

Data-Intensive Distributed Computing

CS 451/651 431/631 (Winter 2018)

Mix of slides from:

- Reza Zadeh http://reza-zadeh.com
- Jimmy Lin's course at UWaterloo: http://lintool.github.io/bigdata-2018w/

So far in 416

Focused on distributed coordination

- Distributed algorithms: consensus, atomic commitment, mutual exclusion,...
- Distributed systems: CDN, DFS, BT, BChains, Chord, ...

What about programmability?

So far in 416

Focused on distributed coordination

- Distributed algorithms: consensus, atomic commitment, mutual exclusion,...
- Distributed systems: CDN, DFS, BT, BChains, Chord, ..

What about programmability?

Well, there is RPC. What, is that not enough?

Reality check

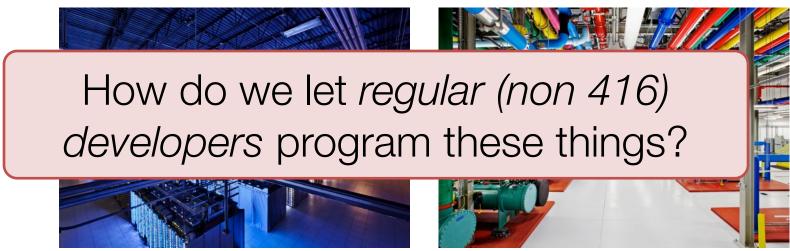
Data growing faster than processing speeds

Only solution is to parallelize on large clusters » Widely use in both enterprises and web industry

Reality check

Data growing faster than processing speeds

Only solution is to parallelize on large clusters » Widely use in both enterprises and web industry



Crawls 20B web pages a day (2012) Search index is 100+ PB (5/2014) Bigtable serves 2+ EB, 600M QPS (5/2014)

400B pages, 10+ PB (2/2014)

19 Hadoop clusters: 600 PB, 40k servers (9/2015)

Hadoop: 10K nodes, 150K cores, 150 PB (4/2014)

150 PB on 50k+ servers running 15k apps (6/2011)

300 PB data in Hive + 600 TB/day (4/2014)

LHC: ~15 PB a year

S3: 2T objects, I.IM request/second (4/2013)

> LSST: 6-10 PB a year (~ 2020)

640K ought to be enough for anybody.

> SKA: 0.3 – 1.5 EB per year (~2020)

How much data?

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, ...

Very difficult to do at scale:

- » How to split problem across nodes?
 - Must consider network & data locality
- » How to deal with failures? (inevitable at scale)
- » Even worse: stragglers (node not failed, but slow)
- » Heterogeneity of nodes, their locations, complex env
- » Have to write programs for each machine

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, ...

Very difficult to do at scale:

Rarely used in commodity datacenters

- » How to deal with failures? (inevitable at scale)
- » Even worse: stragglers (node not failed, but slow)
- » Heterogeneity of nodes, their locations, complex env
- » Have to write programs for each machine

Traditional Dist. computing

Message-passing between nodes: RPC, MPI, ...

Very difficult to do at scale:

Rarely used in commodity datacenters

» How to deal with failures? (inevitable at scale)

Key question: how do we let developers leverage distribution without having them build a distributed system per use case?

env

The datacenter is the computer!

It's all about the right level of abstraction

Moving beyond the von Neumann architecture What's the "instruction set" of the datacenter computer?

Hide system-level details from the developers

No more race conditions, lock contention, etc. No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how

Developer specifies the computation that needs to be performed Execution framework ("runtime") handles actual execution

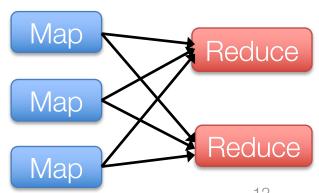
Data Flow Models

Restrict the programming interface so that the system can do more automatically

Express jobs as graphs of high-level operators

- » <u>System</u> picks how to split each operator into tasks and where to run each task
- » Re-run parts for fault recovery

Best example: MapReduce



Why Use a Data Flow Engine?

Ease of programming

» High-level functions instead of message passing

Wide deployment

» More common than MPI, especially "near" data

Scalability to huge commodity node clusters » Even HPC world is now concerned about resilience

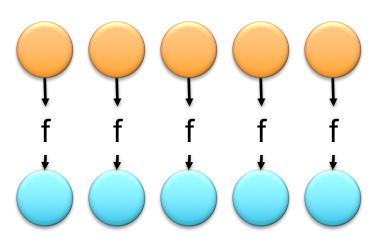
Examples: Spark, Pig, Hive, Storm, but initially publicized with MapReduce

Roots in Functional Programming

Simplest data-parallel abstraction

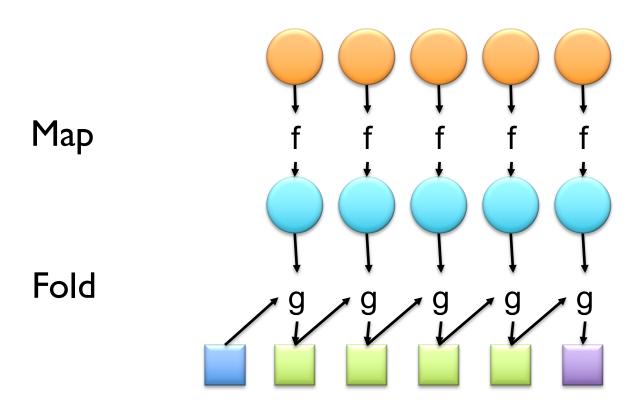
Process a large number of records: "do" something to each

Мар



Roots in Functional Programming

Let's add in aggregation!



