of the inner-most anonymous function (lines 6–7) is deferred until

some later time. As a result, most of the complexity in this small example rests

on extensive use of callbacks; in particular, the use of anonymous, nested, and

1 https://nodejs.org
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1 var db = requ i re ( ’somedatabaseprovider’ ) ;
2 h t t p . get ( ’/recentposts’ , function ( req , res ){
3 db . openConnection ( ’host’ , creds , function ( er r , conn ){
4 res . param[’posts’ ] . forEach ( function ( post ) {
5 conn . query ( ’select * from users where id=’ + post[’user’ ] ,

function ( er r , r e s u l t s ){
6 conn . c lose ( ) ;
7 res . send ( r e s u l t s [0 ] ) ;
8 }) ;
9 }) ;

10 }) ;
11 }) ;

Listing 1.1: A representative JavaScript snippet illustrating the
comprehension and maintainability challenges associated with nested,
anonymous callbacks and asynchronous callback scheduling.

asynchronous callbacks.

Though the issues outlined above have not been studied in detail, they are

well-known to developers. Searching for “callback hell” on the web brings up

many articles with best practices on callback usage in JavaScript. For example,

a prominent problem with asynchronous callbacks in JavaScript is error-handling.

In JavaScript, an error that occurs during the execution of an asynchronous task

cannot be handled with the traditional try/catch mechanism because the asyn-

chronous task is run outside the existing call stack. For example, consider the code

in Listing 1.2.

1 t r y {
2 setTimeout ( function ( ) {
3 throw new Er ro r ( "Uh oh!" ) ;
4 } , 2000) ;
5 } catch ( e ) {
6 console . log ( "Caught the error: " + e . message ) ;
7 }

Listing 1.2: A JavaScript snippet illustrating that try/catch statements are
ineffective for handling errors in asynchronous callbacks.

An exception generated during setTimeoutwill not be caught inside the catch

block. Therefore, an error generated by an asynchronous function, such as setTimeout,

can only be handled by passing it as a parameter to the callback function. The

JavaScript community has come up with a convention for error propagation in
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asynchronous contexts called the error-first protocol. In this idiom-based proto-

col, the first parameter of the callback is reserved for communicating errors and

the other parameters are used for passing data.

1 f s . readF i l e ( ’/foo.txt’ , function ( er r , r e s u l t ) {
2 i f ( e r r ) {
3 console . log ( ’Unknown Error’ ) ;
4 return ;
5 }
6 console . log ( r e s u l t ) ;
7 }) ;

Listing 1.3: A JavaScript snippet illustrating the error-first protocol.

Consider Listing 1.3: an error generated by the asynchronous function fs.readFile

is passed to the callback as an argument (err) and the callback must include appro-

priate error-handling code. A key limitation of the error-first protocol is that it is

merely a convention and developers are not obligated to use it. As a result, devel-

opers manually check to see whether a function follows the protocol, which makes

it error-prone. As this is a best practice and adhering to this protocol is optional, it

is also not clear to what extent developers use it in practice.

Promises are a new feature of ECMAScript6 that are designed to help with

the error handling and nesting problems associated with asynchronous callbacks.

The ECMAScript6 specification has been approved [7] in 2015 and all the major

JavaScript runtimes support promises [10]. Promises explicitly register handlers

for executions that are successful and executions that produce errors. This removes

the need for the error-first convention and separates the success handler from the er-

ror handler. Promises can also be chained together, which flattens nested callbacks

and makes them easier to understand.

1.1 Objectives
The main objective of our research is twofold:

• Gaining an understanding of JavaScript callback usage in practice
Although callbacks are a key JavaScript feature, they have not received much

attention in the research community. We think that this is a critical omission
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as the usage of callbacks is an important factor in developer comprehension

and maintenance of JavaScript code.

• Devising automated JavaScript refactoring techniques to mitigate callback-
related challenges
New JavaScript language features, such as Promises, are being proposed to

help with problems associated with asynchronous callbacks. But there is no

mention or use of refactoring tools in the developer community to transform

exisiting callbacks to Promises. We investigate the feasibility of a novel au-

tomated JavaScript refactoring technique for this purpose.

1.2 Contributions
This thesis makes the following main contributions:

• A systematic methodology and tool, for analyzing JavaScript code statically

to identify callbacks and to measure their various features (Section 4.3)

• An empirical study to characterize JavaScript callback usage across 138

large JavaScript projects. These include 86 Node.js modules from the NPM

public package registry used in server-side code and 62 subject systems from

a broad spectrum of categories, such as JavaScript MVC frameworks, games,

and data visualization libraries. We found that on average, every 10th func-

tion definition takes a callback argument, and that over 43% of all callback-

accepting function callsites are anonymous. Furthermore, the majority of

callbacks are nested, more than half of all callbacks are asynchronous, and

asynchronous callbacks, on average, appear more frequently in client-side

code (72%) than server-side (55%). (Section 4.4)

• A discussion of the implications of our empirical findings

• An exploratory study in which we search for and examine several GitHub is-

sues and pull-requests containing terms related to refactoring of asynchronous

callbacks into promises. We found that developers frequently want to refac-

tor existing code that uses asynchronous callbacks into code that uses promises

(GitHub search returned over 4K issues related to this topic). GitHub search
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returned only 451 pull-requests related to this topic (a small number of actual

transformations as compared to the number of requests). This study provides

support for the utility of an automated refactoring tool (Section 5.2)

• A set of static analysis techniques and a tool that support automated refac-

toring by: (1) discovering instances of asynchronous callbacks and (2) trans-

forming instances of asynchronous callbacks into promises. (Section 5.3)

• An evaluation of the refactoring tool pointing to the real-world relevance and

efficacy of our techniques. (Section 5.6)

1.3 Thesis Organization
In Chapter 2 of this thesis, we provide background information regarding JavaScript

applications, particularly with respect to the use of callbacks in JavaScript, along

with the motivation to conduct this research. Chapter 3 discusses the related work

in this area of study. Chapter 4 describes in detail the empirical srudy we carried

out to characterize the real-world use of callbacks in different types of JavaScript

programs, the results found from this study, and the implications these results can

have with respect to web developers, tool developers and the research community.

In Chapter 5, we present the tool we developed to detect instances of asynchronous

callbacks and to refactor such callbacks. The evaluation results of the tool on a

wide range of JavaScript applications is also presented in this chapter. Finally,

Chapter 6 concludes our work and presents future research directions.
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Chapter 2

Background

A callback is a function that is passed as an argument to another function, which is

expected to invoke it either immediately or at some point in the future. Callbacks

can be seen as a form of the continuation-passing style (CPS) [57], in which control

is passed explicitly in the form of a continuation; in this case the callback passed

as an argument represents a continuation.

Synchronous and asynchronous callbacks. There are two types of callbacks. A

callback passed to a function f can be invoked synchronously before f returns, or

it can be deferred to execute asynchronously some time after f returns.

JavaScript uses an event-driven model with a single thread of execution. Pro-

gramming with callbacks is especially useful when a caller does not want to wait

until the callee completes. To this end, the desired non-blocking operation is sched-

uled as a callback and the main thread continues its synchronous execution. When

the operation completes, a message is enqueued into a task queue along with the

provided callback. The event loop in JavaScript prioritizes the single thread to exe-

cute the call stack first; when the stack is empty, the event loop dequeues a message

from the task queue and executes the corresponding callback function. Figure 2.1

illustrates the event loop model of JavaScript for a non-blocking HTTP get call

with a callback named cb.

Named and anonymous callbacks. JavaScript callbacks can be named functions

or anonymous functions (e.g., lines 2, 3, or 5 of Listing 1.1). Each approach has its

tradeoffs. Named callbacks can be reused and are easily identified in stack traces
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Call Stack System (browser/Node.js)
get(…, cb)

getOrders()

main()

Task Queue

2. Register cb

Event Loop

1. Dequeue first
 task and 
execute

3. Poll for next 
task when

stack is empty

When HTTP call returns
enqueue a message 

with cb

cb()

main()

cb()click, 
foo

Figure 2.1: The JavaScript event loop model.

or breakpoints during debugging activities. However naming causes the callback

function to persist in memory and prevents it from being garbage collected. On

the other hand, anonymous callbacks are more resource-friendly because they are

marked for garbage collection immediately after being executed. However, anony-

mous callbacks are not reusable and may be difficult to maintain, test, or debug.

Nested callbacks. Developers often need to combine several callback-accepting

functions together to achieve a certain task. For example, two callbacks have to

be nested if the result of the first callback needs to be passed into the second call-

back in a non-blocking way (see lines 2-8 in Listing 2.2). This structure becomes

more complex when the callbacks need to be conditionally nested. Control-flow

composition with nested callbacks increases the complexity of the code. The term

‘callback hell’ [49] has been coined by developers to voice their common frustra-

tion with this complexity.

Error-first callbacks. In synchronous JavaScript code the throw keyword can be

used to signal an error and try/catch can be used to handle the error. When there

is asynchrony, however, it may not be possible to handle an error in the context it is

thrown. Instead, the error must be propagated asynchronously to an error handler

in a different context. Callbacks are the basic mechanism for delivering errors
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asynchronously in JavaScript. Because there is no explicit language support for

asynchronous error signaling, the developer community has proposed a convention

— dedicate the first argument in the callback to be a permanent place-holder for

error signaling.

More exactly, the error-first callback protocol specifies that during a callback

invocation, either the error argument is non-null (indicating an error), or the first

argument is null and the other arguments contain data (indicating success), but not

both [1]. Listing 2.1 shows an example of this protocol. If an error occurs while

reading the file (Line 4), the anonymous function will be called with error as the

first argument. For this error to be handled, it will be propagated by passing it as the

first argument of the callback (in line 5). The error can then be handled at a more

appropriate location (lines 17–21). When there is no error, the program continues

(line 8) and invokes the callback with the first (error) argument set to null.

1 var f s = requ i re ( ’fs’ ) ;
2 // read a file
3 function r e a d t h e f i l e ( f i lename , ca l l back ) {
4 f s . readF i l e ( f i lename , function ( er r , contents ) {
5 i f ( e r r ) return ca l l back ( e r r ) ;

7 // if no error , continue
8 read data f rom db ( null , contents , ca l l back ) ;
9 }) ;

10 }

12 function read data f rom db ( er r , contents , ca l l back ) {
13 //some long running task
14 }

16 r e a d t h e f i l e ( ’/some/file’ , function ( er r , r e s u l t ) {
17 i f ( e r r ) {
18 //handle the error
19 console . log ( e r r ) ;
20 return ;
21 }
22 // do something with the result
23 }) ;

Listing 2.1: Error-first callback protocol.

The error-first callback protocol is intended to simplify exception handling

for developers; if there is an error, it will always propagate as the first argument

through the API, and API clients can always check the first argument for errors.

8



But, there is no automatic checking of the error-first protocol in JavaScript. It is

therefore unclear how frequently developers adhere to this protocol in practice.

Handling callbacks. A quick search in the NPM repository1 reveals that there

are over 4,500 modules to help developers with asynchronous JavaScript program-

ming. Two solutions that are gaining traction in helping developers handle call-

backs are libraries, such as Async.js [40] and new language features such as Promises [12].

We now briefly detail these two approaches.

The Async.js library exposes an API to help developers manage callbacks. For

example, Listing 2.2 shows how nested callbacks in vanilla JavaScript (lines 1–8)

can be expressed using the waterfall method available in Async.js (11–18).

Promises are a JavaScript language extension. A Promise-based function takes

some input and returns a promise object representing the result of an asynchronous

operation. A promise object can be queried by the developer to answer questions

like “were there any errors while executing the async call?” or “has the data from

the async call arrived yet?” A promise object, once fulfilled, can notify any func-

tion that depends on its data. Listing 2.2 illustrates how nested callbacks in vanilla

JavaScript (lines 1–8) can be re-expressed using Promises (20–24).

Promises are described further in detail in the Section 5.1.

