
416 Distributed Systems

September 24, 2018
Making the web fast:

SPDY/HTTP2.0, CDNs
Consistent hashing

Special thanks to Sophia Wang for some slides

Outline

• Problem with HTTP 1.1
• SPDY and HTTP2.0
• DNS Design (317)
• Content Distribution Networks
• Consistent hashing

2

3

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes are heavy-tailed
• Embedded references
• This plays havoc with performance. Why?
• Solutions?

• New protocol! (SPDY -> HTTP 2.0)
• Web caches (Assignment 2!)
• CDNs

3

https://www.usenix.org/node/179788

HTTP evolution

4
4/14/14� ��

1995� 2000� 2005� 2010� 2014�

HTTP/1.1:(The(standard(
to(load(Web(pages�

HTTP/1.1'becomes(slow(
for(rich,(modern(pages�

Google(developed(SPDY(
to(make(the(Web(faster�

A(StarCng(to(be(deployed(
A(Basis(for(HTTP/2.0(now(
being(standardized�

5
4/14/14� ��

HTTP/1.1$problems�
Client�

Server�

6
4/14/14� ��

Client�

Server�

•  OpenstoomanyTCPconnections$

HTTP/1.1$problems�

7
4/14/14� 	�

Client�

Server�

•  OpenstoomanyTCPconnections$
•  Initiates$object$transfers$strictly$by$

the$client$

HTTP/1.1$problems�

8
4/14/14�
�

Client�

Server�

HTTP/1.1$200$OK\r\n$
.Date:$Fri,$21Mar2014\r\n$
.Server:$Apache/2.2.26\r\n$
\r\n$
********************$
********************�

Uncompressed�

Compressed�

•  OpenstoomanyTCPconnections$

•  Initiates$object$transfers$strictly$by$
the$client$

•  Compresses$only$HTTP$payloads,$
not$headers�

HTTP/1.1$problems�

9
4/14/14� ��

Client�

Server�

•  OpenstoomanyTCPconnections$
•  Initiates$object$transfers$strictly$by$

the$client$
•  Compresses$only$HTTP$payloads,$

not$headers�

HTTP/1.1$200$OK\r\n$
.Date:$Fri,$21Mar2014\r\n$
.Server:$Apache/2.2.26\r\n$
\r\n$
********************$
********************�

Uncompressed�

Compressed�
SPDYisproposedto
address$these$issues�

HTTP/1.1$problems�

10
4/14/14� ���

Client�

Server�

SPDY�

•  OpenstoomanyTCPconnections$
•  Multiplexes$sliced$frames$into$a$

singleTCPconnection$

2$$$1$$$0$$$3$$$4$$$2$$$1$$$0�

11
4/14/14� ���

Client�

Server�

SPDY�

•  OpenstoomanyTCPconnections$
•  Multiplexes$sliced$frames$into$a$

singleTCPconnection$
•  PrioritizesWebobjects$

0$$$0$$$1$$$1$$$2$$$2$$$3$$$4�

12
4/14/14� ���

Client�

Server�

SPDY�

•  Initiates$object$transfers$strictly$by$
the$client$

•  Allows$servers$to$initiate$Web$
object$transfers$

13
4/14/14� ���

Client�

Server�

SPDY�

********************$
********************$
********************$
********************�

Compressed�

Compressed�

•  Compresses$only$HTTP$payloads,$
not$headers$

•  Compresses$both$HTTP$payloads$
and$headers�

HTTP evolution: SPDY->HTTP 2.0 !

14

4/14/14� ��

1995� 2000� 2005� 2010� 2014�

HTTP/1.1:(The(standard(
to(load(Web(pages�

HTTP/1.1'becomes(slow(
for(rich,(modern(pages�

Google(developed(SPDY(
to(make(the(Web(faster�

A(StarCng(to(be(deployed(
A(Basis(for(HTTP/2.0(now(
being(standardized�

HTTP 2.0
Introduced

G. drops
SPDY
support

2017

15% web
HTTP 2

2015

Outline

• Problem with HTTP 1.1
• SPDY and HTTP2.0
• DNS Design (317)
• Content Distribution Networks
• Consistent hashing

15

16

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes are heavy-tailed
• Embedded references
• This plays havoc with performance. Why?
• Solutions?

• New transport (SPDY)
• Web caches (Assignment 2!)
• CDNs

16

https://www.usenix.org/node/179788

17

origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

Content Distribution Networks (CDNs)

• The content providers are the

CDN customers.

• Content replication

• CDN company installs hundreds

of CDN servers throughout

Internet

• Close to users

• CDN replicates its customers’

content in CDN servers. When

provider updates content, CDN

updates servers

18

Content Distribution Networks &
Server Selection

• Replicate content on many servers
• Challenges

• How to replicate content
• Where to replicate content
• How to find replicated content
• How to choose among known replicas
• How to direct clients towards replica

18

19

Server Selection

• Which server?
• Lowest load à to balance load on servers
• Best performance à to improve client performance

• Based on Geography? RTT? Throughput? Load?
• Any alive node à to provide fault tolerance

• How to direct clients to a particular server?
• As part of routing à anycast, cluster load balancing

• Not covered L
• As part of application à HTTP redirect
• As part of naming à DNS

19

20

Application Based

• HTTP supports simple way to indicate that Web page has moved
(30X responses)

• Server receives GET request from client
• Decides which server is best suited for particular client and object
• Returns HTTP redirect (to the client) to that server

• Can make informed application specific decision
• May introduce additional overhead à

multiple connection setup, name lookups, etc.