MapReduce = Functional programming + distributed computing!

A Data-Parallel Abstraction

Process a large number of records

Map "Do something" to each

Group intermediate results

"Aggregate" intermediate results Reduce

Write final results

Key idea: provide a functional abstraction for these two operations

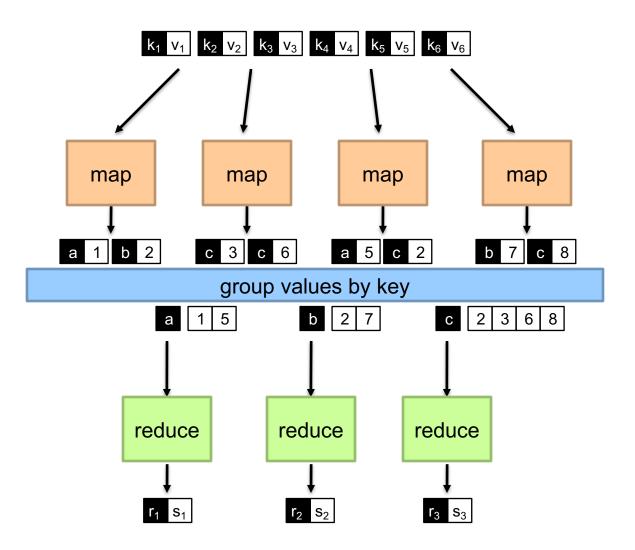
MapReduce

Programmer specifies two functions:

```
map (k_1, v_1) \rightarrow List[(k_2, v_2)]
reduce (k_2, List[v_2]) \rightarrow List[(k_3, v_3)]
```

All values with the same key are sent to the same reducer

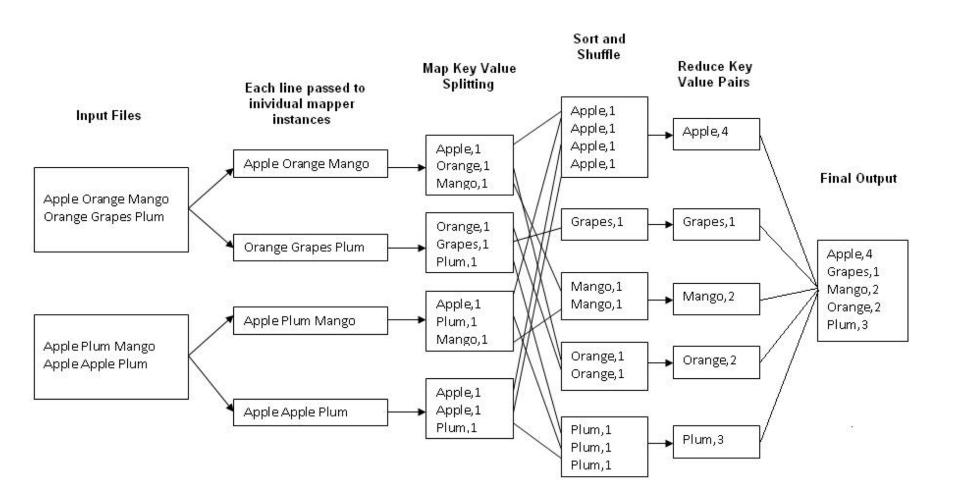
The execution framework handles everything else...



"Hello World" MapReduce: Word Count

```
def map(key: Long, value: String) = {
  for (word <- tokenize(value)) {</pre>
    emit(word, 1)
def reduce(key: String, values: Iterable[Int]) = {
  for (value <- values) {</pre>
    sum += value
  emit(key, sum)
```

"Hello World" MapReduce: Word Count



MapReduce

Programmer specifies two functions:

```
map (k_1, v_1) \rightarrow List[(k_2, v_2)]
reduce (k_2, List[v_2]) \rightarrow List[(k_3, v_3)]
```

All values with the same key are sent to the same reducer

The execution framework handles everything else... What's "everything else"?

MapReduce "Runtime"

Handles scheduling

Assigns workers to map and reduce tasks

Handles "data distribution"

Moves processes to data

Handles synchronization

Groups intermediate data

Handles errors and faults

Detects worker failures and restarts

MapReduce Implementations

Google has a proprietary implementation in C++
Bindings in Java, Python

Hadoop provides an open-source implementation in Java

Development begun by Yahoo, later an Apache project
Used in production at Facebook, Twitter, LinkedIn, Netflix, ...

Large and expanding software ecosystem
Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

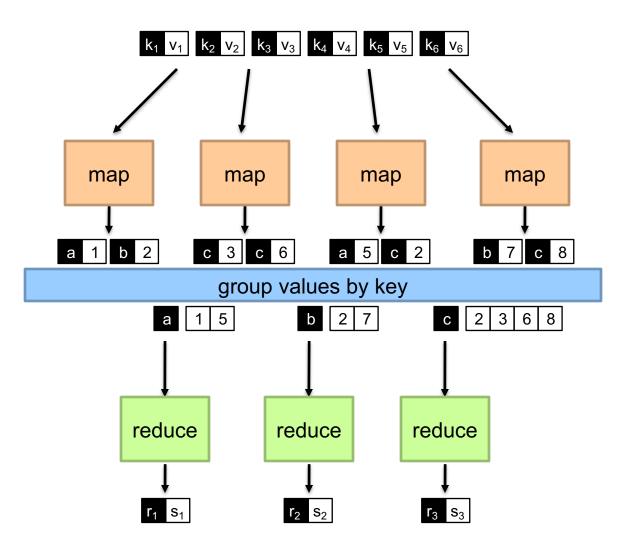
Limitations of MapReduce

MapReduce is great at one-pass computation, but inefficient for *multi-pass* algorithms