1 https://www.npmjs.com/
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1 // Before: nested callbacks
2 $ ( "#button" ) . c l i c k ( function ( ) {
3 promptUserForTwit terHandle ( function ( handle ) {
4 t w i t t e r . getTweetsFor ( handle , function ( tweets ) {
5 u i . show ( tweets ) ;
6 }) ;
7 }) ;
8 }) ;

10 // After: Using Async.js waterfall method
11 $ ( "#button" ) . c l i c k ( function ( ) {
12 async . w a t e r f a l l ( [
13 promptUserForTwit terHandle ,
14 t w i t t e r . getTweetsFor ,
15 u i . show
16 ]
17 , hand leError ) ;
18 }) ;

20 // After: sequential join of callbacks with Promises
21 $ ( "#button" ) . c l i ckPromise ( )
22 . then ( promptUserForTwit terHandle )
23 . then ( t w i t t e r . getTweetsFor )
24 . then ( u i . show ) ;

Listing 2.2: Rewriting nested callbacks using Async.js or Promises.

10



Chapter 3

Related Work

Callback-related issues are a recurrent discussion topic among developers [49].

However, to the best of our knowledge, there have been no empirical studies of

callback usage in practice.

JavaScript applications. The dynamic behaviour of JavaScript applications was

studied by Richards et al. [52]. They found that commonly made assumptions

about dynamism in JavaScript are violated in at least some real-world code. A

similar study was conducted by Martinsen et al. [39]. Richards et al. [53] studied

the prevalence of eval. They found eval to be pervasive, and argued that in most

usage scenarios, it could be replaced with equivalent and safer code or language

extensions.

Ocariza et al. [47] conducted an empirical study to characterize root causes

of client-side JavaScript bugs. Since this study, server-side JavaScript, on top of

Node.js, has gained traction among developers. Our study considers callback usage

in both client- and server-side JavaScript code.

Security vulnerabilities in JavaScript code have also been studied. Exam-

ples include studies on remote JavaScript inclusions [46, 62], cross-site scripting

(XSS) [61], and privacy-violating information flows [33]. Parallelism in JavaScript

code was studied by Fortuna et al. [25].

Milani Fard et al. [43] studied code smells in JavaScript code. In their list of

JavaScript smells, they included nested callbacks, but only focus on callbacks in

client-side code. Decofun [20] is a JavaScript function de-anonymizer. It parses

11



the code and names any detected anonymous function according to its context.

Although JavaScript is a challenging language for software engineering, recent

research advances have made the use of static analysis on JavaScript more practical

[15, 23, 34, 35, 38, 45, 48, 55]. Other techniques mitigate the analysis challenges

by using a dynamic or hybrid approach [14, 28, 60]. Others have considered to

improve the core language through abstraction layers [59].

Asynchronous programming. Okur et al. [50] recently conducted a large-scale

study on the usage of asynchronous programming in C# applications. They found

that callback-based asynchronous idioms are heavily used, but new idioms that can

take advantage of the async/await keywords are rarely used in practice. They

have studied how developers (mis)use some of these new language constructs. Our

study similarly covers the usage of callbacks and new language features such as

Promises to enhance asynchronous programming. However, our work considers

JavaScript code and delves deeper. For example, we characterize the usage of

callback nesting and anonymous callbacks, which are known to cause maintenance

problems.

Concurrency bug detection. EventRacer [51] detects data races in JavaScript

applications. Zheng et al. [63] propose a static analysis method for detecting

concurrency bugs caused by asynchronous calls in web applications. Similarly,

WAVE [32] is a tool for identifying concurrency bugs by looking for the same

sequence of user events leading to different final DOM-trees of the application.

Program comprehension. Clematis [13] is a technique for helping developers

understand complex event-based and asynchronous interactions in JavaScript code

by capturing low-level interactions and presenting those as higher-level behavioral

models. Theseus [37] is an IDE extension that helps developers to navigate asyn-

chronous and dynamic JavaScript execution. Theseus has some limitations; for

example, it does not support named callbacks. Our study demonstrates that over

half of all callbacks are named, indicating that many applications will be negatively

impacted by similar limitations in existing tools.

JavaScript Refactoring Tools. The closest work to ours is by Brodu et al. [17]

who propose a compiler for converting nested callbacks (or an imbrication of con-

tinuations) into a sequence of Dues, which is a simpler version of Promises. This
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compiler does not support the critical promise notions of rejection and fulfillment

and re-writes the error-first protocol callbacks without using the error-handling

body of the callback. In addition, there are several drawbacks to this approach:

(1) the source code does not change, so it does not eliminate the issues with un-

derstandability, (2) Dues do not support the critical notions of rejection and res-

olution in promises and can therefore only re-write the error-first protocol in a

simplified notation, (3) their approach requires developer intervention to specify

asynchronous callbacks that can are suitable candidates to be converted. This ap-

proach also requires the developer to manually specify asynchronous callbacks to

be converted into Promises. In contrast we introduce a tool which is completely

automated.

A number of other JavaScript refactoring tools have been previously proposed.

For example, Meawad et al. [41] proposed a tool to refactor eval statements into

safer code, and Feldthaus et al. [21, 22] developed a technique for semi-automatic

refactoring with a focus on renaming. None of these works focuses on detecting or

refactoring asynchronous callbacks to Promises.
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Chapter 4

Empirical Study

4.1 Methodology
To characterize callback usage in JavaScript applications, we focus on the follow-

ing three research questions.

RQ1: How prevalent are callbacks?

RQ2: How are callbacks programmed and used?

RQ3: Do developers use external APIs to handle callbacks?

Our analyses are open source [4] and all of our empirical data is available for

download [9].

4.2 Subject Systems
We study 138 popular open source JavaScript subject systems from six distinct

categories: NPM modules (86), web applications (16), game engines (16), client-

side frameworks (8), visualization libraries (6), and games (6). NPM modules are

used only on the server-side. Client-side frameworks, visualization libraries, and

games include only client-side code. Web applications and game engines include

both client-side and server-side code. Table 4.1 presents these categories, whether

or not the category includes client-side and server-side application code, and the
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aggregate number of JavaScript files and lines of JavaScript code that we analyze

for each applications category.

Table 4.1: JavaScript subject systems in our study

Category Subject Client Server Total Total
systems side side files LOC

NPM Modules 86 X 4,983 1,228,271
Web Apps. 16 X X 1,779 494,621
Game Engines 16 X X 1,740 1,726,122
Frameworks 8 X 2,374 711,172
DataViz Libs. 6 X 3,731 958,983
Games 6 X 347 119,279
Total 138 X X 14,954 5,238,448

The 86 NPM modules we study are the most depended-on modules in the

NPM repository [2]. The other subject systems were selected from GitHub Show-

cases [3], where popular and trending open source repositories are organized around

different topics. The subject systems we consider are JavaScript-only systems.

Those systems that contain server-side components are written in Node.js1, a popu-

lar server-side JavaScript framework. Overall, we study callbacks in over 5 million

lines of JavaScript code.

4.3 Analysis
To address the three research questions, we have developed a static analyzer to

search for different patterns of callbacks in JavaScript code2.

Our static analyzer builds on prior JavaScript analysis tools, such as Esprima [31]

to parse and build an AST, Estraverse [58] to traverse the AST, and TernJS [30],

a type inference technique by Hackett and Guo [29], to query for function type

arguments. We also developed a custom set of analyses to identify callbacks and

to measure their various properties of interest.

Duplicate code is an issue for any source code analysis tool that measures the

prevalence of some language feature. Our analysis maintains a set of dependencies
1 https://nodejs.org
2Our static analysis approach considers most program paths, but it does not handle cases like

eval that require dynamic analysis.
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for a subject system and guarantees that each dependency is analyzed exactly once.

To resolve dependencies expressed with the require keyword, we use TernJS and

its Node plugin.

In the rest of this section we detail our analysis for each of the three research

questions.

Prevalence of callbacks (RQ1). To investigate the prevalence of callbacks in

JavaScript code we consider all function definitions and function callsites in each

subject system. For each subject, we compute (1) the percentage of function defini-

tions that accept callbacks as arguments, and (2) the percentage of function callsites

that accept callbacks as arguments.

We say that f is a callback-accepting function if we find that at least one argu-

ment to f is used as a callback.

To determine whether a parameter p of a function f definition is a callback

argument, we use a three-step process: (1) if p is invoked as a function in the

body of f then p is a callback; (2) if p is passed to a known callback-accepting

function (e.g., setTimeout) then p is a callback; (3) if p is used as an argument to

an unknown function f ′, then recursively check if p is a callback parameter in f ′.

Note that for f to be a callback-accepting function, it is insufficient to find an

invocation of f with a function argument p. To be a callback-accepting function,

the argument p must be invoked inside f , or p must be passed down to some other

function where it is invoked.

We do not analyze a subject’s dependencies, such as libraries, to find call-

backs3. The only time we analyze external libraries is when a subject system calls

into a library and passes a function as an argument. In this case our analysis check

whether the passed function is invoked as a callback in the library code.

We also study whether callback usage patterns are different between server-side

and client-side JavaScript code. Categorizing the projects known as purely client-

side (MVC frameworks like Ember, Angular) or purely server-side (NPM modules)

is easy. But, some projects contain both server-side and client-side JavaScript code.

To distinguish client-side code from server-side code, we use the project directory

structure. We assume that client-side code is stored in a directory named www,

3For instance, JavaScript files under the node modules directory are excluded.
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public, static, or client. We also identify client-side code through developer code

annotations (e.g., /* jshint browser:true, jquery:true */).

1 function getRecord ( id , ca l l back ) {
2 h t t p . get ( ’http://foo/’ + id , function ( er r , doc ) {
3 i f ( e r r ) {
4 return ca l l back ( e r r ) ;

5 }
6 return ca l l back ( null , doc ) ;

7 }) ;

8 }

10 var l o g S t u f f = function ( ) { . . . }
11 getRecord ( ’007’ , l o g S t u f f ) ;

Listing 4.1: An example of an asynchronous anonymous callback.

For example, consider the code in Listing 4.1. To check if the getRecord()

function invocation in line 11 takes a callback, we analyze its definition in line 1.

We find that there is a path from the start of getRecord() to the callback invo-

cation (which happens to be the logStuff argument provided to the getRecord()

invocation). The path is: getRecord()−→ htt p.get()−→Anonymous1()−→ callback().

Therefore, logStuff() is a callback function because it is passed as a function

argument and it is invoked in that function. This makes getRecord() a callback-

accepting function.

We label a callsite as callback-accepting if it corresponds to (1) a function that

we determine to be callback-accepting, as described above, or (2) a function known

a-priori to be callback-accepting (e.g., setTimeout()). The getRecord callsite in

line 11 is callback-accepting because the function getRecord was determined to

be callback-accepting.

Callback usage in practice (RQ2). Developers use callbacks in different ways.

Some of these are known to be problematic [49] for comprehension and mainte-

nance (e.g., see Chapter 2). We characterize callback usage in three ways: we

compute (1) the percentage of callbacks that are anonymous versus named, (2) the

percentage of callbacks that are asynchronous, and (3) the callback nesting depth.

Anonymous versus named callbacks. If a function callsite is identified as callback-

accepting, and an anonymous function expression is used as an argument, we call

it an instance of an anonymous callback.
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Asynchronous callbacks. A callback passed into a function can be deferred and

invoked at a later time. This deferral happens through known system APIs, which

deal with the task queue in common browsers and Node.js environments. Our

analysis detects a variety of APIs, including DOM events, network calls, timers,

and I/O. Table 4.2 lists examples of these asynchronous APIs.

Table 4.2: Example Asynchronous APIs available to JavaScript programs

Category Examples Availability

DOM events addEventListener,
onclick

Browser

Network calls XMLHTTPRequest.open Browser

Timers setImmediate(), Browser,

(macro-Task) setTimeout(), Node.js

setInterval()

Timers process.nextTick() Node.js

(micro-task)

I/O APIs of fs, net Node.js

For each function definition, if a callback argument is passed into a known

deferring function call, we label this callback as asynchronous.

Callback nesting. The number of callbacks nested inside one after the other

is defined as the callback depth. According to this definition, Listing 1.1 has a

callback depth of three because of callbacks at lines 2, 3, and 5.

