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Abstract

Disaggregation is a promising new datacenter (DC) architecture which aims to mit-

igate mounting DC costs. Disaggregated datacenters (DDCS) disaggregate tradi-

tional server components into distinct resources. Disaggregation also poses an

interesting paradigm shift. Namely, a DDC possesses traits akin to a distributed

system, as resources no longer fate- share: a CPU can fail independently of an-

other CPU. It is not unreasonable to assume that these disaggregated resources will

still be presented to a user as a single machine. This requirement has implications

for disaggregated system design. For example, what happens if a CPU fails during

a remote cross-processor procedure call?

This is not a new question, as distributed systems, multi-processor systems, and

high performance computing (HPC) systems, have grappled with this challenge.

We look at how this challenge translates to a disaggregated context, in particular,

focusing on the remote procedure call (RPC) abstraction. We design a disaggre-

gated system, Bifröst, to ensure exactly-once semantics for procedure calls under

failure scenarios and provide strict memory consistency. We analyze the overhead

of Bifröst compared to an equivalent RPC implementation in Thrift. Although, we

find that Bifröst has a higher overhead than Thrift, its results are still promising,

showing that we can achieve greater functionality than Thrift with a slightly higher

overhead.
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Lay Summary

Datacenters are costly to operate due to cooling costs, machine upgrades, etc. Dis-

aggregation, a trend of separating resources into individual entities, attempts to

mitigate these costs. Once the resources are separated, the datacenter no longer

provides the same single machine architecture users typically work with.

To provide this single machine abstraction, the disaggregated datacenter must

provide some guarantees about the resources. In particular, what will happen if the

compute resource of the machine fails? We focus on providing memory consis-

tency and communication guarantees even under failure for disaggregated systems.
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Figure 6.1 Bifröst P4 pipeline. . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 7.1 Latency comparison using ping6 on OpenV Switch (OVS)

Mininet and real OVS cluster, averaged over 1000 pings. . . . 27

Figure 7.2 Latency comparison using netperf with TCP and UDP on

OVS Mininet and real OVS cluster. Averaged over 1000 pings

and with varying payload size. . . . . . . . . . . . . . . . . . 28

Figure 7.3 Baseline latency in µs for OVS Mininet compared to P4 Mininet

with ranging payload size. Measurements were taken with

netperf. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix
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Chapter 1

Introduction

Disaggregation is a rising trend that attempts to mitigate mounting datacenter op-

erational costs [21]. Disaggregated datacenters (DDCS) separate the traditional re-

sources of a server-centric architecture into individual components. A blade is a

server which consists of one specific resource type (i.e., CPU, memory, SSD, etc.),

each individual resource is connected over a commodity interconnect (e.g., Ether-

net). This architecture provides many benefits to both users and operators, chief

among them are modularity and density [16].

But, disaggregation also poses an interesting paradigm shift. Namely, a DDC

possesses traits akin to a distributed system as resources no longer fate-share: a

CPU can fail independently of another CPU. Yet, it is reasonable to assume that

disaggregated resources will be compiled and presented to the user as a single

machine to support legacy applications [10, 16].

Datacenters currently support a variety of applications and workloads. Ide-

ally, these applications and workloads will continue to have the same behavior on

DDCS. Yet, a legacy datacenter application, such as Hadoop, cannot reason about

the memory of a node failing or one processor in a node failing. Therefore, a DDC

must provide strict guarantees to legacy applications when components fail.

But, how can the underlying system abstract away CPU failure during a remote

cross-processor procedure call? This particular question has been explored in other

areas of research, such as high performance computing (HPC), multi-processor sys-

tems, and distributed systems.
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Traditional RPC DDC RPC

CPU

Mem

CPU
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call/ret
Switch call/ret args

result

Figure 1.1: Pass by reference semantics for DDC RPC compared to traditional
RPC.

In particular, remote procedure calls (RPCS) have been used in both distributed

systems and multi-processor systems for inter-process communication (IPC). Un-

fortunately, current RPC implementations are limited due to failures and inability

to use pass by reference arguments. There are multiple practical challenges in

attempting to achieve local procedure call semantics (exactly-once) under failure

conditions and reason about memory addresses on remote nodes [8].

We focus on the challenges of building reliable RPC mechanism for disaggrega-

tion. Disaggregation allows for optimizations previously unavailable in distributed

systems, primarily, a global shared memory space. Since DDC resources are com-

piled to represent a single machine, each processor in a DDC “machine” has uni-

form access to a bank of global memory. We leverage this global address space to

support pass by reference arguments (Figure 1.1).

Rack-scale DDCS also differ from distributed systems and multi-processor sys-

tems because most datacenter racks today incorporate a top of rack (TOR) switch.

We find that the TOR switch presents a natural interposition point to observe cross-

processor procedure calls and memory accesses. This allows for a control-plane

program that monitors all procedure calls and pointer arguments. This program

then interfaces with daemons running on the resources to coordinate and enforce

fate-sharing and failure recovery.

We prototype our design, Bifröst, in an emulated disaggregated rack setting.

We evaluate the overhead of our system relative to an equivalent Thrift RPC imple-
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mentation [3].

In summary, our work makes the following two contributions.

• We define an IPC semantics for a disaggregated rack (Section 4).

• We present Bifröst, a system co-designed with the network, that ensures

exactly-once semantics of procedure calls even under failure and enforces

strict memory consistency (Section 5).

We describe our prototype of Bifröst in Section 6 and evaluate it, exploring the

performance implications relative to current RPC implementations (Section 7). We

conclude with the limitations of our work and future directions (Section 8).
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Chapter 2

Motivation

Bifröst is motivated by the recent trend in datacenter architecture and programmable

switches. We argue that, to reap the full benefits of disaggregation, we must take

a holistic approach to designing systems on disaggregated racks. In particular, we

must consider the role of the network as a critical piece in the design. In this work,

we focus on the ability of the network to provide fault tolerance and fate-sharing

enforcement at line rate, ensuring exactly-once semantics for procedure calls, as

well as enforce strict memory consistency semantics.

