
416 Distributed Systems

Mar 2, Peer-to-Peer
Part 2

Scaling Problem

•  Millions of clients ⇒ server and network meltdown

2

P2P System

•  Leverage the resources of client machines (peers)
•  Traditional: Computation, storage, bandwidth
•  Non-traditional: Geographical diversity, mobility, sensors!

3

Outline

•  BitTorrent

•  Routed Lookups – Chord

4

BitTorrent: Overview

•  File swarming:
•  Join: contact centralized “tracker” server, get a list of

peers.
•  Publish: Run a tracker server.
•  Search: Out-of-band. E.g., use Google to find a tracker

for the file you want.
•  Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.
•  Big differences from Napster:

•  Chunk based downloading
•  “few large files” focus
•  Anti-freeloading mechanisms

5

BitTorrent: Publish/Join

Seeder

6

Tracker

BitTorrent: Fetch

7

Seeder

BitTorrent: Sharing Strategy

•  Employ “Tit-for-tat” sharing strategy
•  A is downloading from some other people

•  A will let the fastest N of those download from it
•  Be optimistic: occasionally let freeloaders download

•  Otherwise no one would ever start!
•  Also allows you to discover better peers to download from when

they reciprocate

•  Goal: Pareto Efficiency
•  Game Theory: “No change can make anyone better off

without making others worse off”
•  Does it work? (not perfectly, but perhaps good

enough?)

8

BitTorrent: Summary

•  Pros:
•  Works reasonably well in practice
•  Gives peers incentive to share resources; avoids

freeloaders
•  Cons:

•  Pareto Efficiency relative weak condition
•  Central tracker server needed to bootstrap swarm

•  Alternate tracker designs exist (e.g., DHT-based trackers)

9

Outline

•  BitTorrent

•  Routed Lookups – Chord

10

The Lookup Problem

Internet

N1
N2 N3

N6 N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

11

DHT: Overview (1)

•  Goal: make sure that an item (file) identified is always
found in a reasonable # of steps

•  Abstraction: a distributed hash-table (DHT) data
structure
•  insert(id, item);
•  item = query(id);
•  Note: item can be anything: a data object, document, file,

pointer to a file…
•  Implementation: nodes in system form a distributed

data structure
•  Can be Ring, Tree, Hypercube, Skip List, Butterfly

Network, ...

12

DHT: Overview (2)

•  Structured Overlay Routing:
•  Join: On startup, contact a “bootstrap” node and integrate yourself

into the distributed data structure; get a node id
•  Publish: Route publication for file id toward a close node id along

the data structure
•  Search: Route a query for file id toward a close node id. Data

structure guarantees that query will meet the publication.
•  Fetch: Two options:

•  Publication contains actual file => fetch from where query stops
•  Publication says “I have file X” => query tells you 128.2.1.3 has X, use

IP routing to get X from 128.2.1.3

13

DHT: Example - Chord

•  Associate to each node and file a unique id in an
uni-dimensional space (a Ring)

•  E.g., pick from the range [0...2m]
•  Usually the hash of the file or IP address

•  Routing properties:
•  Routing table size is O(log N) , where N is the total

number of nodes
•  Guarantees that a file is found in O(log N) hops

from MIT in 2001

14

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID
15

Routing: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

16

Routing: Finger table - Faster Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

17

Routing: Chord Summary

•  Assume identifier space is 0…2m

•  Each node maintains
•  Finger table

•  Entry i in the finger table of n is the first node that succeeds or
equals n + 2i

•  Predecessor node
•  An item identified by id is stored on the successor

node of id

18

Routing: Chord Example

•  Assume an
identifier space
0..7

•  Node n1:(1)
joinsàall entries
in its finger table
are initialized to
itself

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

19

Routing: Chord Example

•  Node n2:(3) joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

20

Routing: Chord Example

•  Nodes n3:(0), n4:(6) join

0
1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

21

Routing: Chord Examples

•  Nodes: n1:(1), n2(3),
n3(0), n4(6)

•  Items: file1:(7), file2:(2)
0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

22

Routing: Query

•  Upon receiving a query
for item id, a node
•  Check whether stores

the item locally
•  If not, forwards the query

to the largest node in its
successor table that
does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

23

DHT: Chord Summary

•  Routing table size?
•  Log N fingers

•  Routing time?
•  Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

24

DHT: Discussion

•  Pros:
•  Guaranteed Lookup
•  O(log N) per node state and search scope

•  Cons:
•  No one uses them? (only one file sharing app)
•  Supporting non-exact match search is hard

25

What can DHTs do for us?

•  Distributed object lookup
•  Based on object ID

•  De-centralized file systems
•  CFS, PAST, Ivy

•  Application Layer Multicast
•  Scribe, Bayeux, Splitstream

•  Databases
•  PIER

26

When are p2p / DHTs useful?

•  Caching and “soft-state” data
•  Works well! BitTorrent, KaZaA, etc., all use peers as

caches for hot data
•  Finding read-only data

•  Limited flooding finds hay
•  DHTs find needles

•  BUT

27

A Peer-to-peer Google?

•  Complex intersection queries (“the” + “who”)
•  Billions of hits for each term alone

•  Sophisticated ranking
•  Must compare many results before returning a subset

to user
•  Very, very hard for a DHT / p2p system

•  Need high inter-node bandwidth
•  (This is exactly what Google does - massive clusters)

28

Writable, persistent p2p

•  Do you trust your data to 100,000 monkeys?
•  Node availability hurts

•  Ex: Store 5 copies of data on different nodes
•  When someone goes away, you must replicate the data

they held
•  Hard drives are *huge*, but edge network upload

bandwidth is tiny
•  May take days to upload contents of a hard drive. P2P

replication/fault-tolerance expensive.

29

P2P: Summary

•  Many different styles; remember pros and cons of each
•  centralized, flooding, swarming, and structured routing

•  Lessons learned:
•  Single points of failure are very bad
•  Flooding messages to everyone is bad
•  Underlying network topology is important
•  Not all nodes are equal
•  Need incentives to discourage freeloading
•  Privacy and security are important
•  Structure can provide theoretical bounds and guarantees

30

