国
 416 Distributed Systems

Time Synchronization
(Part 2: Lamport and vector clocks)
Feb 5, 2018

Important Lessons (last lecture)

- Clocks on different systems will always behave differently
- Skew and drift between clocks
- Time disagreement between machines can result in undesirable behavior
- Clock synchronization
- Rely on a time-stamped network messages
- Estimate delay for message transmission
- Can synchronize to UTC or to local source
- Clocks never exactly synchronized
- Often inadequate for distributed systems
- might need totally-ordered events
- might need millionth-of-a-second precision

Today's Lecture

- Need for time synchronization
- Time synchronization techniques
- Lamport Clocks
- Vector Clocks

Logical time

- Capture just the "happens before" relationship between events
- Discard the infinitesimal granularity of time
- Corresponds roughly to causality

Logical time and logical clocks (Lamport 1978)

- Events at three processes

Logical time and logical clocks (Lamport 1978)

- Instead of sŷnchronizing clocks, event ordering can be used

1. If two events occurred at the same process $p_{i}(i=1,2, \ldots N)$ then they occurred in the order observed by p_{i}, that is the definition of: \rightarrow i
2. When a message, m is sent between two processes, send(m) 'happens before' receive(m)
3. The 'happened before' relation is transitive

- The happened before relation (\rightarrow) is necessary for causal ordering

Logical time and logical clocks (Lamport 1978)

- $a \rightarrow b\left(\right.$ at $\left.p_{1}\right) c \rightarrow d$ (at $\left.p_{2}\right)$
- $b \rightarrow c$ because of m_{1}
- also $d \rightarrow f$ because of m_{2}

- Not all events are related by \rightarrow
- Consider a and e (different processes and no chain of messages to relate them)
- they are not related by \rightarrow; they are said to be concurrent
- written as a || e

Lamport Clock (1)

- A logical clock is a monotonically increasing software counter
- It need not relate to a physical clock.
- Each process p_{i} has a logical clock, L_{i} which can be used to apply logical timestamps to events
- Rule 0: initially all clocks are set to 0
- Rule 1: L_{i} is incremented by 1 before each event at process p_{i}
- Rule 2:
- (a) when process p_{i} sends message m, it piggybacks $t=L_{i}$
- (b) when p_{j} receives (m, t) it sets $L_{\mathrm{j}}:=\max \left(L_{\mathrm{j}}, t\right)$ and applies rule 1 before timestamping the event receive (m)

Lamport Clock (1)

- each of p_{1}, p_{2}, p_{3} has its logical clock initialised to zero,
- the clock values are those immediately after the event.
- e.g. 1 for a, 2 for b.
- for $m_{1}, 2$ is piggybacked and c gets $\max (0,2)+1=3$

Lamport Clock (1)

- $e \rightarrow e^{\prime}$ (e happened before $\left.\mathrm{e}^{\prime}\right)$ implies $L(e)<L\left(e^{\prime}\right)$ (where L(e) is Lamport clock value of event e)
- The converse is not true, that is $L(e)<L(e)$ does not imply $e \rightarrow e$ '. What's an example of this above?

Lamport Clock (1)

- $e \rightarrow e^{\prime}$ (e happened before $\left.\mathrm{e}^{\prime}\right)$ implies $L(e)<L\left(e^{\prime}\right)$
- The converse is not true, that is $L(e)<L(e)$ does not imply $e \rightarrow e$ '
- e.g. $L(b)>L(e)$ but $b \| e$

Lamport logical clocks

- Lamport clock L orders events consistent with logical "happens before" ordering
- If $e \rightarrow$ e', then $L(e)<L\left(e^{\prime}\right)$
- But not the converse
- $L(e)<L\left(e^{\prime}\right)$ does not imply $e \rightarrow e^{\prime}$
- Similar rules for concurrency
- $L(e)=L\left(e^{\prime}\right)$ implies $e \| e^{\prime}$ (for distinct e, e^{\prime})
- $e \| e^{\prime}$ does not imply $L(e)=L\left(e^{\prime}\right)$
- i.e., Lamport clocks arbitrarily order some concurrent events

