
Transac'ons)

)
Intel)(TX)memory):)
Transac'onal)
Synchroniza'on)
Extensions)(TSX)))

2 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Transactions - Definition

�  A transaction is a sequence of data operations with the
following properties:
*  A Atomic

• All or nothing

*  C Consistent
• Consistent state in => consistent state out

*  I Independent (Isolated)
• Partial results are not visible to concurrent transactions

*  D Durable
• Once completed, new state survives crashes

3 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Summary

Isolation and serializability
� Definitions
*  isolation

• no transaction can see incomplete results of another

*  serializability
• actual execution same as some serial order

� Algorithms (based on locks)
*  two-phase locking

• serializability

*  strict two-phase locking
• isolation and serializability

6 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Two Possible (pessimistic)
Approaches

� Two Phase Locking
� Strict Two Phase Locking

7 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Two Phase Locking

�  Locks
*  reader/writer locks

*  acquired as transaction proceeds

*  no more acquires after first release

�  Phase 1
• acquire locks and access data, but release no locks

�  Phase 2
• access data, release locks, but acquire no new locks

9 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Semantics of two-phase locking

�  Ensures serializability
*  if transactions have no conflicting lock access

• order arbitrarily
*  for any transactions with conflicting lock access

• order transactions based on order lock is acquired
*  transactions are serialized

• because, no lock is acquired after first release
• deadlocks are still possible

�  Does not ensure independence
*  we still have premature write problem
*  t1 releases x, t2 acquires x, then t1 aborts

10 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Strict two phase locking

� Like two-phase locking, but
*  release no locks until transaction commits

� Phase 1:
• acquire locks and access data, but release no locks

� Phase 2:
• Commit/abort transaction and then release all locks

� Ensures both serializability and independence

4 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Serializability and two-phase
locking

�  Two-phase locking and ordering
*  serial order is acquisition order for shared locks
*  two-phase ensures that ordering is unambiguous

�  Simple illustration of potential deadlock
*  t1 acquires a then b
*  t2 acquires b then a

t1 holds a
t1 holds b t2 holds b

t2 holds a

t1 holds a

t2 holds b

t1 waits for b

t2 waits for a

5 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Deadlock Wait Graph

tran 1

tran 2

lock b

lock a

waiting for

held by

held by

waiting for

6 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Deadlock

� Transactions increase likelihood of deadlock
* must hold lock until transaction commits

* model encourages programmers to forget about locks

� Dealing with deadlock
*  try to prevent it

* detect it and abort transactions to break deadlock

7 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Detecting and breaking deadlock

� Construct a Wait Graph as program executes
* all deadlocks appear as cycles in graph

� Abort transactions until cycles are broken

tran 1

tran 2

lock a

lock b

waiting for

held by

held by

waiting for

8 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Optimistic concurrency control

�  Two-Phase locking is a paranoid approach
*  creates more lock conflicts than necessary
*  especially for long running transactions

�  Optimistic concurrency control
*  no locks – process works on copies of data
*  during commit, check for conflicts and abort if any

otherwise write the copies
�  Analysis

*  (+) no overhead locking when there’s no conflict
*  (–) copies of data
*  (–) if conflicts are common overhead much higher

9 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Optimistic concurrency control: TX
memory (note: no durability!)

Hardware
TX memory
(Intel’s
Haswell)

10 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Recoverability (Atomicity)

� Problem
* ensure atomic update in face of failure

�  If no failure, it’s easy
*  just do the updates

�  If failure occurs while updates are performed
* Roll back to remove updates or
* Roll forward to complete updates
* What we need to do and when will depend on just when we

crash

11 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Logging

�  Persistent (on disk) log
*  records information to support recovery and abort

�  Types of logging
*  redo logging --- roll forward
*  undo logging --- roll back (and abort)
*  Write-ahead logging --- roll forward and back

�  Types of log records
*  begin, update, abort, commit, and truncate

�  Atomic update
*  atomic operation is write of commit record to disk
*  transaction committed iff commit record in log

12 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Approaches to logging an update

�  Value logging
*  write old or new value of modified data to log

*  simple, but not always space efficient or easy
• E.g., hard for some things such as malloc and system calls

�  Operation logging
*  write name of operation and its arguments

*  usually used for redo logging
• undo is possible, but requires a reversing operation

13 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Transaction and persistent data

transaction

log

data

memory

part of data

14 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Redo logging - roll forward

Normal operation
�  For each transactional update

*  change in-memory copy (or work on a disk copy)
*  write new value to log
*  do not change on-disk copy until commit

�  Commit
*  write commit record to log
*  write changed data to disk
*  write truncate record to log

�  Abort
*  write abort record to log
*  invalidate in-memory data
*  reread from disk

1

Log what you
need to redo