2.1 Failure rates in large-scale systems
As systems begin to scale beyond traditional servers into large rack-scale machines,

we must consider the implications of failures. HPC has been studying failure rates

in supercomputers for over a decade. They have found that failures not only occur

at a rate which requires mitigation, but also at a high enough rate to have detri-

mental effects on performance [15, 36, 38, 40, 43]. Although disaggregation is

not at the same scale as supercomputers, it is progressing in that direction. Disag-

gregation also has the same requirement as supercomputers: a conglomeration of

resources must be presented as a single entity to the programmer. Therefore, fail-

ures must not only be addressed in disaggregation, but they must also be mitigated

at the system level due to performance implications.
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2.2 Strawman argument
A tempting strawman argument is to enforce traditional fate-sharing semantics.

Essentially making DDCS fail like traditional servers. This will lead to inefficient

use of resources under failure [10]. Disaggregation allows for new fate-sharing

models and possibly new fault- tolerance techniques, these must be discovered and

implemented on a per application basis. In our particular scope, we look beyond

fate-sharing between caller and callees, although our system still provides it. We

design a way to recover from caller and callee failure instead of failing functional

processes.

2.3 Existing architectures
Disaggregation presents a different context than many of the existing similar ar-

chitectures that handle inter-process communication failures (distributed systems,

multi-processor systems, and HPC).

Disaggregation differs from distributed systems because distributed systems

maintain a “node” view, where a collection of resources (CPU, memory, storage)

is lost when a “node” fails [20]. Disaggregation must contend with individual re-

sources failing [10]. Distributed systems also deal with more points of failure than

a disaggregated rack. For example, distributed systems must handle network fail-

ures such as partitioning and packet loss [20]. Due to these differences, distributed

system solutions do not take advantage of the disaggregated resources and make

trade-offs to cover failures not present in disaggregation.

Multi-processor systems differ because they were built on a smaller scale with

static configurations [7, 11]. Disaggregation must contend with failures at the

rack-scale, but can also replace components with free resources in the rack. Multi-

processor systems were also built using intra-connects between resources, not com-

modity, packet-switched networks. Therefore, disaggregation is a less constrained

environment than multi-processor systems, and must expand up on their solutions

to match the elasticity and scale of the environment.

Although HPC systems match if not exceed disaggregation in scale, they rely

heavily on specialized hardware [14]. It is reasonable to assume that disaggregated

racks will still be built from commodity hardware to mitigate costs. Therefore
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they cannot rely on specialized hardware for solutions. HPC systems often require

specific programming paradigms from their users. This is not possible in a DDC

because datacenters today serve a variety of workloads, from hosting web servers

to large-scale distributed data processing. Programmers cannot be constrained in

the workloads they can run in the datacenter.

Each of these areas differ from disaggregation in a variety of ways, but we can

learn from these solutions and port them to the disaggregated context. We attempt

to do so while focusing on IPC.

2.4 Programmable switches for resource management
The TOR switch provides a natural interposition layer for a disaggregated rack. It

observes all traffic, from control flow to memory accesses. This provides a unique

advantage of monitoring the state of the system based on the observed network

traffic. This may seem in violation of the end-to-end argument, but we are only

proposing to move the management functionality that would perform better at the

switch [37]. Taking a decentralized approach to fate-sharing and memory pro-

tection requires coordination of all resources in the system, thus incurring an over-

head of communication. Moving that functionality to a passive centralized solution

which does not require extra hardware should improve system performance.

6



Chapter 3

Background and assumptions

3.1 Disaggregation
There are two types of disaggregation: full and partial. In full disaggregation each

resource is completely independent and attached to the network. For example, a

CPU will not have any on board or directly connected RAM. Partial disaggregation

is where a CPU will have a small amount of RAM directly attached to it, this RAM

acts as an extra cache level and RAM has a small CPU attached to it which acts

as a memory controller [16]. Research has been trending towards disaggregating

hardware components, with partial disaggregation being the first step [16, 28, 29].

Although disaggregation aims to be deployed at the datacenter scale, there are

practical limitations to this, such as interconnect speed and distance between com-

ponents. Recent research and prototypes tend to focus on disaggregation on a rack-

scale for these reasons [1, 10, 16]. Based on the current directions in disaggregation

research, we focus our solution on a partially disaggregated rack.

Disaggregation is not only a trend in datacenter architecture, it is very quickly

becoming a reality. It has been shown that legacy applications can perform in

a partially disaggregated rack-scale environment if bandwidth is greater than 40

Gbps and latency is less than 5 µs [16]. Therefore, we can not only prototype

disaggregated racks [1, 6] but also run legacy applications on them with commodity

interconnects.

7
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Figure 3.1: Protocol independent switch architecture.

3.2 Programmable switches
Programmable switches provide flexibility to network operators by allowing fast

prototyping of new protocols. There are two primary architectures for these switches,

we focus on building for protocol independent switch architecture (PISA). PISA

follows a pipeline match action architecture in the data-plane of the switch (Fig-

ure 3.1). Packets get parsed at ingress by a custom parsing program. They then flow

through the each stage’s match-action table until they reach the egress queues. If a

packet requires special processing, it gets trapped to the control-plane of the switch,

which has a control program running on a CPU. This has become the predominant

architecture for Barefoot switches [4]. There are two fundamental limitations for

programming these switches: 1) the maximum number of pipeline stages is fixed

and 2) memory is explicitly tied to a stage and cannot be used by another stage [13].

Neither of these limitations effect our work, as we do not require much memory

per stage and we do not require many stages of computation.

3.3 Remote procedure calls
RPCS aim to abstract away the complexities of distributed communication by per-

forming server lookup, marshaling/unmarshaling of data, and network setup for

the developer. Although this is an attractive and simplifying abstraction, there are
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many challenges with implementing it. We address two in this work: precise failure

semantics and pass by reference arguments.