In cases where there are multiple instances of nested callbacks in a function,

we count the maximum depth of nesting, including nesting in conditional branches.

This under-approximates callback nesting. For example, Listing 4.2 shows an ex-

ample code snippet from an open source application4. There are two sets of nested

callbacks in this example, namely, at Lines 1, 4, 5 (depth of three) and a second set

at Lines 1, 12, 13, 15 (depth of four). Our analysis computes the maximum nesting

depth for this function, which is four.

Handling callbacks (RQ3). There are a number of solutions to help with the

complexities associated with callbacks. We consider three well-known solutions:
4https://github.com/NodeBB/NodeBB
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1 def ine ( ’admin/general/dashboard’ , ’semver’ , function ( semver ) {
2 var Admin = {} ;

4 $ ( ’#logout -link’ ) . on ( ’click’ , function ( ) {
5 $ . post (RELATIVE PATH + ’/logout’ , function ( ) {
6 window . l o c a t i o n . h re f = RELATIVE PATH + ’/’ ;
7 }) ;
8 }) ;

10 . . .

12 $ ( ’.restart’ ) . on ( ’click’ , function ( ) {
13 bootbox . conf i rm ( ’Are you sure you wish to restart NodeBB?’ , function (

conf i rm ) {
14 i f ( conf i rm ) {
15 $ ( window ) . one ( ’action:reconnected’ , function ( ) {
16 app . a l e r t ({ a l e r t i d : ’instance_restart’ , }) ;
17 }) ;

19 socket . emit ( ’admin.restart’ ) ;
20 }
21 }) ;
22 }) ;
23 return Admin ;
24 }) ;

Listing 4.2: Example of multiple nested callbacks in one function.

(1) the prevalence of the error-first callback convention, (2) the prevalence and

usage of Async.js [40], a popular control flow library, and (3) the prevalence of

Promises [12], a recent language extension, which provides an alternative to using

callbacks. For each solution, we characterize its usage — are developers using the

solution and to what extent.

Error-first callbacks. To detect error-first callbacks (see Chapter 2) we use a

heuristic. We check if the first parameter p of a function f definition has the name

‘error’ or ‘err’. Then, we check if f ’s callsites also contain ‘error’ or ‘err’ as their

first argument. Thus, our analysis counts the percentage of function definitions that

accept an error as the first argument, as well as the percentage of function callsites

that are invoked with an error passed as the first argument.

Async.js. If a subject system has a dependency on Async.js (e.g., in their

package.json), we count all invocations of the Async.js APIs in the subject’s

code.

Promises. We count instances of Promise creation and consumption for each
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subject system. If a new expression returns a Promise object (e.g., new Promise()),

it is counted as a Promise creation. Invocations of the then() method on a Promise

object are counted as Promise consumption — this method is used to attach call-

backs to a promise. These callbacks are then invoked when a promise changes its

state (i.e., evaluates to success or an error).

4.4 Results

4.4.1 Prevalence of Callbacks (RQ1)

In the subject systems that we studied, on average, 10% of all function defini-

tions and 19% of all function callsites were callback-accepting. Figure 4.1 depicts

the percentage of callback-accepting function definitions and callsites, per cate-

gory of systems (Table 4.1), and in aggregate. The figure also shows how these

are distributed across client-side and server-side, indicating that server-side code

generally contains more functions that take callbacks than client-side code.

Finding 1: On average, every 10th function definition takes a callback argument.

Callback-accepting function definitions are more prevalent in server-side code

(10%) than in client-side code (4.5%).

Finding 2: On average, every 5th function callsite takes a callback argument.

Callback-accepting function callsites are more prevalent in server-side code

(24%) than in client-side code (9%).

Implications. Callbacks are utilized across all subject categories we considered.

Some categories contain a higher degree of callback usage. For example, the web

applications category contained a higher fraction of both callback-accepting func-

tion definitions and invocations of such functions. The inter-category differences

in callback usage were not large, however, and we believe that these differences

can be ascribed to the fact that some categories contain more server-side code than

others. We believe the more extensive usage of callbacks in server-side code can

be attributed to the continuation-passing-style of programming that was advocated

in the Node.js community from its inception.
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Figure 4.1: Boxplots for percentage of callback-accepting function defini-
tions and callsites per category, across client/server, and in total.

4.4.2 Callback Usage (RQ2)

Asynchronous Callbacks

As a reminder, an asynchronous callback is a callback that is eventually passed to

an asynchronous API call like setTimeout() (see Section 4.3 for more details).

Figure 4.2 shows the prevalence of asynchronous callback accepting function

callsites. Across all applications there was a median of 56% and a mean of 56%

of callsites with asynchronous callbacks. The figure also partitions the data into

the client-side and server-side categories. We find that usage of asynchronous call-

backs is higher in client-side code. Of all callsites in client-side code, 72% were

asynchronous. On the server-side, asynchronous callbacks usage is 55% on aver-

age.
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Figure 4.2: Boxplots for percentage of asynchronous callback-accepting
function callsites.

Finding 3: More than half of all callbacks are asynchronous. Asynchronous

callbacks, on average, appear more frequently in client-side code (72%) than

server-side code (55%).

Implications. The extensive use of asynchrony in the subjects we studied indi-

cates that program analyses techniques that ignore the presence of asynchrony are

inapplicable and may lead to poor results. Analyses of JavaScript must account for

asynchrony.

The extensive use of asynchronous scheduling paired with callbacks surprised

us. The asynchronous programming style significantly complicates program con-

trol flow and impedes program comprehension [13]. Yet there are few tools to

help with this. We think that the problem of helping developers reason about large

JavaScript code bases containing asynchronous callbacks, both on the client-side

and the server-side, deserves more attention from the research community.

22



D
at
aV
iz

En
gi
ne
s

Fr
am

ew
or
ks

G
am

es

W
eb
Ap
ps

N
PM

C
lie
nt

Se
rv
er

To
ta
l

0

20

40

60

80

100
Pe
rc
en
ta
ge

Figure 4.3: Boxplots for percentage of anonymous callback-accepting func-
tion callsites per category, across client/server, and in total.

Anonymous Callbacks

Figure 4.3 shows the prevalence of anonymous callback- accepting function call-

sites. The median percentage across the categories ranges from 23% to 48%, which

is fairly high considering that anonymous callbacks are difficult to understand and

maintain. Figure 4.3 also shows the same data partitioned between client-side and

server-side code, and indicates that server-side code contains a slightly higher per-

centage of anonymous callbacks than client-side code.

Finding 4: Over 43% of all callback-accepting function callsites are invoked

with at least one anonymous callback. There is little difference between client-

side and server-side code in the extent to which they use anonymous callbacks.

Implications. This finding indicates that in a large fraction of cases, a callback is

used once (anonymously) and is never re-used again. It seems that developers find

anonymous callbacks useful in spite of the associated comprehension, debugging,
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and testing challenges. We think that this topic deserves further study — it is

important to understand why developers use anonymous callbacks and prefer them

over named callbacks. Possible reasons for using anonymous callbacks could be

code brevity, or creating temporary local scopes (e.g., in closures). We also think

that the high fraction of anonymous callbacks indicates that this popular language

feature is here to stay. Therefore, it is worthwhile for the research community to

invest time in developing tools that will support developers in handling anonymous

callbacks.

Nested Callbacks

Figure 4.4 presents our results for the total number of instances of nested callbacks

at each observed nesting level. We found that the majority of callbacks nest two

levels deep. Figure 4.4 shows this unusual peak at nesting level of 2. We also

found that callbacks are nested up to a depth of 8 (there were 29 instances of

nesting at this level). In these extreme cases developers compose sequences of

asynchronous callbacks with result values that flow from one callback into the

next. These extreme nesting examples are available as part of our dataset [9].
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Figure 4.4: Instances of nested callbacks for a particular nesting level.

Finding 5: Callbacks are nested up to a depth of 8. There is a peak at nesting

level of 2.

Implications. As with anonymous and asynchronous callbacks, callback nesting
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1 $ ( document ) . ready ( function ( ) {
2 $ ( ’.star’ ) . c l i c k ( function ( e ) {
3 . . .
4 })
5 })

Listing 4.3: Example of a nested callback introduced by the wrapping
$(document).ready() function from the jQuery library.

taxes code readability and comprehension. We find that nesting is widely used

in practice and note that developers lack tools to manage callback nesting. We

believe that there is ample opportunity in this area for tool builders and software

analysis experts. The number of instances decreases from level 1 to 8, except at

level 2. Based on our investigation of numerous level 2 callback nesting examples,

we believe that the peak at level 2 is due to a common JavaScript practice in which

project code is surrounded with an anonymous function from an external library.

This is used, for example, for module exporting, loading, or to wait for the DOM to

be fully loaded on the client-side. Due to the extra callback surrounding the project

code, in these type of projects, callbacks begin nesting at level 2. Listing 4.3 lists

an example of this kind of nesting with the $(document).ready() function (line

1) from the popular jQuery library. This function waits for the DOM to load. It

increases the callback nesting in the rest of the code by 1 (e.g., the callback on line

2 has a nesting level of 2).

4.4.3 Solutions (RQ3)

Error-first Protocol

We found that 20% of all function definitions follow the error-first protocol. The

median percentage across the categories ranges from 4% to 50%. The fraction of

function definitions that adhere to the error-first protocol is almost twice as high

in the server-side code (30%) than in the client-side code (16%). In addition, the

error-first protocol was the most common solution among the three solutions we

considered. For example, 73% (63 out of 86) NPM modules and 93% (15 out of

16) web applications had instances of the error-first protocol.
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Finding 6: Overall, every 5th function definition adheres to the error-first pro-

tocol. The error-first protocol is used twice as often in server-side code than in

client-side code

Implications. Although we found that a non-trivial fraction of JavaScript functions

rely on the error-first protocol, it remains an ad-hoc solution that is loosely applied.

The relatively low and highly variable use of the error-first protocol means that de-

velopers must check adherence manually and cannot depend on APIs and libraries

to enforce it. Such idiom-based strategies for handling exceptions are known to

be error-prone in other languages, such as C [18]. It would be interesting to study

if this is also the case for JavaScript functions that follow the error-first callback

idiom.

Async.js

To study Async.js, we considered subject systems that use this library. We found

that only systems in the web applications and NPM modules categories used this

library. Our results show that 9 of 16 (56%) web applications and just 9 of 85

(11%) NPM modules use the Async.js library to manage asynchronous control

flow. Table 4.3 shows the top 10 used functions from the Async.js API (by number

of callsites) for these two categories of subject systems.

This table indicates that the sets of functions used in the top 10 list are simi-

lar. But, there are notable differences: for example, nextTick was the most used

Async.js method in web applications and just the 9th most used method in NPM

modules. The nextTick method in Async.js is used to delay the invocation of

the callback until a later tick of the event loop, which allows other events to pre-

cede the execution of the callback. In Node.js code the nextTick is implemented

using the process.nextTick() method in the runtime. In browsers this call is

implemented using setImmediate(callback) or setTimeout(callback, 0).

In this case Async.js provides a single interface for developers to achieve the same

functionality in both client-side and server-side code.

In NPM modules parallel is the most widely used Async.js method (it is the

6th most popular among web applications). This call is used to run an array of

independent functions in parallel.
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Table 4.3: Top 10 Async.js invoked methods in JavaScript web applications
(left) and NPM modules (right). The ∗ symbol denotes calls that do not
appear in both tables.

Rank Method Count
1 nextTick 18
2 queue∗ 16
3 each 14
3 setImmediate∗ 14
3 series 14
6 auto∗ 11
6 waterfall 11
6 parallel 11
9 map 10
9 apply 10

Rank Method Count
1 parallel 189
2 apply 81
3 waterfall 72
4 series 61
5 each 48
6 map 37
7 eachSeries∗ 20
8 eachLimit∗ 12
9 whilst∗ 10
9 nextTick 10

As a final example, the second-most used call in web-applications, queue, does

not appear in the top ten calls used by NPM modules. The queue method function-

ality is similar to that of parallel, except that tasks can be added to the queue at

a later time and the progress of tasks in the queue can be monitored.

