Distributed state
trade-offs

Ousterhout. The Role of Distributed State.




| ast class:
What Is distributed state”

e Snapshot of the system in time: what everyone is doing at
that moment

e Birds of flock metaphor

- Distributed global state: State at process + State of




Distributed state In this
paper (why so ditferent”?

Dist. State in previous paper is the same!? We don’t capture it, we only use aspects of it.
Prev. Paper — distributed state: state at node + state in channels. Both states are user defined.

Why did we snapshot state? One is for debugging. Second is for reliability — re-create the system
from the snapshot.

In this paper — “information retained in one place that describes something, or is determined by
something, somewhere else in the system”. (Template definition)

~* Don't care about internal states of processes, nor channels (consider state after msgs are

YoI=)



How does NFS work"?

(see whiteboard)

Designed for simplicity, and ability to restart the server

Server stateless but clients do retain state (mapping of files to ID handles, and file cache)

Retry mechanism works for both msg loss and server crashes

l[dempotent msgs yield same result: retries aren’t handled specially. There is no diff. Between
retry and original msg (on the client side!)




How does NFS work"?

e NVRAM to the rescue?

« NVRAM ~ RAM that survives failures (e.g.,
£an2cipLingbisues state fo disk on faluy




How does Sprite work™

* (see whiteboara
* Server stateful: knows which file is opened by which client

e Server reconstructs state when clients reconnect with reopen

* Client stateful: has a cache of dirty blocks (written data




Tradeofts of dist. state

- The bad

* Reliablility requires distributed state or complete statelessness, but
trades off with opportunities for efficiencies.

e Dist state has a storage cost (duplication: diff nodes store same or
similar information e.g., caching




Tradeofts of dist. state

- The good

* More fault tolerant (redundant information

 More independent views on state means more chance for a

reliable view when adversaries are in the system ~ byzantine
fault tolerance




N ERE

e Schneider. Implementing fault-tolerant services

using the state machine approach: a tutorial.
CSUR 1990.