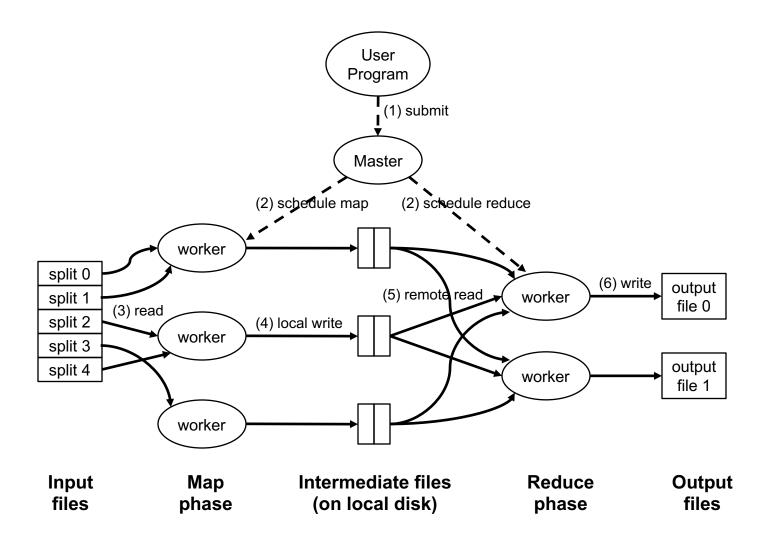
No efficient primitives for data sharing

- » State between steps goes to distributed file system
- » Slows down pipeline: replication & disk storage

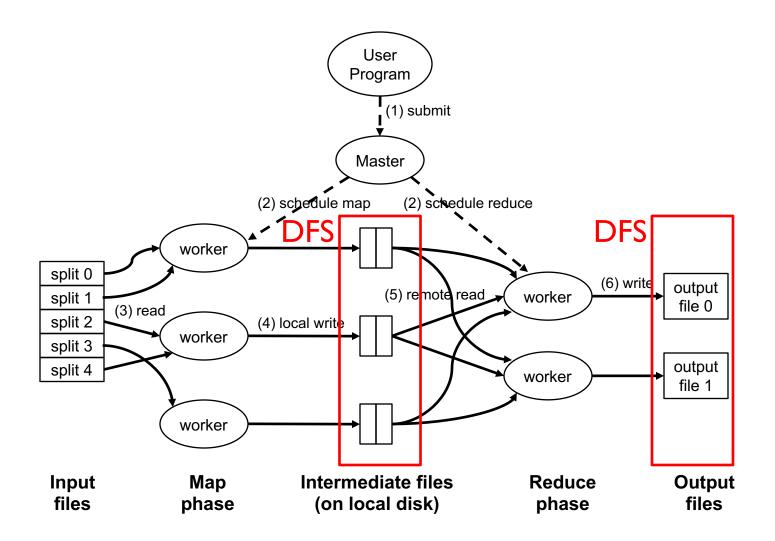
Logical View



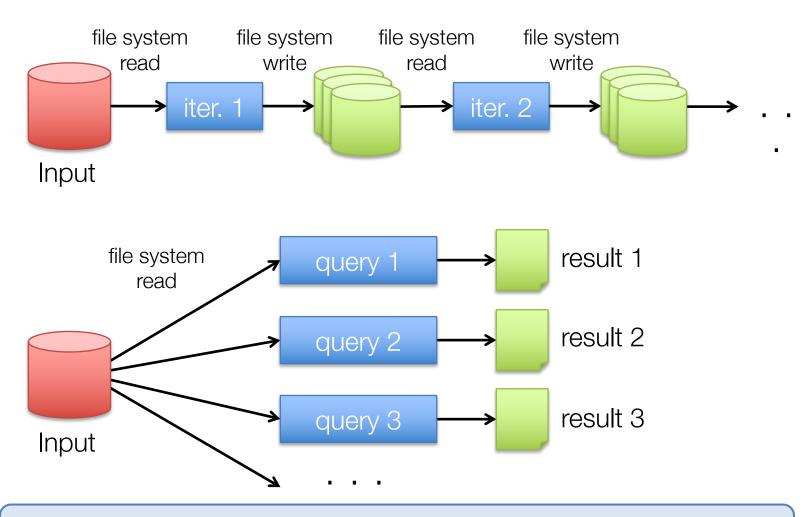
Physical View



Physical View



Example: Iterative Apps

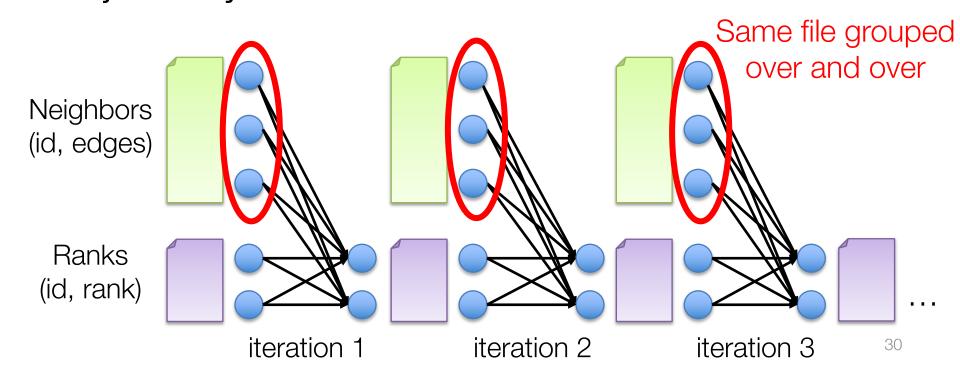


Commonly spend 90% of time doing I/O

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page adjacency lists and rank vector