We should note that because JavaScript is single-threaded, both the parallel

and queue Async.js calls do not expose true parallelism. Here, parallel execution

means that there may be points in time when two or more tasks have started, but

have not yet completed.

There are significant differences between web applications and NPM modules

in terms of the Async.js API usage. To characterize this difference, we first ranked

the API functions according to the number of times they were used in web appli-

cations and NPM modules. Then we analyzed the difference between the ranks of

each function in the two categories. For example, the rank of nextTick is 9 and 1

in the NPM modules and web applications, respectively, making the absolute dif-

ference 8. Overall, the rank differences had a mean of 6.2, a median of 5.5, and a

variance of 23.8. This indicates that the Async.js library is used differently in these

two categories of subject systems.
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Finding 7: More than half of the web applications (56%) use the Async.js library

to manage asynchronous control flow. The usage is much lower (11%) in the

NPM modules. In addition, the Async.js library is used differently (rank variance

of 23.8) in these two categories of subject systems.

Implications. Libraries, such as Async.js, provide one means of coping with the

complexity of callbacks. However, because library solutions are not provided na-

tively by the language runtime, the developer community can be divided on which

library to use, especially as there are many alternatives (see Chapter 2). We think

that the difference in Async.js API usage by developers of web applications (that

include both client-side code and server-side code) and NPM modules (exclusively

server-side code) indicates different underlying concerns around callbacks and

their management. We think that this usage deserves further study and can inform

the design of future libraries and proposals for language extensions [36, 42, 59].

Promises

Table 4.3 shows the percentage of subjects that create promises and the percentage

of subjects that use promises.

Table 4.4: Percentage of subject systems creating and using Promises

Category Subjects creating Subjects using
Promises (%) Promises (%)

DataViz libraries 6 31
Game Engines 0 25
Frameworks 50 75
Games 0 17
Web Applications 13 50
NPM Modules 3 12
Total 8 26

Figure 4.5 shows box plots for the number of Promise creating instances using

new Promise() constructs and Promise usage, e.g., then(), in the different sub-
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Figure 4.5: The distribution of total Promise usage and creation instances by
category, across client/server, and in total.

ject categories, partitioned across client/server, and in total. It should be noted that

not all application access a Promise through the new Promise() statement; some

invoke library functions that return Promises.

In aggregate, we found that 37 of 138 (27%) applications use Promises. They

were predominantly used by client-side frameworks (75%), with a maximum of

513 usage instances (across all frameworks) and a standard deviation of 343 usage

instances. In all the other subject systems, usage of Promises was rare, with a mean

close to zero. There was one outlier, the bluebird NPM module5, that had 2,032

Promise usage instances. This module implements the Promises specification as a

library. We therefore omit it from our results.

Finding 8: 27% of subject systems use Promises. This usage is concentrated in

client-side code, particularly in JavaScript frameworks.

Implications. Although Promises is a promising language-based approach to re-

solving many of the challenges related to callbacks, such as nesting and error han-

5 https://www.npmjs.com/package/bluebird
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dling, we have not observed a significant uptake of Promises among the systems we

studied. This could be because Promises is a relatively new addition to browsers

and Node.js. It would be interesting to study how this adoption evolves and whether

Promises lead to higher quality and more maintainable JavaScript code. Tools that

automatically refactor callbacks into Promises would help developers to migrate

existing large projects to use Promises.

4.5 Threats to Validity
There are both internal and external threats to validity for our study. We overview

these threats in this section.

Internal threats. Our JavaScript analyses rely on a number of development

conventions. For example, our error-first callback analysis depends on a naming

heuristic — the assumption that code adhering to the error-first protocol will name

the first argument of a function as err or error. A threat is that we may be under-

counting error-first protocol adherence by missing cases where the protocol is fol-

lowed but a different argument name is used. And, we may also be over-counting

adherence, since an argument name does not necessarily mean that the code uses

error-first protocol, or that it properly follows the protocol. We also rely on direc-

tory naming conventions and use code annotations as hints to identify client-side

and server-side code.

We decided to count features of callback usage in particular ways. For example,

we count callback nesting by taking the maximum depth of callback nesting for a

function. This can provide an under approximation of the number of instances of

nested callbacks.

Our analyses are static. This limits the kinds of JavaScript behaviors that we

can analyze. For example, we do not handle code in eval statements in our study.

External threats. Although we study over 5 million lines of JavaScript code,

our sample might not be representative, in a number of ways. First, it comes from

open source projects of a particular size and maturity. Second, we consider projects

that use JavaScript and are primarily mono-lingual. For example, we do not con-

sider projects that use JavaScript on the client-side and Java on the server-side.

As a result, our findings may not generalize to other types of JavaScript projects.

30



However, the subject systems in our study represent five different categories and

as the first study of its kind, we believe our characterization study of JavaScript

callback usage in practice is worthwhile, and hope that it will lead to other studies

that consider a broader variety of subject systems.

All our empirical data and toolset are publicly available; since the subject sys-

tems are all open source, our study should be repeatable.

4.6 Conclusions
All modern JavaScript applications that handle and respond to events use callbacks.

However, developers are frequently frustrated by “callback hell” — the compre-

hension and maintainability challenges associated with nested, anonymous call-

backs and asynchronous callback scheduling. In an empirical study of callbacks

usage in practice, we study over 5 million lines of JavaScript code in 138 subject

systems that span a variety of categories. We report on the prevalence of callbacks,

their usage, and the prevalence of solutions that help to manage the complexity

associated with callbacks. We hope that our study will inform the design of future

JavaScript analysis and code comprehension tools. Our analysis [4] and empirical

results [9] are available online.
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Chapter 5

Refactoring

5.1 Background
In this section, we elaborate on the key background of the JavaScript language, its

runtime, and promises, which are necessary to understand the rest of the thesis.

Callback Nesting and Error Handling in Practice. JavaScript programs fre-

quently contain sequences of asynchronous tasks that need to be completed se-

quentially (e.g., when a click event is fired, send data to the server, and then on

response from the server, update an element in the DOM). Using callbacks to han-

dle the control flow in these situations results in nested callbacks, which increase

code complexity. Because each callback adds a new function definition and inden-

tation level, this affects the understandability of the program.

In our empirical study (Section 4.4), callback depth was defined to be the num-

ber of callbacks nested inside one after the other. Using static analysis we com-

puted the maximum nesting depth for each function and found that the majority of

callbacks are nested to two levels, nesting can happen as deep as 8 levels, and that

the number of nested instances decreases from level 1 to 8, except at level 2.

We also found that 20% of all callback accepting function definitions use the

‘error-first callbacks’ convention to propagate errors asynchronously.

To understand whether nested callbacks use the error-first protocol, we focused

on a subset of 16 subject systems (having a total of 494 KLOC) from the previous

study and counted the number of occurrences of the error-first protocol in nested
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callbacks across these systems. The results for these 16 web applications are shown

0	  

500	  

1000	  

1500	  

2000	  

2500	  

3000	  

3500	  

L1	   L2	   L3	   L4	   L5	   L6	   L7	  

N
o.
	  o
f	  I
ns
ta
nc
es
	  

Level	  of	  Nes0ng	  

Nested	  only	  

Nested	  with	  Error-‐first	  

Figure 5.1: Count of nested callbacks with at least 1 error-first callback in
web applications.

in the Figure 5.1. It shows the number of nested callbacks for each nesting level

as black bars and number of error-first protocol inside nested callbacks as light

grey bars. We found out a large number of nested callbacks included at least one

instance of the error-first protocol. On average 28% of nested callbacks use the

error-first protocol.

Uncaught errors. Because each callback is executed with a new call stack, un-

caught errors cannot be propagated up the call stack to the original caller of the

asynchronous function. Consider Listing 5.1: if an error is raised in handleError

at lines 3, 7 or 10, the programmer cannot handle these errors with one catch block

because each of these statements are executed within a fresh call stack. The pro-

grammer needs three catch blocks to handle uncaught exceptions from the three

callback functions. To avoid missing error handlers, developers occasionally use a
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1 getUser ( ’jackson’ , function ( e r ro r , user ) {
2 t r y{
3 i f ( e r r o r ) {
4 handleError ( e r r o r ) ;
5 } else {
6 getNewTweets ( user , function ( e r ro r , tweets ) {
7 t r y {
8 i f ( e r r o r ) {
9 handleError ( e r r o r ) ;

10 } else {
11 updateTimel ine ( tweets , function ( e r r o r ) {
12 t r y {
13 i f ( e r r o r ) hand leError ( e r r o r ) ;
14 } catch ( e ) {
15 g loba lEr ro rHand le r ( e ) ;
16 }
17 }) ;
18 }
19 } catch ( e ) {
20 g loba lEr ro rHand le r ( e ) ;
21 }
22 }) ;
23 }
24 } catch ( e ) {
25 g loba lEr ro rHand le r ( e ) ;
26 }
27 }) ;

Listing 5.1: A sequence of asynchronous operations.

global catch-all uncaughtException handler as a hack, as shown below.

1 process . on ( ’uncaughtException’ , function ( e r r ) {
2 console . e r r o r ( ’ uncaughtException:’ , e r r . message )

3 console . e r r o r ( e r r . s tack )

4 process . e x i t ( 1 )

5 })

Synchronization. Callbacks do not have built in synchronization and are not nat-

urally idempotent. This causes problems when, for example, the same callback

is accidentally invoked multiple times inside another continuation. Consider List-

ing 5.2: because there is no return statement within the if block, cb is executed

twice if foo is truthy. Based on our experience, this is a common mistake among

JavaScript developers.

Promises. A promise is a design pattern that handles asynchronous events and

solves many of the callback-related problems described previously. While promises

have been used for some time in JavaScript with third party libraries, the next
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1 handler ( cb , foo ) {
2 i f ( foo ) cb ( foo ) ;
3 cb ( foo ) ;
4 }

Listing 5.2: A JavaScript snippet illustrating that callbacks are vulnerable to
synchronization bugs.

ECMA specification (version 6) [6] of the language has promises built in.

With the promises design pattern, instead of accepting a callback as the con-

tinuation function, an asynchronous function returns a Promise instance. This in-

stance represents a value that will be available sometime in the future, for example,

after a deferred task has completed. A promise can be in one of three states:

Pending. The deferred task has not yet completed, so the outcome of the Promise

has not been determined.

Fulfilled. The deferred task has completed successfully and its result is available.

Rejected. The deferred task has failed and a corresponding error is available.

A promise’s initial state is pending, and will either transition to fulfilled

or rejected depending on the outcome of the deferred task. Once the caller of

the asynchronous function has retrieved a promise, it can register two continuation

functions with the promise: a success handler and an optional error handler. The

success handler is called when the promise enters the fulfilled state. The error

handler is called when the promise enters the rejected state.

1 getUser ( ’jackson’ )
2 . then ( getNewTweets , handleError )
3 . then ( updateTimel ine , handleError )
4 . catch ( g loba lEr ro rHand le r ) ;

Listing 5.3: A sequence of asynchronous operations composed with
Promises.

Promises solve many of the problems associated with callbacks. Consider List-

ing 5.3, which is semantically equivalent to Listing 5.1, but uses promises. Call-

back nesting is eliminated by chaining promises. Error handling is separated into
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a success handler (the first parameter of .then) and an error handler (the second

parameter of .then). Uncaught errors are handled with .catch. Basic synchro-

nization is handled automatically because promises guarantee that the error and

success handlers only execute once.

5.2 Exploratory Study: Refactoring Callbacks to
Promises

We carried out an exploratory study to better understand the extent and manner in

which developers refactor callbacks into promises. Our exploratory study consists

of three parts: (1) a manual inspection of issues on GitHub related to promises,

(2) a manual inspection of pull requests on GitHub related to promises, and (3) an

automated mining of commits that refactored asynchronous callbacks to promises.

5.2.1 Finding Issues Related to Callbacks and Promises

The first part of our study explored posts on GitHub’s issue tracking system. GitHub

is one of the most popular collaborative software-development platforms among

JavaScript developers [24] and provides the largest publicly available dataset in-

cluding developer discussions and development history. Because of its popularity

and depth of content, we used GitHub’s search feature to find issues related to

refactoring of asynchronous callbacks to promises.