Precise failure semantics. In the ideal case, RPCS would transparently pro-

vide local procedure call semantics (exactly-once). This is largely debated as being

impractical, therefore the semantics are relaxed to last one [30]. Last-one mean the

procedure is called continuously, only the last call will successfully complete [30].

The key to transparent fail-over with last-once semantics lies in orphaned callee

discovery and extermination [30]. This requires the control flow state of the pro-

gram to be maintained and used upon failure.

Modern RPC implementations do not provide any fault recovery and leave it up

to the application using RPCS to handle any errors [2, 3, 5]. They tend to focus on

providing fast marshaling and unmarshaling of complex data types [3, 5].

Pass by reference arguments. The simple solution, dereferencing the pointer

and sending its data in the RPC, is only viable for the pointers to values. Nested

pointers (i.e., a struct with a pointer to a pointer) require special consideration [30].

Often, the overhead to implementing such solutions outweighs the benefit of al-

lowing arbitrary pointer arguments. Consequently, most RPC implementations fo-

cus on providing multiple language interfaces instead of pass-by-reference argu-

ments [3, 5].

3.4 Distributed shared memory
Distributed shared memory (DSM) systems provide a global address space for ap-

plications. DSMS make many design decisions regarding granularity of memory

access (i.e., pages or objects), coherence semantics, scalability, and heterogene-

ity [33]. The different coherence semantics range from release consistency to strict

consistency [19, 24, 31, 34]. For example, Grappa provides global linearizable

guarantees for their memory model, a strict consistency model [31]. They guar-

antee that every modification to the data occurs in a serialized manner and every

read returns the most recently written value. Whereas, TreadMarks provides re-

lease consistency, which allows processors to delay exposing changes to shared

data until a synchronization access occurs (acquire or release) [19]. This allowed

TreadMarks to improve upon their performance because they did not require heavy

9



synchronization overhead on all processors and implement a lazy version of release

consistency.
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Chapter 4

Bifröst Semantics

4.1 Memory semantics
Bifröst provides strict memory consistency semantics, where the most recently

written value will be read by the processor. Concurrent writes by the same node

will be serialized and processed in order at the memory server. This is enforced

through a notion of control and lease. When a CPU allocates a region of memory,

it automatically assumes control over that region. When a pointer to a region of

memory is passed as an argument, the memory is implicitly leased to the receiving

CPU.

Figure 4.1 displays the memory semantics during an RPC. The arguments

(ptr1) are first alloc’d by A (caller). This can be done well before the call (i.e.,

read all data into memory) or be done on a per call basis. ptr1 are then passed

in an RPC, leasing them to the callee, the caller maintains control over the memory

but can only read it while the callee maintains the lease (green section). Control

transfer occurs only on returning a result to the caller. First B (callee) allocates

memory for ptr2 and has control over the memory (blue region). When B returns

ptr2, it transfers this control to A, converting the access from blue to orange. This

allows the caller to decide which memory should be freed (ptr1 or ptr2).

11



A
(Caller) ptr 1

B
(Callee)ptr 2

alloc(size)
write(payload)

RPC: foo(ptr1)

alloc(size)

read(ptr1)

write(ptr2)

RPC: return(ptr2)

read(ptr2)
free(ptr1)

Figure 4.1: Bifröst memory semantics during a RPC. The orange region rep-
resents A’s over the pointer. Blue represents B’s control over a pointer.
Green represents a leased pointer, therefore read-only access.

4.2 Call semantics
Under all conditions, Bifröst provides exactly-once semantics. We define exactly-

once semantics as both the caller and the callee observe the call executing exactly

once. This is a harder requirement than current RPC systems, as they allow for

retransmissions, whereas we consider those to be more than one call (giving last-

one semantics). To illustrate this, we focus on a use case where the caller and callee

use pass-by-reference for both argument and result.

Normal operations. The caller makes a RPC with the desired method and

arguments, which is routed to the appropriate callee (Figure 1.1(DDC RPC) dotted

green arrow). The callee then reads in the global address argument (Figure 1.1(DDC

12



Caller Callee

RPC request

RPC reply

f3

f4

f2

f1

Figure 4.2: Call semantics with possible failure points.

RPC) blue arrow), if any, and performs the procedure. Once the callee is finished,

it writes back any relevant output (Figure 1.1(DDC RPC) red arrow) and returns the

result address. The caller then reads the data and continues. Here, Bifröst maintains

exactly-once semantics, but the challenge arises under failure conditions.

Caller failure. If the caller fails at point f1 in Figure 4.2, then the caller and

callee consider the RPC executed, but there is no caller to return to. If the caller fails

at point f2 in Figure 4.2, both the caller and the callee consider the RPC executed

once. But, when the caller is restarted, it would have lost this state. There are two

options: fate-share and recovery. In fate-sharing the callee is forced to fail if the

caller fails, and both are restarted. This provides exactly-once semantics as both

the caller and callee do not know of the previous attempted execution after reboot.

Exactly-once semantics can be achieved using RPC-based checkpointing. The

caller considers the RPC initiated when it successfully sends the request. At this

point, it waits for the callee’s response. A checkpoint is taken shortly before the

RPC has been initiated. When the caller fails, it is restarted with this checkpoint,

thus preserving the state immediately after the RPC has been sent. Both the caller

and the callee both have a record of the RPC executing only once.

Callee failure. If the callee fails at point f3 in Figure 4.2, then the callee is not

13



alive to field the caller’s request. This can be fixed by retransmitting the request

on the caller side until the callee is back, but this violates the definition of exactly-

once. If the callee fails at f4 in Figure 4.2, then both the caller and callee consider

the RPC initiated but not executed. The first failure can be addressed by in-network

retransmission of the packet once the callee has been rebooted. Essentially, the

caller does not retransmit the message, from its perspective the RPC was only called

once, but the underlying network handles retransmission of the packet to the callee.