Total-order Lamport clocks

- Many systems require a total-ordering of events, not a partial-ordering
- Use Lamport' s algorithm, but break ties using the process ID; one example scheme:
- $L(e)=M^{*} L_{i}(e)+i$
- $M=$ maximum number of processes
- $\mathrm{i}=$ process ID

Question Break

Why does Lamport's algorithm not produce a true total ordering?

- Is it true that $L(e) \nless L\left(e^{\prime}\right)$ implies $e \leftrightarrow e^{\prime}$?

Today's Lecture

- Need for time synchronization
- Time synchronization techniques
- Lamport Clocks
- Vector Clocks

Vector Clocks

- Vector clocks overcome the shortcoming of Lamport logical clocks
- $L(e)<L\left(e^{\prime}\right)$ does not imply e happened before e^{\prime}
- Goal
- Want ordering that matches happened before
- $\mathrm{V}(\mathrm{e})<\mathrm{V}\left(\mathrm{e}^{\prime}\right)$ if and only if $\mathrm{e} \rightarrow \mathrm{e}^{\prime}$
- Method
- Label each event by vector $\mathrm{V}(\mathrm{e})\left[\mathrm{c}_{1}, \mathrm{c}_{2} \ldots, \mathrm{c}_{\mathrm{n}}\right]$
- $\mathrm{c}_{\mathrm{i}}=$ \# events in process i that precede e

Vector Clock Algorithm

- Initially, all vectors [0,0,.., 0]

For event on process i , increment own c_{i}

- Label message sent with local vector

When process j receives message with vector $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$:

- Set each local vector entry k to $\max \left(c_{k}, d_{k}\right)$
- Increment value of c_{j}

Vector Clocks

- At p_{1}
- a occurs at $(1,0,0)$; b occurs at $(2,0,0)$
- piggyback $(2,0,0)$ on m_{1}
- At p_{2} on receipt of m_{1} use $\max ((0,0,0),(2,0,0))=(2,0,0)$ and add 1 to own element $=(2,1,0)$
- Meaning of $=,<=$, max etc for vector timestamps
- compare elements pairwise

Vector Clocks

- Note that $\mathrm{e} \rightarrow \mathrm{e}^{\prime}$ implies $\mathrm{V}(\mathrm{e})<\mathrm{V}\left(\mathrm{e}^{\prime}\right)$. The converse is also true
- Can you see a pair of concurrent events; Can you infer they are concurrent from their vectors clocks?

Vector Clocks

- Note that $\mathrm{e} \rightarrow \mathrm{e}^{\prime}$ implies $\mathrm{V}(\mathrm{e})<\mathrm{V}\left(\mathrm{e}^{\prime}\right)$. The converse is also true
- Can you see a pair of concurrent events?
- c II e (concurrent) because neither $V(c)<=V(e)$ nor $V(e)<=V(c)$

Implementing logical clocks

- Positioning of logical timestamping in distributed systems.

Application layer

Middleware sends message

Distributed time

- Premise
- The notion of time is well-defined (and measurable) at each single location
- But the relationship between time at different locations is unclear
- Can minimize discrepancies, but never eliminate them
- Reality
- Stationary GPS receivers can get global time with < $1 \mu \mathrm{~s}$ error
- Few systems designed to use this; logical clocks key mechanism for ordering
- Recent exception: (Spanner system from Google)

Important Points

- Physical Clocks
- Can keep closely synchronized, but never perfect
- Logical Clocks
- Encode happens before relationship (necessary for causality)
- Lamport clocks provide only one-way encoding
- Vector clocks precedence necessary for causality (but not sufficient: could have been caused by some event along the path, not all events)