We first used the query string: “promise callback language:JavaScript

stars:>30 comments:>5 type:issue” to search for GitHub issue discussions

that were non-trivial (containing at least 5 comments), associated with projects that

were popular (starred by at least 30 users) and contained the terms promise and

callback. This search resulted in 4,342 issues. We randomly sampled 11 issues

from this set and manually inspected the discussions associated with the issues. We

found that in majority of issues (8 out of 11), the final consensus was to refactor

the code to use promises instead of using asynchronous callbacks. Many discussion

participants agreed that using promises would be beneficial to the project, however,

the main reasons for reluctance to migrate to promises were that (1) promises may

cause significant changes to existing APIs and (2) the development costs associated

with the change was prohibitive.
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Many users who showed interest in moving to promises, emphasized various

benefits of Promises:

“I’ve recently solved various problems using promises, e.g., polyglot data mi-

grations, browser/node client libraries for an HTTP API, kv store interfaces &

controller code. I’ve both written completely new code and rewrapped callback-

style code. Personally I’m very pleased with the amount of additional safety and

expressiveness I’ve gained by using promises. I’m not dismissing callbacks per

se, but personally I find it much simpler to reason about code using promises than

code using callbacks & utility libraries like async.” 1

“In general, I think promises provide a good foundation for async: they’re

fairly simple and lightweight, but they make it easy to build higher level async

constructs. For example, when’js’s when.map and when.reduce are surprisingly

compact, but quite powerful. I see that as an advantage of promises, they are both

useful in and of themselves, and also make good building blocks. I also feel that

promises make for very clean API design. There is no need for callbacks [...] to

be added to every function signature in your API. You can just return a promise

instead.” 2

We then narrowed down the search by including the term refactor.3 This

resulted in 351 issues, many of which indicated strong demand to refactor code

to use promises. For example, one participant stated: “So this is something that is

purely for devs but I think it is about time to do this. i.e. git-task is a great candidate

to take full advantage of promises and it would have made implementation of #602

much easier.” 4

Many of these requests came from users of JavaScript libraries who wanted

promises as part of the library API: “Are there any plans for Promise support,

alongside the callbacks and streams? Proper Promise support in any-db and any-

1 https://github.com/share/ShareJS/issues/268
2 https://github.com/gladiusjs/gladius-core/issues/127
3Complete search string: “Refactor promises language:JavaScript stars:>20

type:issue” We lowered the number of stars to capture more projects.
4 https://github.com/FredrikNoren/ungit/issues/603
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db-transaction would be really nice :)”5, and “Add promise API option?” 6. Some

of the users encouraged the move to promises by sharing their own experiences

of using promises: “We’ve recently converted pretty large internal codebases from

async.js to promises and the code became smaller, more declarative, and cleaner

at the same time.” 7

5.2.2 Exploring Refactoring Pull Requests

The second part of our study explored pull requests on GitHub in order to de-

termine whether developers acted on suggestions for refactoring asynchronous

callbacks to promises. We did this by searching GitHub for pull requests associ-

ated with refactoring asynchronous callbacks to promises and manually inspecting

the results. Our search used the following query string: “Refactor promises

language:Javascript stars:>20 type:pr”. The search resulted in 451 pull

requests. We observed that most of these pull requests were submitted as improve-

ments to the project and involved replacing callbacks with Promises. These were

either native Promises supported by the runtime or ones provided by third-party

libraries like Bluebird, Q, or RSVP. We found that developers act on the desire for

promises over asynchronous callbacks and do perform this type of refactoring in

practice. A more detailed listing of the discussions we explored in our study, along

with listings of relevant quotes, can be found online [11].

5.2.3 Mining Commits

In the third part of our exploratory study, we mined 134 Node.js applications and

NPM modules to look for examples of asynchronous callback to promise refactor-

ing in practice. We discovered 39 instances of asynchronous callback to promise

rafactorings across 9 projects. This indicates that developers are interested in per-

forming this refactoring in practice. We manually inspected each of these instances

and found that five of these instances conform to the standard refactoring pattern

that matches what is recommended in developer blog posts [19].

This exploratory study demonstrates that the developers see many advantages

5 https://github.com/grncdr/node-any-db/issues/66
6 https://github.com/addyosmani/psi/issues/56
7 https://github.com/meetfinch/decking/issues/18
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in migrating to promises. However, because of the complex control flow asso-

ciated with callbacks and promises, refactoring code to use promises instead of

asynchronous callbacks is difficult. Without tool support, the development costs

associated with the change can become the major barrier of promises adoption.

We believe there is a strong demand among JavaScript developers for automated

tool support to perform these refactorings.

In this chapter, our goal is to develop an approach that can automatically refac-

tor asynchronous callbacks to promises. The approach should have the following

properties: (1) candidates for refactoring can be detected automatically, (2) the ap-

proach can refactor most asynchronous callbacks, (3) the approach produces code

and (4) the understandability of the source code is improved. In the following

section we describe our approach.

5.3 Approach
In this section we formally specify our proposed program refactorings. Throughout

we use the following notation: we use async to denote an asynchronous, built-

in, JavaScript API function, such as process.nextTick or fs.readFile. We

use cb to denote a callback, or a function that is passed as an argument to other

functions. For example, Listing 5.4 gives an abstract example of function f that

uses an asynchronous callback cb f ; Line 16 in the listing contains a callsite to f .

1 function f (cb f ) {
2 async ( function cbasync (error, data ) {
3 i f ( e r r o r ) cb f ( null , data ) ;
4 else cb f (error , nul l ) ;
5 }) ;

7 function cb f ( e r ro r , data ) {
8 i f ( e r r o r ) {
9 // Handle error

10 }
11 else {
12 // Handle data
13 }
14 }

16 f (cb f ) ;

Listing 5.4: Abstract functions and callsites in the original program P.

39



Detection 
Async Function

Definition
Detector

ASync Callsite
Detector

Modify-OriginalWrap-around

Conversion

Optimization

Flatten Nested
Callbacks

JS
program

Promise
Creation

Promise
Consumption

Error Path
Extraction

Callsite 
Conversion

Figure 5.2: Overview of our approach.

We transform P into P′ by transforming sub-elements of P. Figure 5.2 illus-

trates this process. In Sections 5.3.1 and 5.3.2 we describe a process to automat-

ically discover instances of f that can be refactored using our method. In Sec-

tion 5.3.3 we describe a process to derive a new asynchronous function f ′ that

returns a promise from f . In Section 5.3.4 we describe a process to derive succ and

err, the success and error handlers for the promise from cb f . In Section 5.3.5 we

describe a process to derive the new call site of f ′ from the original call site of f .

Finally, in Section 5.4 we demonstrate that P is semantically equivalent to P′.

5.3.1 Identifying Functions with Asynchronous Callbacks

Our first contribution is in helping developers to automatically identify instances

of f to refactor. We consider a function to be an instance of f if async is directly

invoked inside the body of the function and if one of the following is true:

1. cb f = cbasync, or

2. cb f is invoked inside the closure of cbasync

This rule ensures that f is asynchronous and f accepts a callback as a parameter

and that callback is deferred to be invoked when the asynchronous API call finishes.

We identify instances of async using a whitelist of calls that we know to be

asynchronous. This whitelist includes a variety of APIs, including DOM events,
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network calls, timers, and I/O. The complete list is available online [11].

5.3.2 Choosing a Refactoring Strategy

Our next contribution is to identify which of our automated refactoring techniques

(if any) can transform f to f ′. We describe two strategies for transforming call-

backs into promises: modify-original and wrap-around. Table 5.1 shows the ad-

vantages and disadvantages of each strategy, which are discussed below.

Table 5.1: Refactoring strategies.

Strategy Advantages Disadvantages
modify-original Produces code similar to how

developers would refactor
Transforms some instances

wrap-around Transforms most instances Produces code that can be
more complex than the original

Modify-original

In our exploratory study (Section 5.2), we observed the relative frequency of dif-

ferent kinds of promise refactorings performed by developers. The modify-original

strategy is based on the most frequent type of refactoring that we observed. The

limitation of modify-original is that it cannot transform more complex asynchronous

callbacks. Candidate instances for the modify-original refactoring must meet the

following preconditions. The rationale behind these preconditions is also provided

below:

1. cb f is invoked inside the closure of cbasync

This ensures that cb f 6= cbasync. This would require a different transformation

for cb f that we do not currently support.

2. cb f is not used in cbasync other than in instances of (1)
This ensures that f does not use cb f for anything other than as a callback

function. Because this parameter is removed during the transformation, cb f is

no longer available to f at runtime.

3. f always returns void
This precondition eliminates cases where an alternate synchronization method
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is used. We found that in most cases, when an asynchronous function returns

a value, the return value is used as an identifier for synchronization. Custom

synchronization strategies require detailed knowledge of their implementation

to produce a valid refactoring and are therefore not handled by either of our

transformation strategies.

4. cb f is splittable
This requires that cb f has a success path and an error path that do not interact

with each other (i.e., that cb f is splittable). For example, if cb f is using the

error-first protocol, the error parameter cannot be used on the success path and

the data parameter cannot be used on the error path. This is because promises

separate the success and error handlers, so any interaction between the two

paths cannot occur in a promises implementation.

5. f has exactly one async

This is needed because only one promise is returned and the handler for a

promise can only be invoked once. If more than one async is invoked, a sig-

nificantly more complex refactoring is needed.

6. invocations of cb f provide zero or one argument, or follow the error-first
protocol
It eliminates cases where more than one non-null argument is given to cb f .

This is a restriction of the current implementation of promises in JavaScript,

which only accepts one argument in both the resolve and reject handlers.

7. cbasync does not use variables named resolve or reject
This prevents problems caused by variable hiding, since our method uses these

variable names inside cbasync.

8. f is not contained in a third-party library
Finally, this precondition prevents library code from being refactored.

Wrap-around

Because the modify-original strategy cannot transform asynchronous callbacks that

do not satisfy one or more of the above preconditions, we also provide a strategy

which (unlike modify-original) does not modify the body of f . This strategy is

able to refactor a larger number of asynchronous callback functions than modify-
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original. This strategy, however, comes at the cost of simplicity and comprehen-

sion, as this method produces more code than the original and introduces a new

function. Candidates for the wrap-around refactoring must satisfy the following

preconditions:

1. cb f = cbasync OR cb f is invoked inside the closure of cbasync

2. cb f is not used in f other than in instances of (1)

3. f always returns void

4. cb f is splittable

5. f has exactly one async

6. invocations of cb f provide zero or one arguments, or follow the error first

protocol

7. f cannot be refactored by modify-original

The preconditions for the wrap-around strategy are more relaxed than the pre-

conditions for the modify-original strategy. The wrap-around strategy does not in-

clude a number of preconditions found in the modify-original strategy. This means

that the wrap-around strategy can support the following additional cases: cases

where cb f = cbasync (modify-original condition #1), cases where cbasync uses vari-

ables named resolve or reject (modify-original condition #7) and cases where

f is contained in a third-party library (modify-original condition #8).

The rationale for the preconditions in the wrap-around strategy are as follows:

Precondition (1) is the same as our precondition for identifying instances of f in

Section 5.3.1. Preconditions (2-6) are the same as the modify-original precondi-

tions. Precondition (7) ensures that the modify-original strategy is selected first,

because it produces more understandable code.

5.3.3 Transforming the Asynchronous Function

In this subsection, we specify our transformations for deriving f ′ from f .

Modify-original

In this strategy, we modify the body of f in the same way that a developer would

be likely to perform this transformation. First, our technique creates a new f ′ that

returns a promise:
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1 function f ′ ( ) {
2 return new Promise ( ) ;

3 }) ;

The Promise constructor takes one argument: the factory function for the promise.