MapReduce -> Spark

While MapReduce is simple, composing multiple M/R stages has a huge I/O cost: network + disk

Spark compute engine:

Extends a PL with data-flow operators and inmemory distributed collection data-structure "Resilient distributed datasets" (RDD)

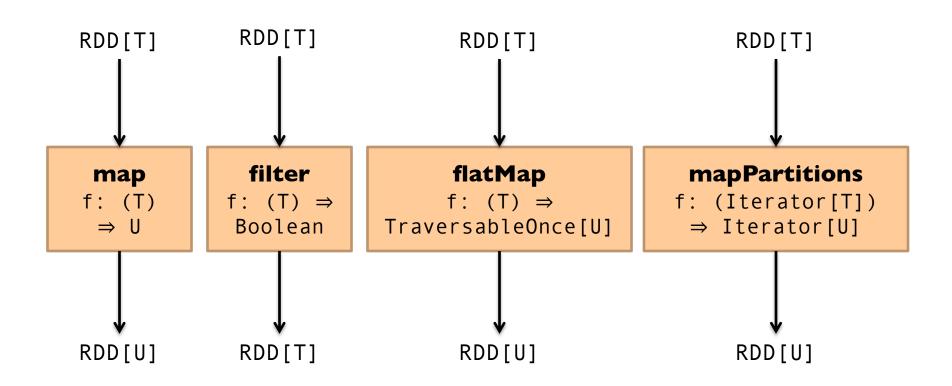
Spark

Answer to "What's beyond MapReduce?"

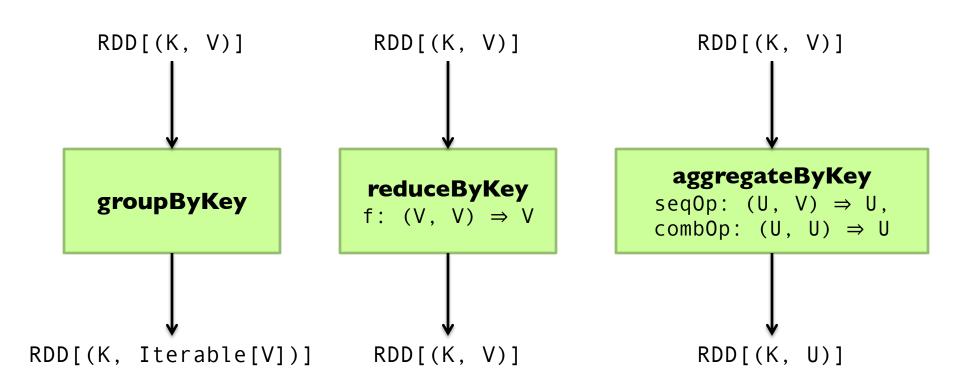
Brief history:

Developed at UC Berkeley AMPLab in 2009
Open-sourced in 2010
Became top-level Apache project in February 2014
Commercial support provided by DataBricks

