
Paxos
(deck based on slides from

Lorenzo Alvisi and Tom Anderson)

 1

The Part-Time Parliament

Leslie Lamport
ACM Transactions on Computer Systems 16, 2 (May 1998), 133-169. Also appeared as SRC Research
Report 49. This paper was first submitted in 1990, setting a personal record for publication delay that
has since been broken by [60].
ACM SIGOPS Hall of Fame Award in 2012

Parliament determines
laws by passing sequence
of numbered decrees

Legislators can leave and
enter the chamber at
arbitrary times

No centralized record of
approved decrees–
instead, each legislator
carries a ledger

 2

https://www.microsoft.com/en-us/research/people/lamport/

Safe Replication?

Suppose using primary/hot standby replication

How can we tell if primary has failed versus is
slow? (if slow, might end up with two primaries!)

FLP: impossible for a deterministic protocol to
guarantee consensus in bounded time in an
asynchronous distributed system (even if no
failures actually occur and all messages are
delivered)

 3

2PC vs. Paxos?

Two phase commit: blocks if coordinator
fails after the prepare message is sent,
until the coordinator recovers

Paxos: non-blocking as long as a majority
of participants are alive, provided there is
a sufficiently long period without further
failures

By FLP cannot have both safety+liveness

Paxos guarantees safety, tries to be live
 4

Operating model

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not
corrupted

 5

The Game: Consensus
SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen (consistency)

A process never learns that a value has been
chosen unless it has been (~atomicity)

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it

 6

The Game: Consensus
SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen (consistency)

A process never learns that a value has been
chosen unless it has been (~atomicity)

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it
Consensus about one value can be generalized to consensus about a sequence of values: the
sequence of operations to apply to a replicated state machine. Essentially, consensus about “what is
the next operation to apply?” Note that in general, we don’t care what the order of operations is, as
long as there is an order, we all agree on it, and we can continue to make progress during failures. 7

The Players

Proposers

Acceptors

Learners

 8

The Players

Proposers

Acceptors

Learners
In a real implementation, these roles are
implemented by a single node/process

 9

Choosing a value

Use a single
acceptor

5

7

6

2

6

proposers

acceptor

 10

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

6
6

6
6 is chosen!

6

 11

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen! (if not, then no
liveness = cannot make progress)

First requirement:

P1: An acceptor must accept the first
proposal that it receives

 12

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first
proposal that it receives

...but what if we have multiple proposers, each
proposing a different value?

 13

P1 + multiple proposers

5

7

6

2

5

6

2

No value is chosen!

 14

Handling multiple proposals
Realization: acceptors must (be able to) accept
more than one proposal

To track different proposals, assign a natural
number to each proposal (psn : proposal number)

A proposal is then a pair (psn, value)

Different proposals have different psn

A proposal is chosen: when it has been
accepted by a majority of acceptors

A value is chosen: when a single proposal
with that value has been chosen

 15

Choosing a unique value
We need to guarantee that all chosen
proposals result in choosing the same value

We introduce a second requirement (by
induction on the proposal number):

P2. If a proposal with value v is chosen,
then every higher-numbered proposal that
is chosen has value v

which can be satisfied by:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
accepted by any acceptor has value v 16

5

7

6

2

(2,7)

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

(1,6)

(1,6)

6 is chosen!

(with psn 1) by P1

How does it know

it should not accept?

(violating P2a)

(P1: An acceptor must accept the first proposal that it receives)
(P2a: If a proposal with value v is chosen, then every higher-

numbered proposal accepted by any acceptor has value v)

 17

Another take on P2

Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal issued
by any proposer has value v

 18

Another take on P2

Recall P2a:

If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b: If a proposal with value v is chosen,
then every higher-numbered proposal issued
by any proposer has value v

 19

P2b is more restrictive than
P2a: can’t accept a proposal,
if it isn’t issued.

Implementing P2 (I)

Suppose a proposer p wants to issue a proposal
numbered n. What value should p propose?

If (n’,v) with n’ < n is chosen, then in every
majority set S of acceptors at least one acceptor
has accepted (n’,v)...

...so, if there is a majority set S where no acceptor
has accepted (or will accept) a proposal with
number less than n, then p can propose any value

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

 20

Implementing P2 (II)

What if for all S (majority set) some acceptor
ends up accepting a pair (n’,v) with n’ < n?