To build this, we declare an anonymous function that wraps the body of f :

1 function f ′ ( ) {
2 return new Promise ( function ( resolve , r e j e c t ){
3 async ( function cb′async (data ) {
4 i f ( e r r o r ) cb f ( null , data ) ;

5 else cb f (error , nul l ) ;

6 }) ;

7 }) ;

8 }) ;

Next, we replace invocations of cb f with invocations of resolve and reject. In-

vocations of cb f that pass a non-null error argument are converted into invocations

of reject, which calls err. We look for arguments that use the error-first protocol

or match the regular expression e|err|error to find these invocations. All other

invocations of cb f are converted into invocations of resolve, which calls succ.

1 function f ′ ( ) {
2 return new Promise ( function ( resolve , r e j e c t ){
3 async ( function cb′async (data ) {
4 i f ( e r r o r ) r e j e c t ( null , data ) ;

5 else reso lve (error , nul l ) ;

6 }) ;

7 }) ;

Finally, in P′ we replace f with f ′.

The listing 5.5 and listing 5.6 shows how an asynchronous callback instance

in a real-world JavaScript program is refactored to use Promises using PROMISES-

LAND. The refactored version of the function addTranslations, does not accept

a callback, and instead returns a Promise. The invocations of the callback (lines 5

and 15 in listing 5.5) have been changed to reject and resolve (lines 6 and 16 in

listing 5.6) depending whether an error occurred or not.

Wrap-around

In this strategy, we do not modify f . Instead, we wrap all of the calls to f inside a

new function. We create this new function f ′, which creates and returns a Promise.
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1 function addTrans la t ions ( t r a n s l a t i o n s , ca l l back ) {
2 t r a n s l a t i o n s = JSON. parse ( t r a n s l a t i o n s ) ;
3 f s . r eadd i r ( dirname + ’/../client/src/translations/’ , function ( er r , p o f i l e s

) {
4 i f ( e r r ) {
5 return ca l l back ( e r r ) ;
6 }
7 var vars = [ ] ;
8 p o f i l e s . forEach ( function ( f i l e ) {
9 var l o c a l e = f i l e . s l i c e (0 , −3) ;

10 i f ( ( f i l e . s l i c e (−3) === ’.po’ ) && ( l o c a l e !== ’template’ ) ) {
11 vars . push ({ tag : loca le , language : t r a n s l a t i o n s [locale ]} ) ;
12 }
13 }) ;

15 return ca l l back ( vars ) ;
16 }) ;
17 }

19 addTrans la t ions ( t rans , jobComplete ) ;

Listing 5.5: An example of an asynchronous callback before refactoring to
Promises

A call to f is inserted into the body of the factory method for the promise:

1 function f ′ ( ) {
2 return new Promise ( function ( resolve , r e j e c t ) {
3 f ( ) ;

4 }) ;

5 }

7 function f (cb f ) {
8 async ( function cbasync (error, data ) {
9 i f ( e r r o r ) cb f ( null , data ) ;

10 else cb f (error , nul l ) ;

11 }) ;

12 }

A new anonymous function is created as the continuation function for f . If cb f

follows the error-first protocol, the continuation function provides branches that

direct the error parameter to reject and the data parameter to resolve:

1 function f ′ ( ) {
2 return new Promise ( function ( resolve , r e j e c t ) {
3 f ( function ( er r , data ){
4 i f ( e r r !== nul l )

5 return r e j e c t ( e r r ) ;

6 reso lve ( data ) ;
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1 function addTrans la t ions ( t r a n s l a t i o n s ) {
2 return new Promise ( function ( resolve , r e j e c t ) {
3 t r a n s l a t i o n s = JSON. parse ( t r a n s l a t i o n s ) ;
4 f s . r eadd i r ( d i rname + ’/../client/src/translations/’ , function ( er r ,

p o f i l e s ) {
5 i f ( e r r ) {
6 r e j e c t ( e r r ) ;
7 }
8 var vars = [ ] ;
9 p o f i l e s . forEach ( function ( f i l e ) {

10 var l o c a l e = f i l e . s l i c e (0 , −3) ;
11 i f ( ( f i l e . s l i c e (−3) === ’.po’ ) && ( l o c a l e !== ’template’ ) ) {
12 vars . push ({ tag : loca le , language : t r a n s l a t i o n s [locale ]} ) ;
13 }
14 }) ;

16 reso lve ( vars ) ;
17 }) ;
18 }) ;
19 }

21 addTrans la t ions ( t rans ) . then ( jobComplete ) ;

Listing 5.6: An example of an asynchronous callback after refactoring to
Promises using Modify-original strategy

7 }) ;

8 }) ;

9 }

11 function f (cb f ) {
12 async ( function cbasync (error, data ) {
13 i f ( e r r o r ) cb f ( null , data ) ;

14 else cb f (error , nul l ) ;

15 }) ;

16 }

5.3.4 Transforming the Callback Function

From Section 5.3.3, we have a new asynchronous function f ′ that returns a promise.

We now transform all call sites of f to use the promise produced by f ′. The first

step is to identify call sites of f . We rely on existing static analysis of TernJS [30],

a type inference technique based on the work by Hackett and Guo [29] to determine

the points-to relationships between call sites of f and the declaration of f .

Next, we convert all call sites to use f ′. Consider c, a call site of f . c has
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a callback function cb f , which handles both successful and unsuccessful execu-

tions of f . However, f ′ requires a separate handler for successful and unsuccessful

executions. From cb f we derive two functions: the success handler succ and the

error handler err. succ is the success-handling path of cb f , while err is the error-

handling path of cb f . We therefore declare a success handler and an error handler

for the promise. The code that is executed along the success path in cb f gets copied

into succ, while all code that is executed along the error path in cb f is copied into

err. Any conditional statements that cause control flow to branch to the success or

error paths in cb f are omitted from the handlers.

1 function succ ( data ) {
2 // Handle data

3 }
4 function err ( e r r o r ) {
5 // Handle error

6 }

To determine the success path and error path of cb f , we use a heuristic: we look

for an if statement that checks if a parameter matching e|err|error is non-null.

The branch where the parameter is null we consider to be the success path and the

branch where the parameter is non-null we consider to be the error path. This is

based on the typical usage of the error-first protocol. Finally, in P′ we replace cb f

with succ and err.

5.3.5 Transforming the Call Site

Our last step to have a working program is to transform the call sites of f to invoke

f ′ instead. First, if the wrap-around strategy was used, the name of f is changed to

f ′. If the modify-original strategy was used, the name remains unchanged.

1 f ′ (cb f ) ;

Next, since f ′ does not accept a continuation function as an argument, we remove

cb f as an argument from our call to f ′. Because our call to f ′ produces a promise,

we pass succ and err to the promise by appending the call .then(succ, err) to

the promise returned by f ′.

1 f ′ ( ) . then ( succ , err ) ;

47



In some cases, no err exists. Either there was no error handling path in cb f or one

was not recognized by our heuristic. In this case, we add a comment in place of err

as the second argument of then, which makes a recommendation to the developer

to create an error handler.

5.3.6 Flattening Promise Consumers

After a set of nested callbacks are converted into promises, the result is a set of

nested promise consumers. Because [Promise].then also returns a Promise,

we can improve readability by converting nested promises to a flat sequence of

chained promises that are semantically equivalent. For example, Listing 5.7 has a

set of nested promises that can be refactored to the chain of promises in Listing 5.8

1 getLocationDataNew ( "jackson" ) . then ( function ( data ) {
2 getCoordinatesNew ( data . address , data . count ry ) . then ( function ( longLat ) {
3 getNearbyATMsNew ( longLat ) . then ( function ( atms ) {
4 console . log ( ’Closest ATM is at: ’ + atms[0 ] ) ;
5 }) ;
6 }) ;
7 }) ;

Listing 5.7: Nested promises calls.

1 getLocationDataNew ( "jackson" ) . then ( function ( data ) {
2 return getCoordinatesNew ( data . address , data . count ry ) ;
3 }) . then ( function ( longLat ) {
4 return getNearbyATMsNew ( longLat ) ;
5 }) . then ( function ( atms ) {
6 return console . log ( ’Closest ATM is at: ’ + atms[0 ] ) ;
7 }) ;

Listing 5.8: Chained promises after they are flattened.

We have two preconditions for flattening promise consumers (below, v is a

variable):

1. ∀v declared in succ,v is not used inside a closure

2. only one nested promise is consumed inside succ

The first condition checks that no variable declared in succ is also used in one of

the asynchronous handlers declared in succ. This condition is necessary because if
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we add the handler for the nested promise through a promise chain, then v, which is

declared in succ will no longer be available to the nested promise’s handler through

closure. This is illustrated in Listing 5.9. We cannot flatten these nested promises

because the parameter data is used by the success handler of getNearbyATMsNew.

1 getLocationDataNew ( "jackson" ) . then ( function ( data ) {
2 getCoordinatesNew ( data . address , data . count ry ) . then ( function ( longLat ) {
3 return getNearbyATMsNew ( longLat ) . then ( function ( atms ) {
4 console . log ( "The closest ATM to " + data . address + " is: " + atms[0 ] ) ;
5 }) ;
6 }) ;
7 }) ;

Listing 5.9: Nested promises which cannot be flattened

The second condition checks that there is just one asynchronous call inside

of succ since promise chaining does not support executing multiple asynchronous

functions in parallel.

If the two preconditions are met, to flatten a promise chain we perform two

transformations:

1. Each handler is modified to return a promise.

2. For each handler that is not at the start of the chain, a new call to [Promise].then

is created after the previous handler is registered. The handler is passed to the

previous promise in the chain.

5.4 Semantic Equivalence of Transformations
Next we use induction to show that our transformations do not change a program’s

semantics. That is, we show that these transformations are behaviour-preserving

program refactorings. For the base case, we need to show that the following five

properties are semantically equivalent between P and P′: (1) scheduling order,

(2) function scope, (3) intra-procedural control flow, (4) inter-procedural control

flow, and (5) data flow. Finally, we show that our transformation is semantically

equivalent for (6) nested asynchronous callbacks.
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Figure 5.3: The sequence diagram on the left (a) shows the sequence for an
asynchronous function that accepts a callback. The sequence diagram
on the right (b) shows the sequence for an asynchronous function that
returns a promise.

5.4.1 Scheduling Order Equivalence

Consider the sequence diagrams in Figure 5.3. Diagram (a) shows the sequence

for an asynchronous callback, while diagram (b) shows the sequence for an asyn-

chronous function that returns a promise. From the diagrams we can see that both

versions execute cbasync in the same tick. Since we have only one async inside f ,

any scheduling decisions made by async will be the same.

5.4.2 Function Scope Equivalence

We consider the function pairs f ⇔ f ′, cbasync ⇔ cb′async and cb f ⇔ {succ,err}
separately.

1) f ⇔ f ′. Since f is unchanged in the wrap-around strategy, the scope is also

unchanged. In the modify-original strategy, there are three changes between f and

f ′:

1. The body of f is nested in a new function within f ′. This does not affect the

scope because anything available in the body of f is available inside the nested

function through closure.

2. The parameter cb f is not present in f ′. This affects the scope if cb f is used

anywhere other than as the callback function. This case is filtered by our
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preconditions.

3. The parameters resolve and reject are added to the scope of f ′. This

causes a naming conflict or overwrites the scope if variables named resolve

or reject exists in the scope of f . This case is also filtered by our precondi-

tions.

2) cbasync ⇔ cb′async. Because cbasync is nested within f , the same changes apply

as the changes between f and f ′. These changes do not affect the scope of cb′async

for the same reasons they do not affect f ′. The only other change in cb′async is that

invocations of f ′ are replaced by invocations of resolve and reject. This change

does not affect the scope.

3) cb f ⇔ {succ,err}. Because succ and err are defined at the same level as cb f ,

the closure is the same for all three functions. Variables declared within cb f are

copied to succ and err if they occur on the success path and error path respectively.

As long as the success path and error path are correctly retrieved, these copies do

not affect the semantics of the program because the variables are only used within

the path that is being executed.

5.4.3 Intra-Procedural Control Flow Equivalence

We now show that the intra-procedural control flow of the functions in P is equiv-

alent to the intra-procedural control flow of the functions in P′. We demonstrate

that all transformations we perform on the elements in P produce new elements in

P′ that have control flow equivalent to their counterparts in P.