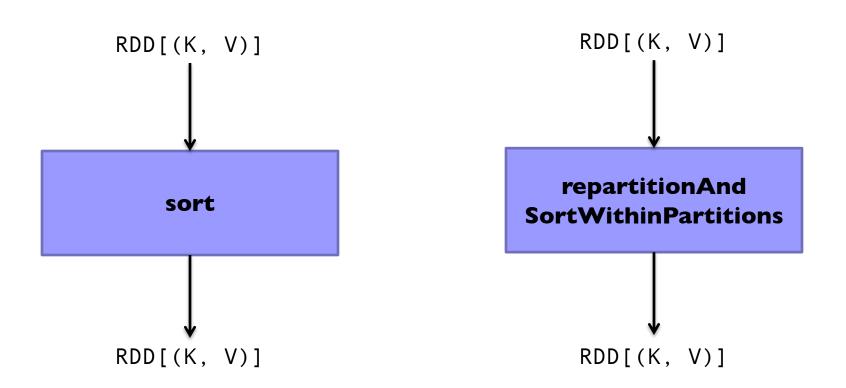
Map-like Operations



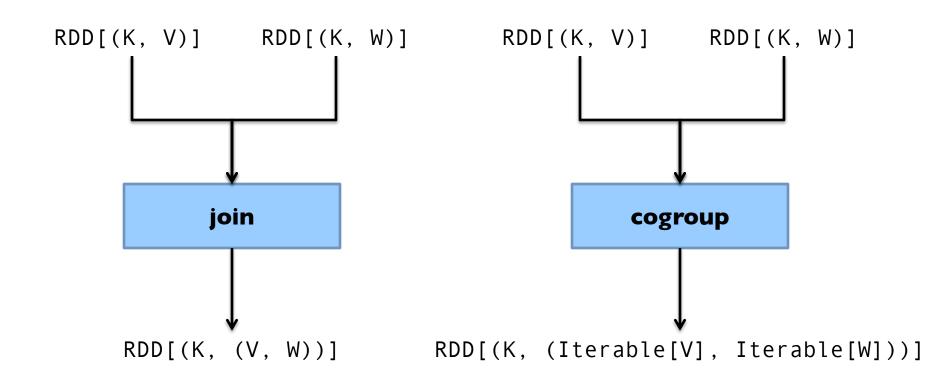
Reduce-like Operations



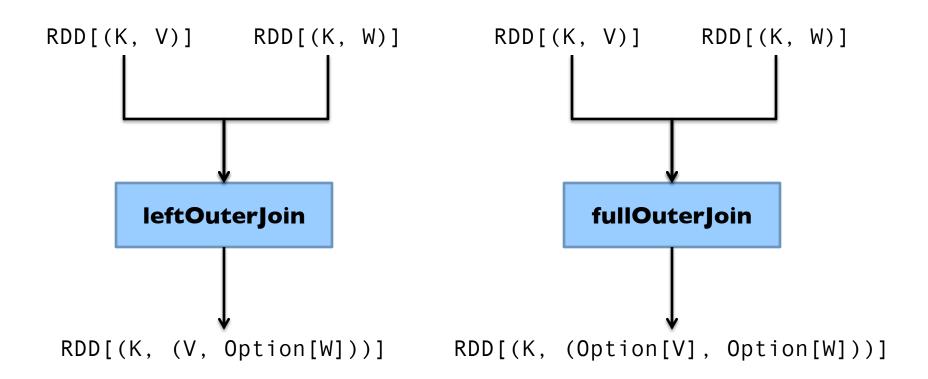
Sort Operations



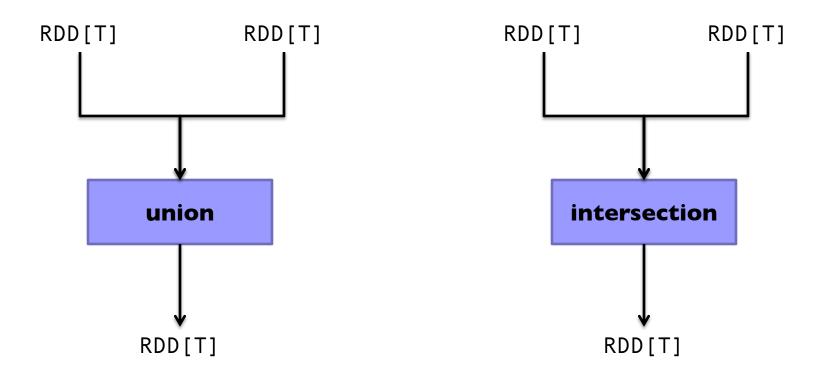
Join-like Operations



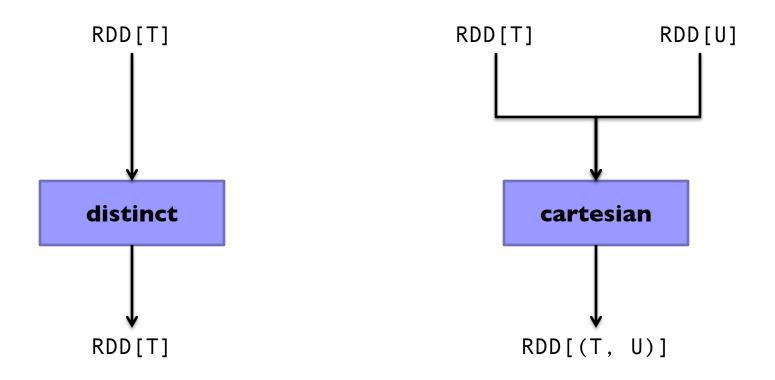
Join-like Operations



Set-ish Operations



Set-ish Operations



Spark Word Count

```
val textFile = sc.textFile(args.input())
textFile
                                                 RDD[T]??
  .flatMap(line => tokenize(line))
  .map(word => (word, 1))
  .reduceByKey((x, y) => x + y)
  .saveAsTextFile(args.output())
                                                  flatMap
                                                f: (T) \Rightarrow
                                            TraversableOnce[U]
```

RDD [U]

What's an RDD? Resilient Distributed Dataset (RDD)

= immutable = partitioned

- » Immutable collections of objects, spread across cluster
- » Statically typed: RDD[T] has objects of type T

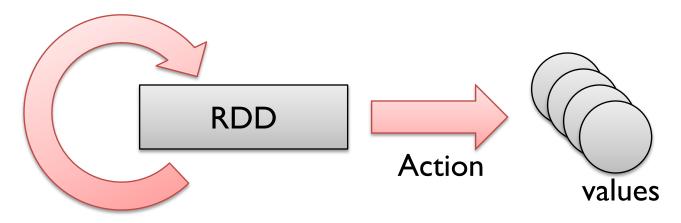
Wait, so how do you actually do anything?

Developers define transformations on RDDs

Framework keeps track of lineage

RDD Lifecycle

Transformation



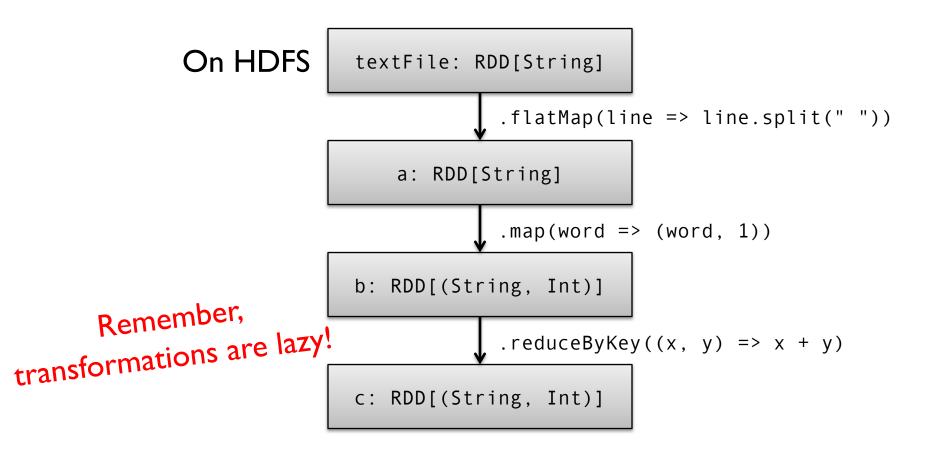
Transformations are lazy: Framework keeps track of lineage

