Fine-grained mobility

N the Emerald system

Juletal TOCS 19588




538B projects




Emerald in a nutshell

 PL + Distributed systems
e “Mobility” taken to an extreme

* Object oriented lang: everything is an object. Unit of distribution/migration is an object.

e A process lives inside an object (also mobile)

 * Language level support




EFmerald

» What are the advantages of mobility? (Section 1: the sell)

» Load sharing / load balance : move computation/data at runtime, based on programmer’s directives (with a static view).
Has huge flexibility for moving load. But has no capacity for measuring load or dynamically responding to load.

« Communication performance: move computation to data (or data to computation). All big data frameworks (pin
computation to data and retain it there for a long time). Emerald is highly sequential (lack of parallelism), very fine
grained.

 Availability: Move objects to different nodes to survive failures. What happens on failure? Predict the future (planned
outage)? They never discuss replication. My system gets to run even though some nodes are down (because a node
has no direct exec dependencies on another node). They provide checkpointing mechanism (store a freezer version of
your objects to disk; and then reconstitute them). True to partial failure. - . - v



https://en.wikipedia.org/wiki/Cyber_foraging

Emerald : trust the compiller

» What are the mobility primitives? (Section 2.3)

Locate X : returns explicit location of X

Move X to Z : co-locate objects of nodes X, Z (or explicitly mode to nodeX)
» Note: kernel not obliged to move (Absurd? Suspicious? Easy?)

» May not be satisfiable — e.g., Z cannot be found.

Fix X at nodeY : perf heuristic to pin obj at node

Unfix X

Refix )




Emerald : trust the compiller

e Calling semantics
 RPC.: call by value (too difficult to figure out references
* Argus : call by value (...

* Emerald : call by reference ok! In fact, everything is call by
reference (except for small things).




RPC-Argus-Emerald

« What'’s the right level of integration with a PL?
« RPC v Argus+Emerald different levels of integration
« Programmer convenience?

» What about programmer productivity?

* How much distribution should you hide/expose to the programmer?




EFmerald

e Environment assumptions

« Homogeneous nodes/machines : simplifies compilation (same
code/lISA, stack layout, register set); simplifies translation.

e Local area network : low latency (UDP for networking

* Single administrative d

iy

0

T G (A i o i

main (all nodes trust all other nodes




Emerald locating obj

e Locating objects (ARP variant)

Check local kernel mapping first

If not, and exists forwarding address, ask the node at the address

If the node knows another node, as that node

If no nodes have the object, then broadcast




Emerald GC

e (Distributed) Garbage collection

 Mark-and-sweep

e Concurrent with execution




Next: Mace PL

e More PL

e [his time PL

D200 2020 vis aller

—~merald!