1) f ⇔ f ′. For the modify-original strategy, we add a return statement and an

invocation of a Promise constructor. The Promise does not semantically modify

the program’s behaviour and because the body of f is unchanged, statement order

is preserved. For the wrap-around strategy, f is unchanged.

2) cbasync⇔ cb′async. For the modify-original strategy, statement order is preserved

because we replace calls to cb f with calls to either succ or err. These replacements

do not change the control flow. For the wrap-around strategy, cbasync is unchanged.

3) cb f ⇔ {succ,err}. Statement order is preserved because succ and err are built

from the success path and error path of cb f , which does not change the statement

order on either path.
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4) c⇔ c′. Consider Figure 5.3. In this case statements are added to the control

flow to create the promise, however, these statements do not affect the behaviour

of the program and can be ignored. The execution order of statements in the call

sites of f is maintained relative to the body of f .

5.4.4 Inter-Procedural Control Flow Equivalence

For intra-procedural control flow, we consider two cases: the control flow between

call sites and async and the control flow between cbasync and cb f .

1) c→ async ⇐⇒ c′ → async. Consider Figure 5.3. For the modify-original

strategy, the control flow between call sites of f and the body of f now passes

through a Promise constructor and a factory function. Neither the Promise or the

factory function semantically modify the program’s behaviour and statement order

between call sites of f and the body of f is preserved.

For the wrap-around strategy, the control flow between call sites of f and the

body of f now passes through f ′, a Promise constructor and a factory function.

Neither f ′, the Promise or the factory function semantically modify the program’s

behaviour and statement order between call sites of f and the body of f is pre-

served.

2) cbasync→ cb f ⇐⇒ cb′async→{succ,err}. Consider Figure 5.3. For the modify-

original strategy, the control flow between cb′async and {succ,err} now passes through

a Promise. The Promise does not semantically modify the program’s behaviour

and statement order between cb′async and {succ,err} is preserved.

For the wrap-around strategy, the control flow between cbasync and {succ,err}
now passes through f ′ and a Promise. Neither f ′ or the Promise semantically

modify the program’s behaviour and statement order between cbasync and {succ,err}
is preserved.

5.4.5 Data Flow Equivalence

Because the control flow is equivalent, we demonstrate data flow equivalence by

showing that the data that is passed between c′, f ′, async, cb′async, succ and err

remain equivalent to their counterparts in P.

1) c→ async ⇐⇒ c′ → async. Data flow is preserved between c′ and f ′ for
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all arguments besides cb f since these arguments are unchanged. Because our pre-

conditions state that cb f is only used in f as the continuation function, the data flow

is preserved for cb f when we register succ and err through .then(succ, err).

2) cbasync → cb f ⇐⇒ cb′async → {succ,err}. Data flow is preserved between

cb′async and {succ,err} because of the pre-condition of modify-original in Sec-

tion 5.3.2. With this condition, we know that at most one argument is passed to

succ or err. The resolve and reject handlers of promises each take one param-

eter and propagate them from cb′async to {succ,err}.

5.4.6 Equivalence of Nested Asynchronous Callbacks

We now take the ‘inductive step’ and show that our transformation is semantically

equivalent for nested asynchronous callbacks.

Because we have a precondition that async is the only asynchronous callback

within f , we only need to consider asynchronous callbacks that are nested in-

side cb f . Because cb f is the last function in the control flow, we can ignore all

other functions and refactorings. Our method will automatically refactor any asyn-

chronous callbacks inside cb f . After such a refactoring, since our base transfor-

mation produces code that is semantically equivalent, the nested asynchronous call

will also be semantically equivalent. It follows that all nested asynchronous call-

backs will be semantically equivalent.

5.5 Implementation: PROMISESLAND

We have implemented our approach in a tool called PROMISESLAND. It is com-

posed of two components, namely, a static analyzer to search for refactoring oppor-

tunities in the form of patterns of asynchrony in JavaScript code and a transforma-

tion engine to refactor the detected opportunities into native Promises. PROMIS-

ESLAND builds on prior JavaScript analysis tools, such as Esprima [31] to parse

and build an AST, Estraverse [58] to traverse the AST, and Escope [8] for scope

analysis. We also use TernJS [30], a type inference technique based on the work

by Hackett and Guo [29], to query for function type arguments.

Implementation Challenges. Library should not be refactored by default. If there

are possible refactorings in module code used by the project code, the user can
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be notified via INFO logs. Heuristics like the following are used to select local

dependencies of the project, but to ignore remote dependencies.

• Usually, external dependencies which are downloaded from the public npm

registry are in the node modules directory and are referred in the source like

this:

require(’module foo’)

• But internal dependencies are kept separate from the third-party modules, un-

der version control, and referred by a file system path like this:

require(’./path/to/bar.js’)

Limitations. A limitation of our implementation is that it depends on the sound-

ness of current static analysis techniques. For example, if a points-to relationship

between c and f is not discovered by static analysis, our technique will not refac-

tor c. While this is true for points-to relationships between all elements of the

transformation, in Section 5.6 we show that this rarely occurs in practice.

5.6 Evaluation
Our goal is to evaluate the efficacy of our approach in terms of its refactoring

opportunity detection accuracy, refactoring correctness, and efficiency. We address

the following research questions in our empirical evaluation:

RQ1: Can PROMISESLAND accurately identify instances of asynchronous call-

backs to be converted?

We consider PROMISESLAND as an automated technique that a developer can

use to first identify refactoring opportunities in the code. Therefore, we asses how

accurately PROMISESLAND can find asynchronous callbacks in JavaScript code.

RQ2: Can PROMISESLAND correctly refactor asynchronous callbacks to Promises?

The most important factor for adoption of refactoring tools is determined [54]

to be confidence in the correctness. We consider a refactoring correct, if it pre-

serves the behaviour after the transformation, which is critical in any refactoring

technique.

RQ3: Is PROMISESLAND efficient?
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Refactoring tools that are slow face adoption challenges [44] in practice. We

evaluate the efficiency of PROMISESLAND in both the detection and transformation

of asynchronous callbacks in terms of overhead and analysis speed.

We have made PROMISESLAND open source and all our empirical dataset is

available for download [11].

5.6.1 Detection Accuracy (RQ1)

To find out whether PROMISESLAND can accurately identify refactoring candi-

dates in the form of asynchronous callbacks, we first manually inspected four

subject systems (see Table 5.2) and counted asynchronous callbacks that can be

converted to Promises. This set of subject systems consists of heroku-bouncer,8

a server-side middleware, moonridge,9 an isomorphic library for MongoDB, tim-

bits,10 a client-side widget framework, and tingo-rest,11 a REST-API wrapper for

TingoDB. To limit the manual inspection effort, we included four systems for this

evaluation, although we think these four are representative as they include server-

side code, client-side code as well as isomorphic JavaScript (executed both on the

client-side and server-side).

We then used PROMISESLAND to find refactoring instances, to measure pre-

cision and recall. We define precision as the percentage of asynchronous call-

backs that can safely be refactored without leading to test failures, across all asyn-

chronous callbacks that PROMISESLAND detects. Recall pertains to the percentage

of asynchronous callbacks that PROMISESLAND detects, across all asynchronous

callbacks that exist in the subject system.

Table 5.2 presents our results. PROMISESLAND did not report any false posi-

tives, providing a precision of 100%. This means that although the static analysis

is not sound, in practical use, the tool does not detect any wrong instances, and the

developer does not need to be concerned about refactoring incorrectly identified

callbacks.

The recall was 83% on average. This is because PROMISESLAND missed a

8 https://github.com/heroku/node-heroku-bouncer
9 https://github.com/capaj/Moonridge

10 https://github.com/postmedia/timbits
11 https://github.com/lean-stack/node.tingo-rest
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few instances of asynchronous callbacks. The reason is that our design is based on

the premise that only if it can be guaranteed that all paths of a function execute the

callback asynchronously, the callback can be considered to be semantically similar

to a Promise (and thus it becomes a refactoring candidate). To ensure statically that

the callback is executed asynchronously and exactly once, we follow a conserva-

tive approach that can miss some of the potential candidates for conversion. That

is the reason that our recall is not 100%. This means in practice although PROMIS-

ESLAND detects and transforms most of the candidates, a few can be missed. We

believe this can be further improved using more advanced data-flow analysis tech-

niques.

Table 5.2: Detection accuracy of the tool.

Subject LOC Detected Refactored Precision Recall
System (JS) Instances Instances (%) (%)
heroku-bouncer 947 7 6 100 85.7
moonridge 3,760 19 14 100 73.6
timbits 1,226 17 15 100 88.2
tingo-rest 238 4 4 100 100
Total 6,171 39 47 100 (avg) 82.9 (avg)

5.6.2 Refactoring Correctness (RQ2)

In prior research, Brodu et al. [17] proposed a compiler-based technique to convert

nested callbacks into a simpler specification of Promises called Dues [16]. To eval-

uate PROMISESLAND, we select the subject systems used by Brodu et al. and com-

pare our results to theirs. This set of subject systems consist of 64 Node.js modules

and is expected to be representative of a majority of commonly used JavaScript

modules. We measure how many asynchronous callback instances can be detected

and converted to Promises without leading to failures of the existing test cases of

the subject systems.

Out of the 64 modules, we first selected the ones with non-failing tests. We

then instrumented the code to filter out subject systems with test cases that covered

the asynchronous callbacks in the code. This selection was needed to be able to

verify behaviour preservation after the refactoring step. There were 21 subject
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systems that matched these two criteria, namely passing tests before refactoring

and providing callback coverage. We use test cases for this purpose because prior

research [27] has shown the effectiveness of test cases for providing an estimate of

how reliable refactoring engines are for refactoring tasks on real software projects.

Then refactoring was performed with PROMISESLAND, which analyzed 438

JavaScript files and 108,615 lines of JavaScript code, across all the 21 subject

systems. This included the identification of asynchronous callback instances and

refactoring them to Promises. After each conversion, we ran the tests to verify

whether the original behaviour is preserved.

The results of our comparison between the technique proposed by Brodu et

al. [17] (indicated as Dues) and PROMISESLAND are shown in Figure 5.4. In all

except two subject systems, PROMISESLAND was able to correctly transform more

asynchronous callbacks right away than using the Dues transpiler. The exceptions,

namely express-user-couchdb and express-endpoint, were not compatible

with the Node.js 0.12 version, needed for native Promises support. After mi-

nor modifications in the dependency declarations of those two projects to depend

on the Bluebird third party Promises implementation, instead of native Promises,

PROMISESLAND was able to refactor with passing tests in these two projects as

well.

In total, Dues transpiler converted 56 instances, while PROMISESLAND con-

verted 188 instances (including those 56).

Out of the 188 converted instances, 73 were converted using the modify-original

strategy and 115 were converted using the wrap-around strategy. When detect-

ing compatible continuations for refactoring, the Dues compiler restricted itself to

choose error-first callbacks only. However, PROMISESLAND does not have such

constrains and determines the suitability for conversion by analyzing the body of

the function itself. Therefore, our approach can select a larger set of asynchronous

callbacks for safe conversion.

These results show not only the ability of PROMISESLAND in detecting asyn-

chronous callbacks, but also its correctness in transforming those into Promises.
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Figure 5.4: The bar chart on the left (a) shows the number of asynchronous
callbacks converted into Dues by using the tool from [17] versus
the number of asynchronous callbacks converted into Promises with
PROMISESLAND. The bar chart on the right (b) shows the number of
subject systems in which the tool from [17] was able to detect asyn-
chronous callbacks for converting into Dues versus the number of sub-
ject systems in which PROMISESLAND was able to detect asynchronous
callbacks for converting into Promises.

5.6.3 Performance (RQ3)

Since the refactoring tool will typically be used in a development environment, the

analysis and transformation of the source code are expected to be completed within

an acceptable time frame, without keeping the developer idle for too long. In this

step, to characterize the performance of PROMISESLAND, we measured the time

to analyze and refactor asynchronous callbacks.