The failure case at f4 can be handled using the same RPC checkpointing

scheme described above. Here, the callee is checkpointed immediately after the

RPC is received. Therefore it can restart right at the point where it considers the

RPC initiated but not executed. This poses problems for non-idempotent operations

on global memory. To handle non-idempotent operations, the global memory used

by the callee will fate-share with the callee. Thus requiring the callee, upon reboot,

to reload the arguments and any other state from the global memory snapshot.
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Chapter 5

Bifröst design

Figure 5.1 shows an overview of the Bifröst architecture. Each of the compute

resources that comprise a single machine are connected via the network to the

global address space. The global address space is provided by a distributed shared

memory system run on top of the memory resources.

Application processes call RPCS using the Bifröst RPC library. This RPC library

uses the Bifröst application programming interface (API) to manage global mem-

ory. The semantics described in Section 4 are enforced in the ToR switch by the

control-plane program Gatekeeper.

5.1 API
Bifröst presents two APIS, one for accessing global memory and the other for RPCS

(Table 5.1). The memory API provides four basic primitives for operating on global

memory: alloc, read, write, and free. All of these operations are performed on

global address pointers. The RPC API only provides two calls, one for the caller

and one for the callee. The RPC library handles all marshaling and unmarshaling of

the arguments and results and handles the translation of a method call to a remote

call.
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Figure 5.1: Overview of Bifröst architecture.

API Call

Memory

ptr← alloc(int size)
int← read(char* buf, int len, ptr addr)
int← write(char* buf, int len, ptr addr)
free(ptr addr)

RPC caller result←<method name>(args, ...)
RPC callee export(<method name>)

Table 5.1: Bifröst API.

5.2 Network protocol
Figure 5.2 shows the Bifröst packet header. It contains a Bifröst identifier that the

parser on the switch data-plane uses to determine if the packet should go through

the Bifröst parsing tree. The call type has four possible values: CALL (1), RE-

PLY (2), EXCEPTION (3), and ONEWAY (4). This is drawn from Thrift RPC

implementation. Next is the length of the method name and then the method name
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Figure 5.2: Bifröst packet header.

itself. We fix the method name to be 16 bytes to avoid variable length parsing in

the switch. The RPC identifier is a unique number which denotes a particular RPC

operation for this caller.

The global memory address pointer is a 16 byte address which points to the pass

by reference arguments. When multiple arguments are pass by reference, the RPC

library allocates memory for each argument, then writes the data in flattened form

to one global address. This global address is then sent in the RPC. This removes the

need to parse a variable list of pointer arguments to enforce the memory semantics

discussed in Section 4.1. The rest of the payload is not parsed by the switch.

5.3 Gatekeeper: switch control-plane
Gatekeeper, run on the control-plane of the switch, tracks and manages all Bifröst

traffic. Gatekeeper performs three main tasks: resource management, memory

protection, and fate-sharing and fault tolerance for RPCS. It enforces every decision

as a match-action rule in the data-plane of the switch.

Resource management. To present the user with a single machine, the con-

trolling entity must be able to determine available resources. When a resource

becomes alive, either from reboot or initial plug in, it automatically sends an initi-

ation message. This message contains resource type and capacity or specification.
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Figure 5.3: Bifröst RPC fault recovery scheme.

The Gatekeeper maintains a list of these resources and their status (free, in-use, or

failed). When a program has been compiled, procedures are then assigned to com-

pute resources. The compute resources send a similar initialization message to the

switch. This message is trapped to the control-plane where Gatekeeper generates a

match-action rule to automatically forwarded any Bifröst packet to that particular

compute resource for processing. This alleviates the need to directly connect RPC

callers and callees, it provides the RPC registration service in the switch data-plane.

Memory protection. The switch data-plane drops all packets for a pointer by

default. It only allows access if a table rule is generated to allow access. Based on

the memory semantics described earlier (Section 4.1), when the data-plane parses
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a Bifröst RPC packet with a global address pointer, it traps to the Gatekeeper in the

control-plane. Gatekeeper generates a match-action rule to allow the destination

IP address (callee) to read that pointer. It removes the rule which allows the source

IP address (caller) to write to that pointer. These rules match based on a pointer,

operation, and source IP address from a memory access packet.

The access control table update is represented by the first dashed line and the

change from orange access to green access in Figure 4.1. When the RPC com-

pletes, the data-plane parses the response RPC packet, if the reply packet contains

a global address, it traps to Gatekeeper which removes the rule allowing the source

IP address (callee) to access the pointer. Gatekeeper also must update the table to

allow the destination IP address (caller) to perform any memory operation on the

returned pointer and the arguments previously sent.

When the data-plane parses any memory access packet, it looks at the opera-

tion, the source address, and the pointer address. If the operation is allocation, it

traps to Gatekeeper which generates a table rule to allow all memory access pack-

ets from the requesting address. If the operation is a free, Gatekeeper removes any

match-action rule regarding that pointer. It does not update the tables for a read or

write operation.

Fate-sharing and fault tolerance. The switch data-plane traps to the control-

plane when it encounters an RPC packet, here Gatekeeper maintains a graph of

active RPCS. This graph represents the control and data flow of the program. It

allows Gatekeeper to not only track nested RPCS but also pointers that are passed

in multiple RPCS. When a resource fails, Gatekeeper determines the failure domain

of that RPC and if it should be recovered. These decisions can be made on a call

by call basis, it is also possible to make them programmable by the developer [10].

Once the failure domain is computed, the control-plane removes rules in the match-

action tables which forwarded packets to the blacklisted IP addresses. By default,

these packets will be dropped.

We deploy checkpoint and rollback recovery for both caller and callee failures.

We base our checkpoints and committal of checkpoints on RPC calls (Figure 5.3).

This means we have a guarantee of RPC state at each particular checkpoint. Gate-

keeper keeps track of the most recent checkpoint committed by a node.

There are four points in which a checkpoint is created and committed: RPC
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initiation (a1), RPC initiation received (b1), RPC reply (b2), RPC reply received

(a2). When A (caller) creates the checkpoint a1, the checkpoint is committed to

Gatekeeper when the RPC sent to B (callee). This ensures that the checkpoint a1

is only committed when the RPC is actually sent across the network. At this point,

we guarantee that A views the RPC as “called”.