Actions trigger actual execution

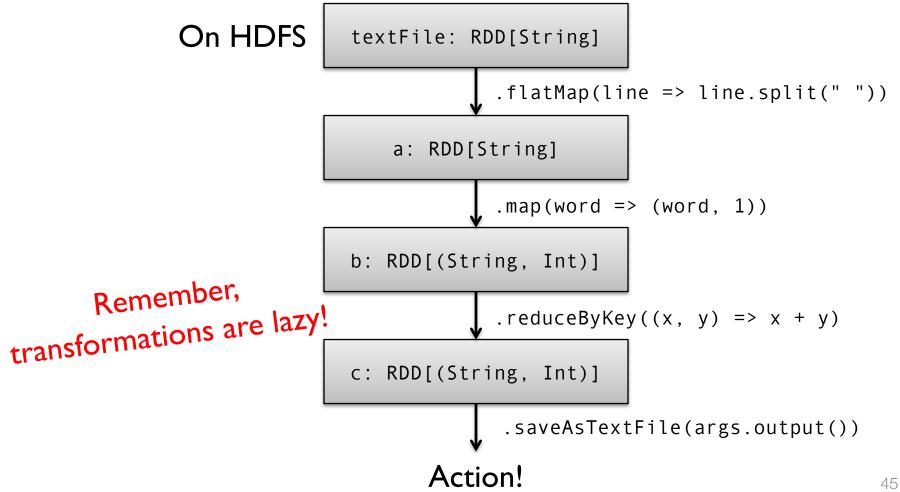
Spark Word Count

```
RDDs
     val textFile = sc.textFile(args.input())
    val a = textFile.flatMap(line => line.split(" "))
    \rightarrow val b = a.map(word => (word, 1))
    → val c = b.reduceByKey((x, y) => x + y)
       c.saveAsTextFile(args.output())
                                             Transformations
        Action
```

RDDs and Lineage

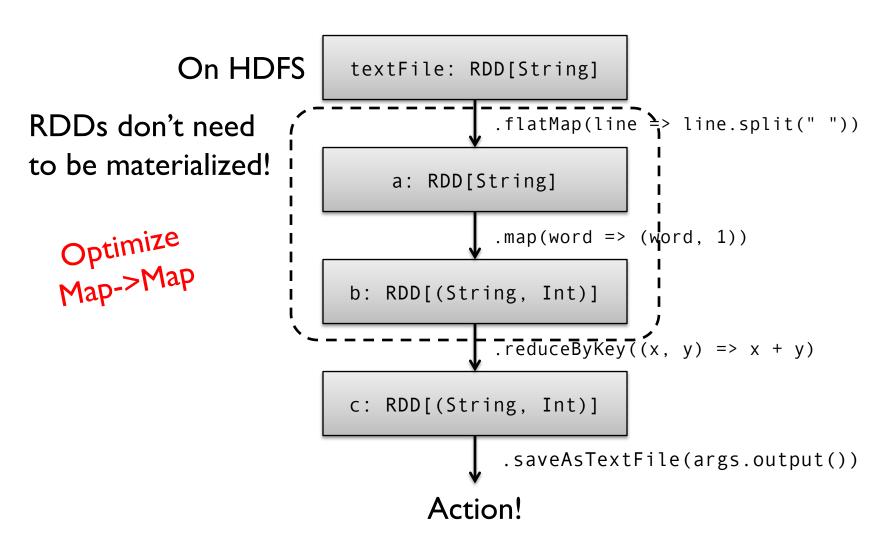


RDDs and Lineage



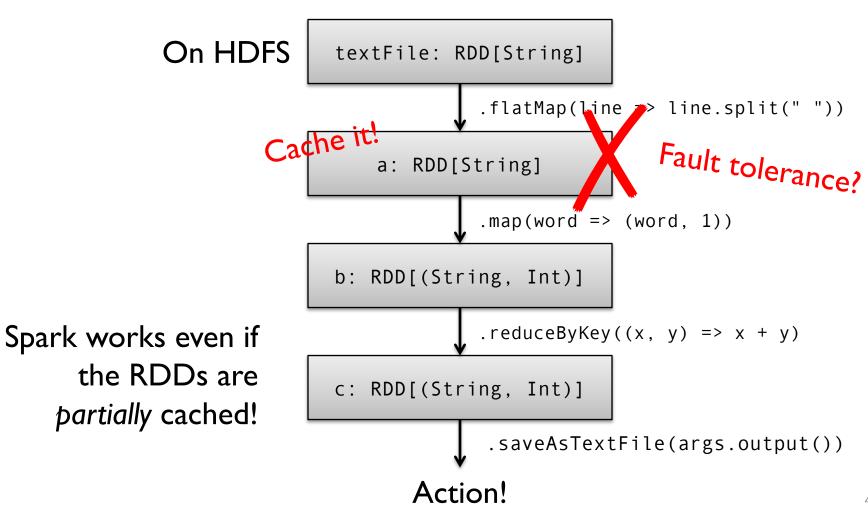
RDDs and Optimizations

Lazy evaluation creates optimization opportunities



RDDs and Caching

RDDs can be materialized in memory (and on disk)!

