
Distributed state
trade-offs

Ousterhout. The Role of Distributed State.

1

Last class:
What is distributed state?

• Snapshot of the system in time: what everyone is doing at
that moment

• Birds of flock metaphor

• Distributed global state: State at process + State of
channels

• Snapshot starts … snapshot ends

• Resulting snapshotted state is in-between (potential
state that is reachable from start, and can reach end
state)

2

Distributed state in this
paper (why so different?)

• Dist. State in previous paper is the same!? We don’t capture it, we only use aspects of it.

• Prev. Paper — distributed state: state at node + state in channels. Both states are user defined.

• Why did we snapshot state? One is for debugging. Second is for reliability — re-create the system
from the snapshot.

• In this paper — “information retained in one place that describes something, or is determined by
something, somewhere else in the system”. (Template definition)

• Don’t care about internal states of processes, nor channels (consider state after msgs are
reflected / processed by the node)

• Simpler! Easier to reason about: better for reasoning about the design of the system!

• Not as generally useful — you can’t re-create the system from this state

• Did he really define .. anything!? What does this def. really mean?

• Distribute state is really up to you define! It’s a subjective thing. “Statelessness and statefulness”
— these are important, but highly subjective (without state there is no computation).

3

How does NFS work?
• (see whiteboard)

• Designed for simplicity, and ability to restart the server

• Server stateless but clients do retain state (mapping of files to ID handles, and file cache)

• Retry mechanism works for both msg loss and server crashes

• Idempotent msgs yield same result: retries aren’t handled specially. There is no diff. Between
retry and original msg (on the client side!)

• But, no consistency semantics per se (not formally defined, wait and see, race conditions on
multiple writers)

• High msg cost, disk write through inefficient on server (client blocks waiting on server disk).

• Statelessness reduces a client operation to performance of the disk on the server. Coupling
perf of client ops to disk perf (this is bad)

• Disks are getting faster much slower than processors (and networks) => the above is a
terrible strategy long term. You *need* state for performance.

4

How does NFS work?

• NVRAM to the rescue?

• NVRAM ~ RAM that survives failures (e.g.,
capacitor that flushes state to disk on failure)

• NVRAM replaces disk b/c it is faster than disk
and it survives failures, so you can use it during
normal operation instead of disk

5

How does Sprite work?
• (see whiteboard)

• Server stateful: knows which file is opened by which client

• Server reconstructs state when clients reconnect with reopen

• Client stateful: has a cache of dirty blocks (written data)

• Clients flush state on close, or periodically

• Messages are not idempotent

• Recovery complex

• Sequential consistency with multiple writers

• Performance is much much faster (due to multiple levels of caching on both read
and write paths)

6

Tradeoffs of dist. state
• The bad

• Reliability requires distributed state or complete statelessness, but
trades off with opportunities for efficiencies.

• Dist state has a storage cost (duplication: diff nodes store same or
similar information e.g., caching)

• Dist state is more complex. If you want to rely on it, you have to trust
it, to trust it you need to know what it represents and its consistency

• These require extra energy/complexity to maintain (more
protocols)

• Dist state produces more corner cases (failures)

7

Tradeoffs of dist. state
• The good

• More fault tolerant (redundant information)

• More independent views on state means more chance for a
reliable view when adversaries are in the system ~ byzantine
fault tolerance

• Higher performance! I can cache state. I can move/maintain
state closer to clients. More opportunities for parallelism (with
more nodes).

• You can avoid disks b/c distributed state is tolerant of node
failures.

8

Next class

• Schneider. Implementing fault-tolerant services
using the state machine approach: a tutorial.
CSUR 1990.

• State machine replication (fault tolerance)
abstraction

• Key paper for reasoning about SMR

9