When the RPC is received by B, B immediately checkpoints its state (b1) and

commits that to Gatekeeper. Once b1 is committed, B can proceed with computing

the procedure. This ensures that B will restart at the beginning of computation,

ensuring the RPC is received once, but never executed more than once (based on

the view of the callee). When B has completed the procedure, it checkpoints its

state again (b2) and commits it with the return of the RPC. Thus representing that B

considers the RPC “completed”. When A has received the RPC reply, it immediately

checkpoints its state (a2) and commits it before continuing computation. Once a2

is committed, A considers the RPC “completed”.

Each checkpoint represents the RPC status to the particular node making the

checkpoint. This aids in recovery as we can determine whether or not the caller

thinks it called the procedure, the callee received the request, the callee completed

the request, and if the caller received the result. Maintaining exactly-once seman-

tics is still not trivial, especially in the cases where the caller and callee check-

points do not reflect the same status, in particular, f4 in Figure 5.3. To solve this,

we have Gatekeeper maintain a most recent RPC for every caller/callee pair. When

f4 occurs, Gatekeeper will see that A considers the RPC called, but B failed be-

fore receiving that call. Therefore, Gatekeeper will restart B from the most recent

checkpoint and then replay the last RPC from the pair to synchronize their view of

the RPC. A does not know of the replayed packet and still considers the RPC to be

called once.

5.4 Bifröst daemons
Bifröst requires coordination on the resource side to achieve transparency to the

application, execute checkpointing or snapshotting, and perform memory clean-

up. The Bifröst daemons change roles depending on which type of resource they

run on.
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Compute daemons keep track of the number of times a pointer has been leased

and initiate the synchronous checkpoint before an RPC is sent across the network

and before the RPC return is passed up to the process. When performing the check-

pointing, the compute daemon appends the commit information on the end of the

Bifröst packet. This extra information is removed by the compute daemon on the

callee node. Memory daemons handle memory API requests, perform memory

snapshotting on a specified region, and service memory clean-up requests.
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Chapter 6

Implementation

To prototype our design, we modify an existing RPC framework (Thrift), and built a

basic DSM system. The switch data-plane program is written in P4 and Gatekeeper

is written in C++. We simulate the network topology in Mininet with a P4 switch.

6.1 Thrift modifications
Thrift is an RPC library originally developed at Facebook, but open-sourced as

an Apache project [3]. Thrift provides flexibility with different abstraction lay-

ers: thrift file, TClient/TProcessor, TProtocol, TTransport (buffered,

framed, etc.), and TSocket. The user specifies the thrift file which is then com-

piled and generates the TClient/TProcessor for both the client and the server

respectively. TProtocol defines the marshaling and unmarshaling for every

Thrift data type. When a data type is marshaled it is written to the transport. For

complex data types, such as lists Thrift marshals each item in the list. TTransport

defines wrapper functions to perform network operations. TSocket performs the

actual network I/O functions.

We start with the Thrift c glib library, using the binary protocol (sends the

data as raw bytes) and the buffered transport (buffers the data before calling socket

send or receive). This means, when Thrift marshals a data type, it “writes” to the

buffered transport. If the write buffer is full, the transport sends the message over

TCP, if the buffer isn’t full, it writes the message to the buffer. The same is true for
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reads. This can be inefficient when the buffer size is much smaller than the data

being sent.

Bifröst requires UDP to perform the rerouting and packet drops required to

enforce our desired semantics. The entire Thrift design is based on the connection

abstraction of TCP. This required us to modify the TTransport layer. We created

a buffered transport for UDP which uses a UDP socket. The UDP socket performs

whole reads of messages, which are then buffered at the UDP buffered transport

layer. We also created a connectionless server using the UDP socket. Instead of

listening and accepting connections, the server receives an RPC, processes it, and

replies. This removes the need for any handshake between the client and server as

well as reduces the number of open sockets. It currently does not handle multiple

connections, nor does it queue outstanding requests. We plan on addressing that in

future work.

6.2 DSM system
Our basic DSM system exposes a key value store interface, where the global address

is the key and the data is the value. We chose to embed the global address and

operation type in an IPv6 address to aid in load balancing, memory migration, and,

it is addressable from any requesting machine. The first four bytes of the IPv6

address are zero, the fifth byte is the DSM system prefix. The sixth byte is the DSM

server machine ID. The seventh byte is the operation (allocate, read, write, free).

The eighth byte is the arguments (if any). Finally, the last eight bytes are the 64 bit

pointer. Embedding the global address in IPv6 is not required for our system. The

global address can be passed in an application level header or payload and parsed

at the server side.

6.3 P4 data-plane program
P4 is a highly reconfigurable, protocol and target (i.e., switch) independent switch

data-plane language [9]. P4 programs for the PISA we described in Section 3. A

P4 program has the following components: ingress parser, match-action tables,

actions, and header definitions.

The packets flow along the pipeline by first being parsed based on the parsing
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Figure 6.1: Bifröst P4 pipeline.

rules (Figure 6.1). Then our P4 program checks to determine if the packet is a

Bifröst packet based on the parsed header fields. This allows it to co-exist with

other network functions on the switch. Once it determines it is a Bifröst packet,

it applies the Bifröst match-action rules. When the switch data-plane encounters a

Bifröst call and reply or a DSM allocate, it traps to the control-plane CPU, where

Gatekeeper runs, by generating a digest.

6.4 Gatekeeper
Gatekeeper is written in C++ and runs on the switch control-plane CPU. When

Gatekeeper receives a trap from the switch data-plane it determines which type

event has occurred: RPC initiation, RPC return, RPC failure, Mem alloc,

Mem free. In the case of RPC initiation, Gatekeeper parses the packet to

determine if any global address is used. It then generates match-action rules to en-

force memory protection updates on the global addresses involved in the RPC call.

Finally, it creates an RPC entry in its control flow graph. The control flow graph is

maintained in a node-centric data structure. Each node represents a caller or callee

with a directed edge between the two. Each directed edge contains the call method

name and pointer argument. When a node is added to the graph, it is also added to

a list of current RPCS. This list contains node pointers into the graph.