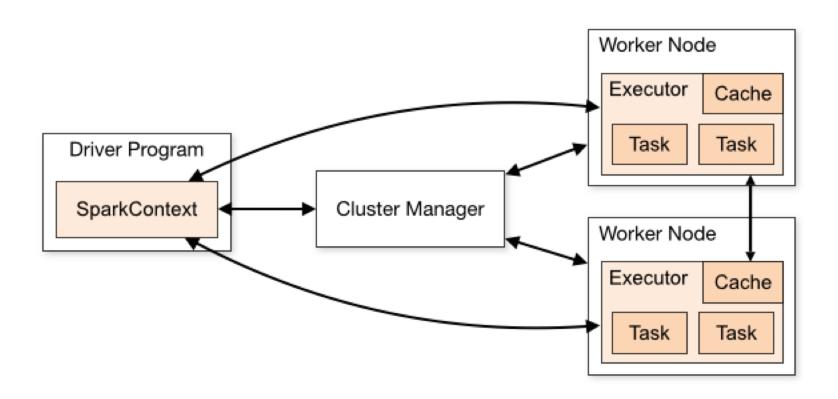


Resilient Distributed Datasets (RDDs)

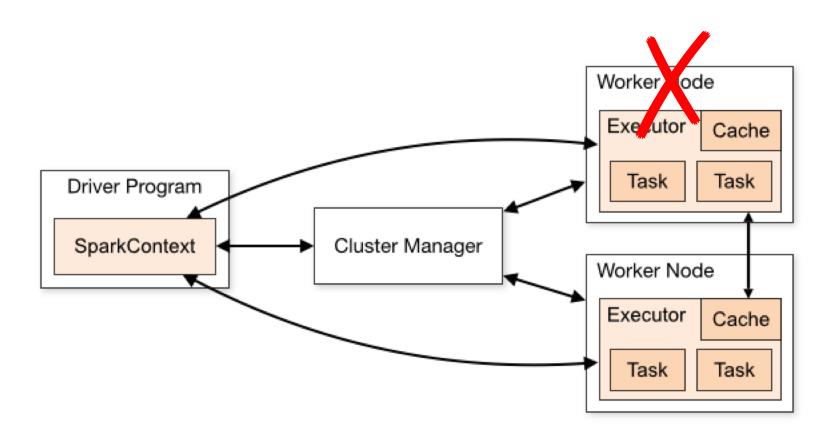
- » Collections of objects across a cluster with user controlled partitioning & storage (memory, disk, ...)
- » Built via parallel transformations (map, filter, ...)
- » Only lets you make RDDs such that they can be:

Automatically rebuilt on failure

Spark Architecture



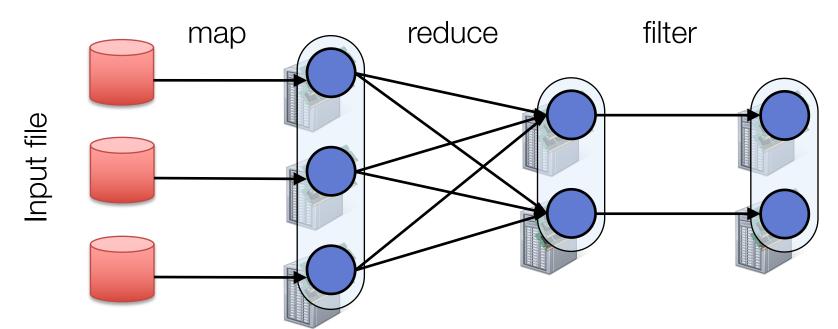
Spark Architecture



Fault Tolerance

RDDs track *lineage* info to rebuild lost data

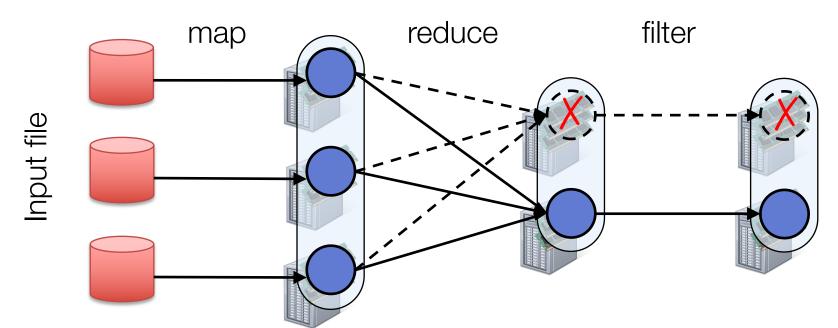
```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```



Fault Tolerance

RDDs track lineage info to rebuild lost data

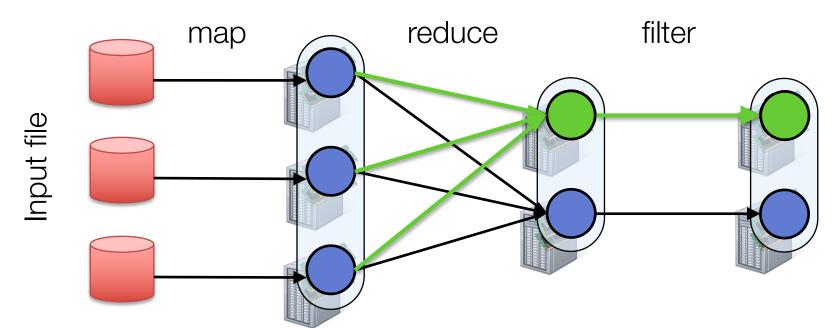
```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```