Claim (if met, P2b satisfied): p should propose the
value of the highest numbered proposal among all
accepted proposals numbered less than n

Proof: By induction on the number of proposals
issued after a proposal is chosen (or by
contradiction)

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

 21

Implementing P2 (III)

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of a
majority of acceptors such that either:

no acceptor in S has accepted any proposal numbered
less than n, or

v is the value of the highest-numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

 22

P2c in action

No acceptor in S
has accepted any
proposal numbered
less than psn n (=2)

(4,8)

(1,5)

(5,2)

S

(2,7)

(psn, value) 23

P2c in action

v (2) is the value of the
highest-numbered
proposal (#5) among
all proposals numbered
less than n (<18) and
accepted by the
acceptors in S

(4,8)

(3,2)

(5,2)

S

(18,2)

(psn, value) 24

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,2)

(3,2)

(4,1)

S
(18,1)

Issued
first

 25

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,2)

(3,2)

(4,1)

S
(18,1)

(5,2)
(5,2)

Race condition between proposers:

The invariant may be violated

S’

Issued
first

Issued
second,

Arrives
first!

 26

Future telling?

To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than n, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of
a majority of acceptors such that either….

 27

Future telling?

To maintain P2c, a proposer that wishes to
propose a proposal numbered n must learn
the highest-numbered proposal with number
less than n, if any, that has been or will be
accepted by each acceptor in some majority
of acceptors

Key strategy: avoid predicting the future by
extracting a promise from a majority of
acceptors not to subsequently accept any
proposals numbered less than n

 28

 The proposer’s protocol (I)

A proposer chooses a new proposal number n and sends
a request to each member of some (majority) set of
acceptors, asking it to respond with:

a. A promise never again to accept a proposal
numbered less than n, and

b. The accepted proposal with highest number less
than n if any.

...call this a prepare request with number n

 29

 The proposer’s protocol (II)
If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number n and value v, where v is

a. the value of the highest-numbered proposal
among the responses, or

b. is any value selected by the proposer if
responders returned no proposals

A proposer issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.

...call this an accept request.

 30

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers. It can ignore these without
affecting safety.

It can always respond to a prepare request

It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered
 n iff it has not responded to a prepare
request having number greater than n

...which subsumes P1.
 31

Putting it together

Initial sys config:

(2,2)

(3,2)

(4,1)

(4,1)
(4,1)

(psn, value) 32

Minority fails

(2,2)

(3,2)

(4,1)

(4,1)
(4,1)

Note that if maj.
fails, then Paxos is
unavailable (not live)

=> as long as maj.
alive, there will be

some overlap
between consecutive

majorities

(psn, value) 33

Working with remaining 3/5
majority

(2,2)

(3,2)

(4,1)

S
prepare (18)

(4,1)
(4,1)

(18,?)

prepare (18)

prepare (18)

(psn, value) 34

(2,2)

(3,2)

(4,1)

S

promised (18)

promised (18)

(18,?)

promised (18)

prepare (18)

prepare (18)

prepare (18)

(4,1)
(4,1)

Working with remaining 3/5
majority

(psn, value) 35

promised (18)

(2,2)

(3,2)

(4,1)

S(18,1)
promise(18,2,2)

promise(18,4,1)

promised (18)

promised (18)
promise(18,3,2)

(4,1)
(4,1)

Working with remaining 3/5
majority

(psn, value)

Promised to
not accept

any psn < 18

 36

(2,2)

(3,2)

(4,1)

S(18,1)

prepare (5)

prepare (5)

promised (18)

promised (18)

(5,?) prepare (5)

promised (18)

(4,1)
(4,1)

Majority overlap
Note: maj. overlap

(does not need to be
complete)

(psn, value) 37

Prepare(5) conflicts with
promised (18)

(2,2)

(3,2)

(4,1)

S(18,1)

promised (18)(5,?)

prepare (5)

prepare (5)

prepare (5)

promised (18)

promised (18)

(4,1)
(4,1)

(psn, value)

…Promised to
not accept

any psn < 18

 38

(18,1)

Nope

(5,?)

(2,2)

(3,2)

(4,1) promised (18)

promised (18)

promised (18)
Nope
Nope

(4,1)
(4,1)

Prepare(5) conflicts with
promised (18)

S

(psn, value)

…Promised to
not accept

any psn < 18

 39

Outcome: just one proposer can
(temporarily) prepare a majority

(2,2)

(3,2)

(4,1)

S(18,1)

promised (18)

promised (18)

No majority

promised (18)

Majority

(5,?)

(4,1)
(4,1)

(psn, value) 40

Outcome: just one proposer can
(temporarily) prepare a majority

(2,2)

(3,2)

(4,1)

S(18,1)

promised (18)

promised (18)

No majority

promised (18)

Majority

(5,?)

(4,1)
(4,1)

(psn, value)

accept (18,1)

accept (18,1)

accept (18,1)

 41

Outcome: just one proposer can
(temporarily) prepare a majority

(2,2)

(3,2)

(4,1)

S(18,1)

promised (18)

promised (18)

No majority

promised (18)

Majority

(5,?)