Table 5.3 shows the performance statistics of each phase of the refactoring. All

the measurements were taken on a system with Dual-core 2.16 GHz CPU and 4GB
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of RAM, running Linux. In all cases the refactoring completed within 3 seconds.

The last row of Table 5.3 shows the time taken for the complete refactoring process

end-to-end. Since the migration from asynchronous callbacks to Promises will be a

one time task in software maintenance, we believe the time taken by our technique

is acceptable and does not hinder the developers’ regular work-flow.

Table 5.3: Performance measurements of PROMISESLAND (in seconds)

Phase Min Max Mean Median
Async Function Detection 0.12 1.00 0.51 0.50
Promise Creation Conversion 0.10 0.49 0.29 0.29
Promise Consumption Conversion 0.11 0.47 0.27 0.30
Optimization and Re-writing 0.14 0.95 0.61 0.58
All Phases 0.97 2.57 1.69 1.64

5.7 Discussion

Evaluating PROMISESLAND. We evaluated the correctness of PROMISESLAND

by running an application’s tests after its code was refactored using the tool. This

is a sanity check that the PROMISESLAND maintains program correctness. A more

rigorous evaluation would require more formal techniques and is part of our future

work.

Evaluating Promises. Although at least some developers prefer promises over

asynchronous callbacks, we do not know of any research that considers whether

the use of promises improves JavaScript code quality. Our work contributes two

refactoring techniques and a tool, PROMISESLAND, that implements these tech-

niques. In our evaluation, we focus on features of the tool, such as its precision and

recall. Empirical evaluation of the promises language feature itself and its impli-

cations for software quality and developer productivity remains an open problem.

IDE Intergration. By default PROMISESLAND refactors all asynchronous call-

backs that it finds in the source code of an application, though it can be also run on

a single source file. We believe PROMISESLAND can be integrated into common

JavaScript IDEs to make it more easily accessible to developers, which forms part

of our future work.

59



Async and Wait. Promises are specified in the ECMAScript6 specification. EC-

MAScript7 [5], which is nearing completion, will provide a new option for han-

dling asynchrony in the form of the async and await keywords. These will allow a

linear programming style and permit traditional try/catch error handling, which

is arguably more understandable than promises and will likely gain fast adoption

among developers. However, our perspective is that, regardless of the underlying

mechanism for managing asynchrony, the need for detecting and refactoring asyn-

chronous callbacks will remain. The mechanisms described in this chapter and

implemented as part of PromisesLand are a first step towards more powerful tech-

niques. Promises explicitly encode success and failure paths, which are implicit

in the error-first protocol. With the techniques developed in this chapter, if and

when ECMAScript7 is standardized, we will be one step closer to automating the

refactoring of JavaScript code to use async and await.

Backward Compatibility. Although all major JavaScript runtimes support promises,

lack of backward-compatibility was a concern that we observed in discussions that

we studied (Section 5.2). For example, one developer noted that “[I] too believe

Promises are the future, but it seems that you need to make the users aware of what

Promise library they should use or native browser Promises if supported.”12 In

other words, refactoring a library to use promises requires all clients of the library

to change their code. Fortunately, PROMISESLAND can be used for this to some

extent, but clients must be made aware of this tool.

5.8 Conclusion
It is difficult to imagine a useful JavaScript application that does not use asyn-

chronous callbacks; these are used by applications to respond to GUI events, re-

ceive network messages, schedule timers, etc. But, asynchronous callbacks present

a number of software engineering challenges, including inability to properly catch

and handle errors and callback nesting, which leads developers into “callback hell.”

In this chapter we presented two refactorings, modify-original and wrap-around,

to refactor asynchronous callbacks into promises, a JavaScript language feature

that resolves some of the issues with asynchronous callback. We implemented

12 https://github.com/fixjs/define.js/issues/7
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both refactorings as part of the PROMISESLAND tool and evaluate it on 21 large

JavaScript applications. We found that PROMISESLAND correctly refactors asyn-

chronous callbacks to promises, refactors 235% more callbacks than a tool from

prior work, and runs in under three seconds on all of our evaluation targets.
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Chapter 6

Conclusion and Future Work

In the first part of this thesis, we present an empirical study to characterize JavaScript

callback usage across 138 large JavaScript projects. These include 86 Node.js mod-

ules from the NPM public package registry used in server-side code and 62 subject

systems from a broad spectrum of categories, such as JavaScript MVC frameworks,

games, and data visualization libraries. Analyzing JavaScript code statically to

identify callbacks and to characterize their properties for such a study presents a

number of challenges. For example, JavaScript is a loosely typed language and its

functions are variadic, i.e., they accept a variable number of arguments. We devel-

oped new JavaScript analysis techniques, building on prior techniques and tools, to

identify callbacks and to measure their various features.

The focus of our study is on gaining an understanding of callback usage in

practice. We study questions such as, how often are callbacks used, how deep are

callbacks nested, are anonymous callbacks more common than named callbacks,

are callbacks used differently on the client-side as compared to the server-side,

and so on. Finally we measure the extent to which developers rely on the “error-

first protocol” best practice, and the adoption of two recent proposals to mitigate

callback-related challenges, the Async.js library [40] and Promises [12].

The results of our study show that (1) callbacks are passed as arguments more

than twice as often in server-side code than in client-side code, i.e., 24% of all

server-side call-sites use a callback in server-side code, while only 9% use a call-

back in client-side code; (2) anonymous callbacks are used in 42% of all callback-
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accepting function call-sites; (3) there is extensive callback nesting, namely, most

callbacks nest 2 levels, and some nest as deep as 8 levels, and (4) there is an exten-

sive use of asynchrony associated with callbacks — 75% of all client-side callbacks

were used in conjunction with built-in asynchronous JavaScript APIs.

These results indicate that existing JavaScript analyses and tools [37, 43] often

make simplifying assumptions about JavaScript callbacks that might not be true

in practice. For example, some of them ignore anonymous callbacks, asynchrony,

and callback nesting altogether. Our work stresses the importance of empirically

validating assumptions made in the designs of JavaScript analysis tools.

We believe that our characterization of the real-world use of callbacks in differ-

ent types of JavaScript programs will be useful to tool builders who employ static

and dynamic analyses (e.g., which language corner-cases to analyze). Our results

will also make language designers more aware of how developers use callback-

related language features in practice.

In the second part of this thesis we present a set of program analysis techniques

to detect instances of asynchronous callbacks and to refactor such callbacks, in-

cluding callbacks with the error-first protocol, into promises.

We started by explaining an exploratory study (Section 5.2) in which we exam-

ine several GitHub issues and pull-requests containing terms related to refactoring

of asynchronous callbacks into promises. We found that developers frequently

want to refactor existing code that uses asynchronous callbacks into code that uses

promises (GitHub search returned over 4K issues related to this topic). Further-

more, based on our reading of a random sample of these issues, developers have

a hard time understanding this refactoring process. GitHub search returned only

451 pull-requests related to this topic (a small number of actual transformations as

compared to the number of requests). And, the pull-requests we studied reveal that

the most common style of refactoring is project-independent and amenable to au-

tomation. Although our study is small, we found no mention or use of refactoring

tools: it seems that currently developers manually refactor asynchronous callbacks.

Our exploratory study provides support for the utility of an automated refac-

toring tool. We propose a set of static analysis techniques that support auto-

mated refactoring by: (1) discovering instances of asynchronous callbacks and (2)

transforming instances of asynchronous callbacks into promises. We implemented
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these techniques in a tool called PROMISESLAND and evaluated it on 21 open

source JavaScript projects containing a total of 108,615 lines of code. We found

that PROMISESLAND performs favorably against recent work [17] that transforms

error-first protocol into Dues [16], a simpler (non-standard) form of promises.

Specifically, when evaluating PROMISESLAND on projects evaluated in [17], we

found that our technique is able to refactor 235% more asynchronous callbacks

than the tool proposed in [17]. PROMISESLAND runs in under three seconds on all

of the projects we evaluated and we verified the correctness of our implementation

by testing all of the refactorings with the test-suites that are distributed with these

projects: all the test cases passed after our refactorings, pointing to the behaviour

preservation nature of our technique. We also manually studied the code of four of

the projects to evaluate the precision and recall of PromisesLand. We found that it

has average precision of 100% and average recall of 83%. We believe these results

point to the real-world relevance and efficacy of our techniques.

6.1 Future Work
As future work, we plan to improve the techiniques we devised, to gain further

insights about JavaScript applications and other areas in software engineering. For

example we plan to do further investigations to explain the differences we observed

in usages of callbacks in client- side vs server-side JavaScript. Another avenue of

future work we are interested in is understanding why developers use different vari-

ations of callbacks and which type is used when. With paradigms like Functional

Reactive Programming (FRP) gaining traction, we also plan to investigate whether

the ways developers are using callbacks is changing. To complement the work of

this thesis we also plan on studying how different usages of callbacks impact code

quality and how error-prone are different callbacks by investigating correlation of

callbacks with bug reports.

Much like in JavaScript, anonymous functions (or Lambda expressions) are

present in other programming languages such as C#, Racket, Scheme, Python and

Ruby, as well. We plan to extend the techiniques we developed to analyze programs

of those other languages and characterize software engineering challenges related

to asynchronous execution.

64



Bibliography

[1] Error Handling in Node.js.
https://www.joyent.com/developers/node/design/errors, 2014. Accessed:
2015-11-30. → pages 8

[2] Most depended-upon NMP packages.
https://www.npmjs.com/browse/depended, 2014. Accessed: 2015-11-30. →
pages 15

[3] Github Showcases. https://github.com/showcases, 2014. Accessed:
2015-11-30. → pages 15

[4] CallMeBack. https://github.com/saltlab/callmeback, 2015. Accessed:
2015-11-30. → pages 14, 31

[5] Status, process, and documents for ECMA262.
https://github.com/tc39/ecma262, 2015. Accessed: 2015-11-30. → pages 60

[6] The ECMAScript language specification.
http://wiki.ecmascript.org/doku.php?id=harmony:specification drafts, 2015.
Accessed: 2015-11-30. → pages 35

[7] ECMA General Assembly Press Release. http://www.ecma-international.org/
news/Publication%20of%20ECMA-262%206th%20edition.htm, 2015.
Accessed: 2015-11-30. → pages 3

[8] Escope. https://github.com/estools/escope, 2015. Accessed: 2015-11-30. →
pages 53

[9] Don’t Call Us, We’ll Call You: Characterizing Callbacks in JavaScript.
Dataset release. http://salt.ece.ubc.ca/callback-study/, 2015. Accessed:
2015-11-30. → pages 14, 24, 31

[10] Can I use Promises? http://caniuse.com/#feat=promises, 2015. Accessed:
2015-11-30. → pages 3

65

https://www.joyent.com/developers/node/design/errors
https://www.npmjs.com/browse/depended
https://github.com/showcases
https://github.com/saltlab/callmeback
https://github.com/tc39/ecma262
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
http://www.ecma-international.org/news/Publication%20of%20ECMA-262%206th%20edition.htm
https://github.com/estools/escope
http://salt.ece.ubc.ca/callback-study/
http://caniuse.com/#feat=promises


[11] Promisland: implementation and empirical dataset.
http://salt.ece.ubc.ca/software/promisland, 2015. Accessed: 2015-11-30. →
pages 38, 41, 55

[12] Promises/A+ Promise Specification. https://promisesaplus.com, 2015.
Accessed: 2015-11-30. → pages 9, 19, 62

[13] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman. Understanding
JavaScript Event-based Interactions. In Proceedings of the Intl. Conf. on
Software Engineering (ICSE), pages 367–377. ACM, 2014. → pages 12, 22

[14] S. Alimadadi, A. Mesbah, and K. Pattabiraman. Hybrid DOM-sensitive
change impact analysis for JavaScript. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), pages 321–345,
2015. → pages 12

[15] E. Andreasen and A. Møller. Determinacy in static analysis for jQuery. In
Proc. ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 2014. → pages
12

[16] E. Brodu. Due. https://github.com/etnbrd/due, 2015. Accessed: 2015-11-30.
→ pages 56, 64
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