20

21

Naming Based

• Client does name lookup for service
• Name server chooses appropriate server address

• DNS A-record returned is “best” one for the client
• What information can name server base decision

on?
• Web server load/location à must be collected
• Information in the name lookup request

• Name service client à typically the local name server for client
(not the client itself, which means not aware of the app making
the DNS request)

21

22

How Akamai Works

• Akamai only replicates static content (*)
• Modified name contains original file name
• Akamai server is asked for content

• First checks local cache
• If not in cache, requests file from primary server and

caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write
code that can run on Akamai’s servers, but that’s a pretty different beast)

22

23

How Akamai Works

• Clients fetch html document from primary server
• E.g. GET index.html from cnn.com

• URLs for replicated content are replaced in html
• E.g. replaced with

• Client is forced to DNS resolve
aXYZ.g.akamaitech.net hostname

23

24

How Akamai Works

• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Returned name server chosen to be in region of client’s

name server
• DNS TTL is large

• G.akamaitech.net nameserver chooses server in
region
• Should try to chose server that has file in cache - How

to choose?
• Uses object (aXYZ) name and hash
• DNS TTL is small à why?

24

25

How Akamai Works – First time request

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3
4

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

10

6
7

8

9

12

Get
index.
html

Get /cnn.com/foo.jpg

11
Get foo.jpg

5

25

26

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level
DNS server

Akamai low-level DNS
server

3

4

5

6

Get
index.
html

Get /cnn.com/foo.jpg

Nearby matching
Akamai server

Assuming no timeout
on NS record

26

Outline

• Problem with HTTP 1.1
• SPDY and HTTP2.0
• DNS Design (317)
• Content Distribution Networks
• Consistent hashing

27

28

Simple Hashing

• Given document XYZ, we need to choose a
server to use

• Suppose we use modulo
• Number servers from 1…n

• Place document XYZ on server (XYZ mod n)
• (i.e., Placement only based on server identities)

• What happens when a servers fails? n à n-1
• Same if different people have different measures of n

• Why might this be bad?

28

29

Consistent Hash

• “view” = subset of all hash buckets that are visible
(a bucket is e.g., a server)

• Desired features
• Smoothness – little impact on hash bucket contents

when buckets are added/removed
• Spread – small set of hash buckets that may hold an

object regardless of views
• Load balance – across all views, # of objects assigned

to hash bucket is small

29

Consistent Hashing

• Main idea:
• map both keys and nodes to the same (metric) identifier space
• find a “rule” how to assign keys to nodes

Ring is one option.

31

Consistent Hashing

• The consistent hash function assigns each node
and key an m-bit identifier using SHA-1 as a base
hash function

• Node identifier: SHA-1 hash of IP address

• Key identifier: SHA-1 hash of key

32

• m bit identifier space for both keys and nodes

• Key identifier: SHA-1(key)

Key=�LetItBe� ID=60SHA-1

IP=�198.10.10.1� ID=123SHA-1
• Node identifier: SHA-1(IP address)

•How to map key IDs to node IDs?

Identifiers

33

Rule: A key is stored at its successor: node with next higher or equal ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing Example

34

Consistent Hashing Properties

• Smoothness à addition of node does not cause
movement of objects between existing nodes

• Spread à small set of nodes that lie near object
(with successor rule: object at exactly 1 node)

• Load balance à all nodes receive roughly the
same number of keys. For N nodes and K keys,
with high probability
• each node holds at most (1+e)K/N keys
• (provided that K is large enough compared to N)

35

Consistent Hashing not just for CDN

• Finding a nearby server for an object in a CDN
uses centralized knowledge.

• Consistent hashing can also be used in a
distributed setting

• P2P systems like BitTorrent, need a way of finding
files.
• More broadly: distributed hash tables (DHTs) for

decentralized lookups
• Consistent Hashing to the rescue

• Need a way to route in a decentralized way between
nodes; but easy to come up with a distance metric!

3737

38

Issues with HTTP caching

• Caching (with a CDN) is nice but…
• Over 50% of all HTTP objects are uncacheable – why?
• Challenges:

• Dynamic data à stock prices, scores, web cams
• “CGI” scripts à results based on passed parameters
• SSL à encrypted data is not cacheable
• Cookies à results may be based on passed data
• Hit metering à owner wants to measure # of hits for revenue, etc.

38

Summary

• Slow web with HTTP 1.1
• SPDY and HTTP 2.0 (change the protocol!)
• Content Delivery Networks move data closer to

user, maintain consistency, balance load
• Consistent hashing maps keys AND buckets into the

same space
• Consistent hashing can be fully distributed, useful in

P2P systems using structured overlays

40More: “Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web”