Fault Tolerance

RDDs track *lineage* info to rebuild lost data

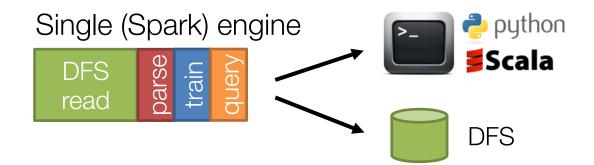
```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```



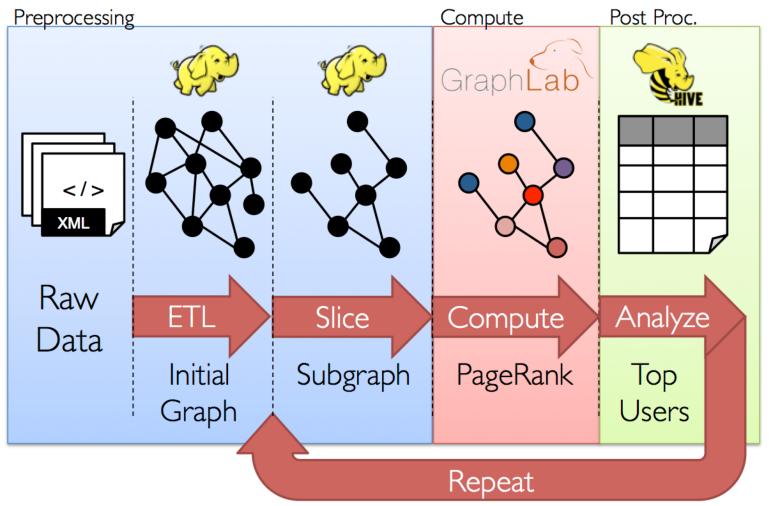
Benefit of a single ecosystem

Same engine performs data extraction, model training and interactive queries

Separate engines

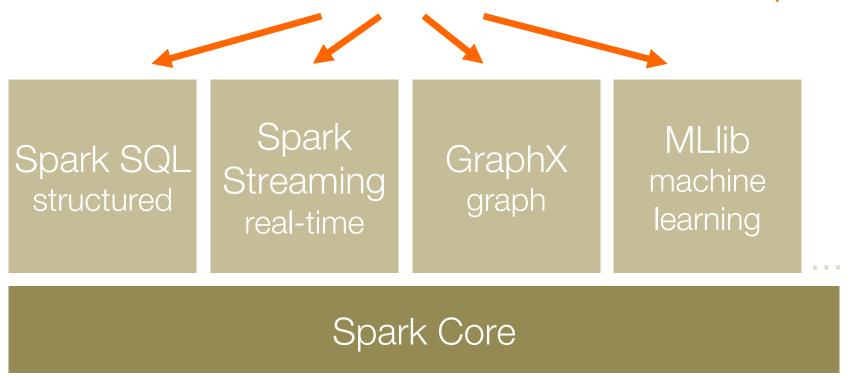


Example: graph processing



Spark: a general platform

Standard libraries included with Spark



Spark.ML Library (MLlib)

```
points = context.sql("select latitude, longitude from tweets")
model = KMeans.train(points, 10)
```

classification: logistic regression, linear SVM, naïve Bayes, classification tree

regression: generalized linear models (GLMs), regression tree

collaborative filtering: alternating least squares (ALS), non-negative matrix factorization (NMF)

clustering: k-means

decomposition: SVD, PCA

optimization: stochastic gradient descent, L-BFGS

Spark.GraphX

General graph processing library

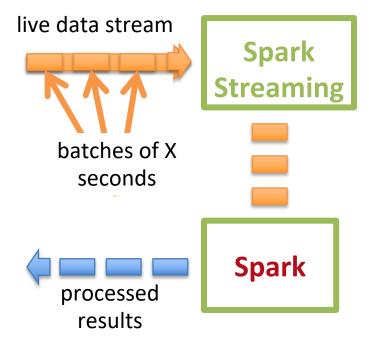
Build graph using RDDs of nodes and edges

Large library of graph algorithms with composable steps

Spark Streaming

Run a streaming computation as a series of very small, deterministic batch jobs

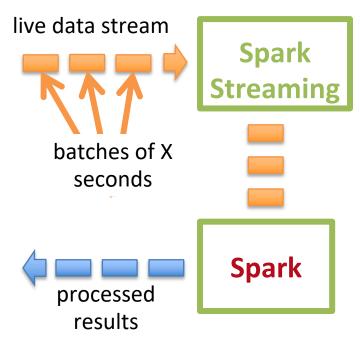
- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as RDDs and processes them using RDD operations
- Finally, the processed results of the RDD operations are returned in batches



Spark Streaming

Run a streaming computation as a series of very small, deterministic batch jobs

- Batch sizes as low as ½ second, latency
 1 second
- Potential for combining batch processing and streaming processing in the same system



Spark SQL

```
//Run SQL statements
val teenagers = context.sql(
   "SELECT name FROM people WHERE age >= 13 AND age <= 19")

// The results of SQL queries are RDDs of Row objects
val names = teenagers.map(t => "Name: " + t(0)).collect()
```

Spark SQL

Enables loading & querying structured data in Spark

From Hive:

```
c = HiveContext(sc)
rows = c.sql("select text, year from hivetable")
rows.filter(lambda r: r.year > 2013).collect()
```

From JSON:

```
c.jsonFile("tweets.json").registerAsTable("tweets")
c.sql("select text, user.name from tweets")
```

tweets.json

```
{"text": "hi",
    "user": {
        "name": "matei",
        "id": 123
}}
```

Many other data-flow systems

Graph Computations: Pregel, GraphLab

SQL based engines: Hive, Pig, ...

ML engines: TensorFlow

... data-flow an ideal abstract? Who knows.

Take-aways

Data flow engines are important for distributed processing: simplify life for devs!

MapReduce: batch processing + distinct map and reduce phases. Inefficient and low level.

Spark: RDDs for fault tolerance; ecosystem.

