
Transac'ons)

)
Intel)(TX)memory):)
Transac'onal)
Synchroniza'on)
Extensions)(TSX)))

1 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Goal – A Distributed Transaction

� We want a transaction that involves multiple nodes
� Review of transactions and their properties
� Things we need to implement transactions
*  Locks
* Achieving atomicity through logging

• Roll ahead, roll back, write ahead logging

� Finally, 2 Phase Commit (aka 2PC) and 3PC
� Lead into Paxos (again!)

2 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Transactions - Definition

�  A transaction is a sequence of data operations with the
following properties:
*  A Atomic

• All or nothing

*  C Consistent
• Consistent state in => consistent state out

*  I Independent (Isolated)
• Partial results are not visible to concurrent transactions

*  D Durable
• Once completed, new state survives crashes

3 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Summary

Isolation and serializability
� Definitions
*  isolation

• no transaction can see incomplete results of another

*  serializability
• actual execution same as some serial order

� Algorithms (based on locks)
*  two-phase locking

• serializability

*  strict two-phase locking
• isolation and serializability

4 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Serializability and two-phase
locking

�  Two-phase locking and ordering
*  serial order is acquisition order for shared locks
*  two-phase ensures that ordering is unambiguous

�  Simple illustration of potential deadlock
*  t1 acquires a then b
*  t2 acquires b then a

t1 holds a
t1 holds b t2 holds b

t2 holds a

t1 holds a

t2 holds b

t1 waits for b

t2 waits for a

5 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Deadlock Wait Graph

tran 1

tran 2

lock b

lock a

waiting for

held by

held by

waiting for

6 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Deadlock

� Transactions increase likelihood of deadlock
* must hold lock until transaction commits

* model encourages programmers to forget about locks

� Dealing with deadlock
*  try to prevent it

* detect it and abort transactions to break deadlock

7 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Detecting and breaking deadlock

� Construct a Wait Graph as program executes
* all deadlocks appear as cycles in graph

� Abort transactions until cycles are broken

tran 1

tran 2

lock a

lock b

waiting for

held by

held by

waiting for

8 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Optimistic concurrency control

�  Two-Phase locking is a paranoid approach
*  creates more lock conflicts than necessary
*  especially for long running transactions

�  Optimistic concurrency control
*  no locks – process works on copies of data
*  during commit, check for conflicts and abort if any

otherwise write the copies
�  Analysis

*  (+) no overhead locking when there’s no conflict
*  (–) copies of data
*  (–) if conflicts are common overhead much higher

9 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Optimistic concurrency control: TX
memory (note: no durability!)

Hardware
TX memory
(Intel’s
Haswell)

10 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Recoverability (Atomicity)

� Problem
* ensure atomic update in face of failure

�  If no failure, it’s easy
*  just do the updates

�  If failure occurs while updates are performed
* Roll back to remove updates or
* Roll forward to complete updates
* What we need to do and when will depend on just when we

crash

11 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Logging

�  Persistent (on disk) log
*  records information to support recovery and abort

�  Types of logging
*  redo logging --- roll forward
*  undo logging --- roll back (and abort)
*  Write-ahead logging --- roll forward and back

�  Types of log records
*  begin, update, abort, commit, and truncate

�  Atomic update
*  atomic operation is write of commit record to disk
*  transaction committed iff commit record in log

12 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Approaches to logging an update

�  Value logging
*  write old or new value of modified data to log

*  simple, but not always space efficient or easy
• E.g., hard for some things such as malloc and system calls

�  Operation logging
*  write name of operation and its arguments

*  usually used for redo logging
• undo is possible, but requires a reversing operation

13 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Transaction and persistent data

transaction

log

data

memory

part of data

14 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Redo logging - roll forward

Normal operation
�  For each transactional update

*  change in-memory copy (or work on a disk copy)
*  write new value to log
*  do not change on-disk copy until commit

�  Commit
*  write commit record to log
*  write changed data to disk
*  write truncate record to log

�  Abort
*  write abort record to log
*  invalidate in-memory data
*  reread from disk

1

Log what you
need to redo

15 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Redo logging - roll forward

Recovery
�  When the system restarts after a failure

*  use log to roll forward committed transactions

*  normal access stopped until recovery is completed

�  Complete committed, but untruncated transaction
*  for every trans with a commit but no truncate

*  read new values from log and update disk values

*  write truncate record to log

�  Abort all uncommitted transactions
*  for every transaction with no commit or abort

• write abort record to log

16 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Redo logging - roll forward

Disadvantage
� No disk writes until commit so you have lots of I/O at

the end to commit the transaction
� Must integrate cache of data in memory and

transaction logging
*  complicates design of both systems

� This lock-in of memory degrades performance
* particularly if transactions are long running or modify lots

of data

17 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Undo logging - roll backward

Normal operation
� For each transactional update
* write old value to log
* modify data and then write new value to disk any time

� Commit
* ensure that all updates have been written to disk

• i.e., “force” or ‘flush’ updates to disk

* write commit record to log

� Abort
* use log to recover disk to old values

2

Log what you
need to undo

18 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Undo logging - roll backward

Recovery
� When the system restarts after a failure
* use log to rollback uncommitted transactions

* normal access stopped until recovery completed

� Undo effect with many uncommitted transactions
* For every trans with no commit or abort

• use log to recover disk to old values
• write abort record to log

19 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Undo logging - roll backward

Log records
�  Begin

*  log += [b, tid]

�  Update
*  log += [u, tid, addr, size, oldValue], update disk anytime

�  Commit
*  complete disk update, log += [c, tid]

�  Abort and Recovery
*  reapply old values for trans with b but no c or a,

log += [a, tid]

20 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Undo logging - roll backward

Disadvantage
� Must modify disk data before commit can be written

to log
� Performance impact
*  slows commit (can’t commit until all data is modified)

• transactions hold locks longer
• higher chance of conflicts

21 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Write-ahead logging

�  Idea
*  combine undo and redo logging

� How
* write old values to log
* modify data
* write new values to log anytime before commit
* write commit record to log
* write data back to disk at anytime, when done write

truncate record to log

22 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Failure Recovery

� Commit but no truncate
* Use roll forward based on new values

� No commit
* Use old value to roll back

23 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Shrinking the Log File (Truncation)

� Truncation is the process of
*  removing unneeded records from transaction log

� For redo logging
*  remove transactions with t or a

� For undo logging
*  remove transactions with c or a

24 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Transactions summary

� Key properties
* ACID

� Serializability and Independence
*  two phase locking

• serializability

*  strict two phase locking
• Serializability and Independence

� Recovery
*  redo and/or undo logging