When an RPC returns (RPC return, Gatekeeper must perform clean up oper-

ations on its graph. First, it updates the match-action rules for the global addresses

involved in the RPC. Then it removes the callee and caller pair from the graph

(assuming the caller does not have other outstanding RPCS).

When Gatekeeper receives an RPC failure, it walks the graph to see what
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caller or callees the failed processor was associated with. Gatekeeper then builds

the failure domain based off of those associations. It will initiate memory clean up

for the pointers controlled by the failed processor IP address. Simultaneously, it

will get a new processor and initiate it from the checkpoint. Any requests going to

the failed processor are queued at Gatekeeper. Once the new processor is initial-

ized, the held requests are forwarded to the new processor. Any entry in the tables

that forwarded to the failed processor are re-written to point to the new processor.

For Mem alloc and Mem free, Gatekeeper updates the access control list

for the memory pointers. It adds an entry for Mem alloc and removes an entry

for Mem free, assuming the requesting IP address is the one that controls that

memory pointer. If the requesting IP address does not control the pointer, the

packet is dropped.
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Chapter 7

Evaluation

We focus our evaluation on the overhead of our system compared to the overhead

of Thrift. We attempt to answer five questions regarding our system:

• How realistic is our test environment?

• What is the base overhead of Thrift and Bifröst?

• What is the impact of our Thrift modifications?

• What is the cost of Thrift and Bifröst on a simple workload?

• What is the latency breakdown in Thrift and Bifröst?

7.1 Methodology
We perform our tests using a network simulation environment called Mininet [23].

Mininet simulates a customized network topology, allowing the user to rapidly

prototype and test switch and application code. It is easily customizable, we use it

with a P4 switch to prototype our P4 program and Gatekeeper. We also use it with

an OpenV Switch (OVS) for our performance testing.

Our topology consists of six machines: one RPC client (c1), two RPC servers

(s1, s2), and three DSM servers (m1, m2, m3). s1 and s2 run two different RPC

services. s1 handles ping requests, s2 handles echo and array operation requests.

m1, m2, and m3 run the memory daemon to service memory access requests.
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Figure 7.1: Latency comparison using ping6 on OVS Mininet and real OVS

cluster, averaged over 1000 pings.

We use two measurement programs for our baseline measurements: ping6

and netperf. ping6 uses Internet control message protocol (ICMP) to request

and receive an echo between two nodes and measures the round trip time (RTT) in

milliseconds. netperf performs network testing between two hosts, measuring

a variety of metrics such as bandwidth and RTT. We use two specific netperf

tests: TCP RR and UDP RR. TCP RR stands for TCP request/receive. It performs

as many requests with a specified payload in ten seconds. It then outputs the 50th

percentile, 90th percentile, 99th percentile, mean, and standard deviation latency

measurements in µs. UDP RR performs the same test, except over an UDP con-

nection.
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Figure 7.2: Latency comparison using netperf with TCP and UDP on OVS

Mininet and real OVS cluster. Averaged over 1000 pings and with vary-
ing payload size.

7.2 How realistic is our test environment?
We look at the cost of pings (using ping6 and netperf) in Mininet compared

to two servers with 10Gb NICs connected with an OVS. Figure 7.1 shows that the

ping latency of Mininet is lower than hardware. This is expected as Mininet runs

on a single host and does not require traversing the physical NIC. Mininet has an

average RTT of 75 µs whereas hardware has an average RTT of 231 µs. When

looking at protocol specific numbers, Mininet outperforms the servers by a factor

4x for TCP and 3x for UDP on small data sizes. With large data sizes, Mininet

starts to outperform the real servers by a factor of 10x for TCP and 7x for UDP, as

expected (Figure 7.2).

Based on these measurements, Mininet shows an optimistic performance com-

pared to real hardware. We, therefore, base our performance evaluation on relative
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Figure 7.3: Baseline latency in µs for OVS Mininet compared to P4 Mininet
with ranging payload size. Measurements were taken with netperf.

overhead.

We also ran netperf on the OVS and P4 versions of Mininet with varying

payload sizes (Figure 7.3). The P4 switch in Mininet is an average 20x slower for

TCP and 16x for UDP. We believe this is due to the P4 parsing overhead and that

the P4 switch implementation is not optimized. We plan to investigate this further

in future work. But, because of the large performance overhead, we use the OVS

Mininet for the rest of our tests.

7.3 What is the base overhead of Thrift and Bifröst?
To determine the base overhead of our system, we run two microbenchmarks: ping

test and echo test. The ping test calls a “ping” RPC, which the server just returns

ACK. This is the simplest RPC, with no parameters or return value. The total UD-

P/TCP payload size is 29 bytes, including the Thrift header. To provide a baseline,
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Figure 7.4: Thrift and Bifröst running on OVS Mininet compared to the
netperf round trip latency measurement for TCP and UDP.

we also ran netperf with a 29 byte request payload and a 1 byte reply payload.

We ran the ping test 100 times and took the average latency. Thrift has a 3.09x

overhead compared to TCP on the OVS Mininet and Bifröst has a 3.78x overhead

compared to UDP on the OVS Mininet (Figure 7.4). Although the Bifröst overhead

is slightly higher than the Thrift overhead (only 0.69 difference), we believe this

difference is negligible.

7.4 What is the impact of UDP vs TCP?
To determine how the difference of protocol (UDP vs. TCP) effects our perfor-

mance measurements of Bifröst, we compare the performance of regular Thrift

(over TCP) with our Thrift UDP implementation, but no Bifröst management or

DSM system. We ran a the ping test on the OVS switch for 100 iterations and av-

eraged the RTT in µs. Thrift over TCP had an average latency of 37 µs, whereas
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Figure 7.5: Thrift RPC ping test using TCP and UDP as underlying transports,
averaged over 100 iterations.

Thrift over UDP had an average latency of 54 µs (Figure 7.5). The fact that UDP

increases the latency by ∼45% is interesting, as UDP should have better perfor-

mance than TCP. We plan to investigate why Thrift UDP performs worse in future

work.