(4,1)
(4,1)

(psn, value)

accept (18,1)

accept (18,1)

accept (18,1)

disk

disk

disk

 42

Small optimizations

If an acceptor receives a prepare request numbered n
when it has already responded to a prepare request for
n’ > n, then the acceptor can simply ignore this prepare.

An acceptor can also ignore prepare requests for
proposals it has already accepted

...so an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered prepare request to which it has
responded.

This information needs to be stored on stable storage to
allow restarts.

 43

Summary: Choosing a
value: Phase 1

A proposer chooses a new n and sends <prepare,n> to a
majority of acceptors

If an acceptor receives <prepare,n’>, where n’ > n of
any <prepare,n> to which it has responded, then it
responds to <prepare, n’ > with

a promise not to accept any more proposals
numbered less than n’

the highest numbered proposal (if any) that it has
accepted

 44

Summary: Choosing a
value: Phase 2

If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

the value of the highest numbered proposal
among the responses

any value if the responses reported no proposals

If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded to
<prepare,n’> , where n’ > n

 45

Learning chosen
values (I)

Once a value is chosen, learners should find out
about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

 46

Learning chosen
values (II)

Because of failures (message loss and acceptor
crashes) a learner may not learn that a value
has been chosen

☠

(4,8)

(7,6)

Was 6
chosen?

Propose something!
 47

Liveness

Progress is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

 48

Liveness

Progress is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

 49

Liveness

Progress is not guaranteed:

n1 < n2 < n3 < n4 < …

p1

<propose,n1>

<accept(n1,v1)>

<propose,n3>

p2

<propose,n2>

<accept(n2,v2)>

<propose,n4>

Tim
e

 50

Delegation
Paxos is expensive compared to primary/
backup; can we get the best of both worlds?

Paxos group leases responsibility for order
of operations to a primary, for a limited
period

If primary fails, wait for lease to expire,
then can resume operation (after checking
backups)

If no failures, can refresh lease as needed
 51

Paxos and FLP

Paxos is always safe–despite asynchrony

Once a leader is elected, Paxos is live.

“Ciao ciao” FLP?

To be live, Paxos requires a single leader

“Leader election” is impossible in an
asynchronous system (gotcha!)

Given FLP, Paxos is the next best thing:
always safe, and live during periods of synchrony

 52

Implementing State
Machine Replication (RSM)

Implement a sequence of separate instances of
consensus, where the value chosen by the ith
instance is the ith message in the sequence.

Each server assumes all three roles in each
instance of the algorithm.

Assume that the set of servers is fixed

 53

RSM: The role of the
leader

In normal operation, elect a single server to be
a leader. The leader acts as the distinguished
proposer in all instances of the consensus
algorithm.

Clients send commands to the leader, which decides
where in the sequence each command should appear.

If the leader, for example, decides that a client
command is the kth command, it tries to have the
command chosen as the value in the kth instance of
consensus.

 54

RSM: A new leader 		is
elected...

Since				is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

 then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

λ

λ

λ

 55

RSM: Stop-gap measures

All replicas can execute commands 1-10, but not 13-16
because 11 and 12 haven't yet been chosen.

 can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

 runs phase 2 of consensus for instance numbers 11
and 12.

Once consensus is achieved, all replicas can execute
all commands through 16.

λ

λ

 56

RSM: To infinity, and
beyond

 can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

 just sends a message with a sufficiently high
proposal number for all instances

An acceptor replies non trivially only for instances for
which it has already accepted a value

λ

λ

 57

Byzantine Paxos

What if a Paxos node goes rogue? (or two?)

Solution sketch: instead of just one node in
the overlap between majority sets, need
more: 2f + 1, to handle f byzantine nodes

The extra f+1 outvote the f byzantine
nodes, allowing you to make progress.

Practical Byzantine Fault Tolerance (PBFT)
protocol implements this idea

 58

Clearly, Paxos is easy to corrupt -- if a proposer proposes a different
value than what the acceptors returned; or if the acceptor says that a
value was accepted when it wasn’t, or vice versa.
How do we fix this?

PBFT in one slide

 59

f=1 (byzantine failures)

3f+1 = 4 (minimum nodes in the system to survive f = 1)

primary

replica

replica

replica

client

PBFT (slightly) explained

 60

- Request: the user sends transactions to the primary.
- Pre-prepare: the primary produces a proposal containing transactions and forwards to all
replicas.
- Prepare: Upon receiving a proposal, backups will verify it, and if it succeeds, they will
broadcast prepare message to all other replicas. Backups do nothing if verification fails.
This is the first round of voting.
- Commit: Upon receiving prepare messages from ⅔ of all backups, replicas will now
broadcast commit messages. This is the second round of voting.
- Reply: the client sees the result of consensus.

primary

replica

replica

replica

client