7.5 What are the overheads on a simple workload?
To get a preliminary idea of what the performance of Bifröst would be running

real-world workloads, we tested two simple workloads: increment array and add

arrays. Increment array calls an RPC with a byte array and a byte as parameters

and expects a byte array of the same length as a return value. The server receives

this request and increments the passed array with the passed value. Add arrays

sends two byte arrays and expects a byte array of the same length as a return value.

The server performs the element-wise addition of the two arrays.
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Figure 7.6: Increment array RPC test on OVS Mininet with Thrift, Bifröst,
TCP netperf baseline and UDP netperf baseline. Averaged over
100 iterations and varying data size.

We ran the test on varying payload sizes (up to 2 MB) and for 100 iterations.

Figure 7.6 shows the average latency of Bifröst, Thrift, UDP baseline, and TCP

baseline on the OVS Mininet. Bifröst’s performance increases exponentially with

the data size. Thrift’s performance also increases, but does so slightly more er-

ratically. Compared to their baselines, Bifröst has, on average, a 28x overhead

compared to UDP and Thrift has a 21x average overhead compared to TCP. This is

due to the extra reads and writes Bifröst must perform to access global memory.

Figure 7.7 shows the comparison between Bifröst, Thrift, UDP, and TCP over

the OVS Mininet running the add arrays workload. Bifröst performs worse than

Thrift on average. Bifröst has an overhead of 41x compared to UDP and Thrift has

an overhead of 22x.

We found that Thrift had very odd behavior once the packet is larger than 512

bytes, then subsides when the packet is larger than 9000 bytes. It seems that the
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Figure 7.7: Add array RPC test on OVS Mininet with Thrift, Bifröst, TCP
baseline and UDP baseline. The baselines are NetPerf latencies. Aver-
aged over 100 iterations and varying data size.

TCP segment size gets stuck at 512 bytes, even though the packet is larger, which

causes malformed packets. The negotiated maximum segment size (MSS) is 8940,

which is our maximum transmission unit (MTU), 9000 bytes, minus the TCP and

IP headers. We found the same behavior when running on the P4 Mininet. There is

also a secondary spike which occurs at 131072 bytes. We plan to investigate both

spikes in future work.

7.6 What is the latency breakdown in Thrift and Bifröst?
To discover where most time is spent, we also gather breakdown measurements

for both Thrift and Bifröst over 100 iterations of each RPC and an array size of

16384 bytes. This will help pinpoint possible bottlenecks in both systems. We

measured the costs into pre-processing, marshaling, network, unmarshaling, server
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computation, and post-processing. Pre- and post-processing occur on the client

side, this is where the arrays are populated, written or read from remote memory

or copied. Marshaling and unmarshaling occurs on both the client and server side.

Figures 7.8 shows a breakdown of our results. Bifröst spent the most time dur-

ing the pre- and post-processing stages (labeled as other in Figure 7.8). Outside of

that, Bifröst spent the most time in server computation. Both these are expected as

the memory access calls occur during pre-processing, post-processing, and server

computation in Bifröst.

Thrift spent most of the time in the processing stages for add array. Whereas

Thrift spent most of the increment array latency sending from the server to the

client. We found these results interesting, as we expected the majority of Thrift

latency to be in the network. This is only true in the increment array test, where

80% of the time is the server responding to the client. It is interesting that these
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times are not reflective of their payload size either, as increment array is returning

less data than it sent. Therefore, it would make sense that the client to server

network time would be the largest in Thrift, not the server to the client. We plan to

investigate this with the latency spike we see in TCP (Figure 7.6 and Figure 7.7).
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Chapter 8

Discussion

8.1 Limitations
There are several limitations to our current design based on the assumptions and

trade-offs we made. Our design currently assumes rack-scale disaggregation. This

is currently the most plausible form of disaggregation, but limits the scalability of

our solution. Since we rely on the switch to have a global view of the resources, our

design does not directly translate to a scale larger than a rack. It is not impossible

to scale our design beyond a rack. It requires more complexity and coordination,

as now Gatekeeper must act as a distributed system which makes decisions about

failures and memory across racks. This can introduce many complexities, such as

rack failures, switch failures, and distributed consensus.

Another limitation of our system is that we do not handle any network failures.

In particular, we consider the network to be lossless, which is not true for some

commodity networks. To address this, we would need to add retransmissions and

timeouts to our protocol, which in turn, will add a performance overhead.

We also limit our design by having fixed size method names and only one

global pointer per RPC. We did this to simplify the parsing on the data-plane.

There is a trade-off between variable length header entries and performance of the

P4 parsing script. We elected to choose performance of the script over supporting

variable-length method names and pointer lists. We could modify the P4 program

to handle variable-length parsing, but, do not find it necessary at this point.
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8.2 Future work
We split our future work into two categories: system improvement and evalua-

tion improvement. System improvement describes optimizations or functionality

we wish to add to our system. Evaluation improvement describes any questions

regarding our current evaluation we wish to address or more tests we wish to run.

8.2.1 System improvements

Some of our performance overhead is due to the unmarshaling on the server side.

We plan to mitigate this by creating a custom Thrift type for our shared pointer

scheme. These types will be used just like C pointers but the RPC library will

handle the marshaling and unmarshaling into the IPv6 pointer mechanism our DSM

uses. This will be advantageous as the shared pointers are currently stored as Thrift

byte arrays. This means Thrift will marshal and unmarshal them byte by byte,

allowing for variable byte arrays. Since our pointers are fixed size, we can send

a fixed size byte array instead of marshaling in pieces. This will also aid in the

transparency of the developer, as they will just be using a different pointer type in

C, but all the access semantics remain the same.

As stated in Section 6, our server does not handle multiple requests from

clients. We plan to address this by creating a multi-threaded server which main-

tains a thread pool for servicing requests. As requests come in, it logs the thread ID

of the assigned thread then passes the packet. If all threads are busy, it will put the

packet in a buffer that is FIFO. Once a thread is completed (i.e., sends the REPLY),

it will assign it a packet from the buffer.

We’d also like to implement our fault tolerance design and fate-sharing en-

forcement. This requires implementing a snapshotting mechanism on the mem-

ory daemon and a checkpointing mechanism on the compute daemon. Both of

these mechanisms must have low execution time and be synchronous, to ensure no

outgoing network packets occur while the snapshot or checkpoint is taken. This

atomicity is difficult to achieve, but it will provide a basis for building new fault

tolerance techniques.

In this work, we only considered CPU failures, but we must also design and

evaluate memory fault tolerance techniques. We hope to show that performing
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most of the coordination and computation at the switch will allow for new fault

tolerance techniques.

Once the fault tolerance mechanism and fate-sharing enforcement is imple-

mented for both memory and CPU, we would like to experiment with different

possible fate-sharing models and fault tolerance techniques as described in [10].

In particular, we believe the tainted fate-sharing model would be advantageous for

our DSM system. There might also be advantages to having a specific fate-sharing

model for nested RPCS or different fate-sharing models and fault tolerance depend-

ing on if the processor was the caller or callee.

8.2.2 Evaluation improvements

Our current evaluation is limited in only showing the performance characteristics

of Thrift vs. Bifröst and evaluating the end to end latency of each operation. We

hope to expand upon our evaluation in multiple ways, first addressing interesting

questions raised from our current numbers and secondly, measuring the effective-

ness of other aspects of our system.

Our next step would be to measure the memory protection in the switch, look-

ing at the overhead for the P4 program in the data-plane and Gatekeeper in the

control-plane. We also plan to test the memory protection, testing to see if the se-

mantics we describe align with the implementation. For example, the application

will attempt to access a memory pointer that it does not control. We then plan to

compare our memory protection scheme to another DSM with the same semantics

(strict consistency). This will allow us to compare our performance overhead for

strict consistency to their implementation.

Once the fault tolerance technique is implemented we will also evaluate it for

correctness and performance overhead. We plan to do so in a similar manner to

memory protection. First, we will profile it to determine where it spends the most

time and to determine the overhead of the P4 program. Then we will test the

correctness by injecting faults while an application is running. Finally, we will

compare our implementation to an application which provides fault tolerance for

RPCS.

Next, when the pointers are integrated into Thrift, we hope to modify a multi-
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threaded application to use Bifröst. There we can do a full macrobenchmark of the

performance of that application on Bifröst compared to a single machine, showing

relative performance overheads. Then we will test for when failures occur, char-

acterizing the failure the application has and measuring the time it takes Bifröst to

recover. Finally, we hope to run these tests on real hardware instead of a simulator.

This will require us to obtain a programmable switch, at least 40 Gbps Ethernet,

and at least 40 Gb NICs.
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Chapter 9

Related work

9.1 Network and system co-design.
Combining system design with network elements is not a new idea [10, 17, 25, 26].

With the recent advancements in networking, such as software defined network-

ing (SDN) and programmable switches, there has been a stronger call for network

integrated systems.

Programmable switches allow for more flexibility in parsing packets, allow-

ing for rapid prototyping of new protocols. There is also an added advantage of

moving some compute to the switch itself [17, 26, 27]. Recently, NetCache pro-

vided fast key-value store caching layer in the switch at line rate [17]. NetCache

physically stored the key-value cache in data- plane memory [17]. We do not take

this approach as we only perform memory access control updates in the switch

data-plane. All other computation is done in the control-plane.

One intuitive way of using SDN to solve failures is to re-route the traffic. Pre-

vious work extended SDN controllers to reroute traffic when links or switches

fail [22, 25, 32]. Albatross, not only re-routes around partitions, but it enforces

them by killing the partitioned node [25]. We enforce fate-sharing in a similar way

to Albatross by dropping all packets going to and from the failure domain. We ex-

pand upon this principle to provide access control for shared memory in the switch

data-plane.
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9.2 Context-based RPC.
There has been a large amount of work customizing or improving RPC for particular

environments [18, 39, 41, 42]. Similar to our work, Stuedi, et. al. integrated RPC

with remote memory access (RDMA) for datacenter environments [41]. Kalia, et.

al. improve upon that work by using two-sided datagram RDMA [18] and Su et.

al. develop a new RDMA paradigm to achieve even better performance under RPC.

Our work goes a step further by leveraging functionality in the network to achieve

stronger guarantees instead of focusing on improving performance.

RPC has also been studied in the context of multi-processor operating sys-

tems [7, 11, 12, 35]. Paradigm [12], Hive [11], and Sprite [35] all utilize RPC

as a mode of IPC between different kernels or processors. Hive, in particular, fo-

cusing on fault mitigation for the processor shared memory. This is orthogonal

to our work, as they use RPC to communicate but do not consider RPC failure or

recovery, they only focus on fault containment for memory [11]. More recently,

Barrelfish, provides a multi-kernel abstraction for multi-processor systems, with

the inter-kernel communication being handled by a user-level RPC library. Their

implementation differs in two ways: 1) RPCS are not set over a network, but shared

memory and 2) they do not consider partial failures [7]. In a disaggregated system,

performing a network RPC is identical to writing out to shared memory, therefore

we focus on a network based RPC implementation. We also consider RPC failure

cases and recovery strategies.
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Chapter 10

Conclusion

We have designed and prototyped a system porting RPCS to a disaggregated con-

text with network managed memory protection and exactly-once semantics. Bifröst

achieves promising performance results, performing slightly worse than Thrift with-

out optimizations. Our results show that the majority of time spent in Bifröst is due

to DSM accesses, whereas Thrift’s latency is due to the reply from the server to the

client. In our future work, we plan to address Bifröst’s performance challenges by

making several improvements to our system and evaluation.

We believe that, to reap the full benefits of disaggregation, we must take a

holistic approach to designing systems on disaggregated racks. In particular, we

must consider the role of the network as a critical piece in the design. This work is

one of the initial steps in realizing the benefits of disaggregation by co-designing

with the network.
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