
General LTL Specification Mining
Caroline Lemieux, Dennis Park and Ivan Beschastnikh

University of British Columbia

Department of Computer Science

1

login attempt
guest login
auth failed
Authorized

login attempt
auth failed
login attempt
auth failed

login attempt
auth failed
login attempt
authorized

login attempt
auth failed
login attempt
guest login
authorized

G(x → XFy) G(guest login → XFauthorized)
Texada

source: https://bitbucket.org/bestchai/texada

Program Specifications

• Formal expectation of how a program should work

• Specs are useful, but rarely specified by developers

– May be difficult to write out

– May fall out of date like documentation

program without specs:

easier for initial dev

program with specs:

harder for initial dev

harder for debugging,

refactoring, maintenance

easier for debugging,

refactoring, maintenance

foo()

always

precedes
bar()

...

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

2

Program Specifications

• Formal expectation of how a program should work

• Specs are useful, but rarely specified by developers

– May be difficult to write out

– May fall out of date like documentation

program without specs:

easier for initial dev

program with specs:

harder for initial dev

harder for debugging,

refactoring, maintenance

easier for debugging,

refactoring, maintenance

foo()

always

precedes
bar()

...

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

3

Program Specifications

• Formal expectation of how a program should work

• Specs are useful, but rarely specified by developers

– May be difficult to write out

– May fall out of date like documentation

program without specs:

easier for initial dev

program with specs:

harder for initial dev

harder for debugging,

refactoring, maintenance

easier for debugging,

refactoring, maintenance

foo()

always

precedes
bar()

...

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

4

Program Specifications

• Formal expectation of how a program should work

• Specs are useful, but rarely specified by developers

– May be difficult to write out

– May fall out of date like documentation

program without specs:

easier for initial dev

program with specs:

harder for initial dev

harder for debugging,

refactoring, maintenance

easier for debugging,

refactoring, maintenance

foo()

always

precedes
bar()

...

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

5

solution: infer specs

Uses of Inferred Specs in Familiar Systems

• program maintenance[1]

• confirm expected behavior[2]

• bug detection[2]

• test generation[3]

familiar
system

inferred
specs



unfamiliar
system

inferred
specs

?

• system comprehension[4]

• system modeling[4]

• reverse

 engineering[1]

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

foo()

always

precedes
bar()

...

foo()

always

precedes
bar()

...

6

 [1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API Property Inference Techniques. TSE, 613-637, 2013.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support program evolution. TSE, 27(2):99–123, 2001.

[3] V Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010.

[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst .Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267–277, 2011.

Inferred Specs in Unfamiliar Systems

• program maintenance[1]

• confirm expected behavior[2]

• bug detection[2]

• test generation[3]

familiar
system

inferred
specs



unfamiliar
system

inferred
specs

?

• system comprehension[4]

• system modeling[4]

• reverse

 engineering[1]

class C{

oo()

ar()

...

}

class B{

ping()

pongar()

...

}

class A{

foo()

bar()

...

}

foo()

always

precedes
bar()

...

foo()

always

precedes
bar()

...

7

 [1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. Automated API Property Inference Techniques. TSE, 613-637, 2013.

[2] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin. Dynamically Discovering Likely Program Invariants to Support program evolution. TSE, 27(2):99–123, 2001.

[3] V Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010.

[4] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst .Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267–277, 2011.

Spec Mining Sources

• Specs can be mined from various program artifacts.

– Source code [1]

– Documentation [2]

– Revision histories [3]

• Focus of talk: textual logs (e.g., execution traces)

– Easy to instrument, extensible

8

[1] R. Alur, P. Cerny, P. Madhusudan, W. Nam. Synthesis of Interface Specifications for Java Classes. In Proceedings of POPL’05.

[2]L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*Icomment: Bugs or BadComments?*/. In Proceedings of SOSP’07.

[3] V. B. Livshits and T. Zimmermann. Dynamine: Finding Common Error Patterns by Mining Software Revision Histories. In Proceedings of ESEC/FSE’05.

sales_page
search
sales_anncs
search
sales_anncs
search
search
sales_anncs
sales_anncs
--
homepage
search
homepage
search
sales_anncs
sales_anncs
homepage
search

0 is THINKING
1 is HUNGRY
2 is THINKING
3 is THINKING
4 is THINKING
..
0 is THINKING
1 is EATING
2 is THINKING
3 is THINKING
4 is THINKING
..
0 is THINKING
1 is THINKING
2 is THINKING
3 is THINKING
4 is THINKING
..

StackAr(int)
isFull()
isEmpty()
top()
isEmpty()
topAndPop()
isEmpty()
isFull()
isEmpty()
top()
isEmpty()
push(java.lang.Object)
isFull()
isFull()
isEmpty()
top()
isEmpty()
push(java.lang.Object)

this.currentSize == this.front
this.currentSize == this.back
this.theArray[] elements == null
this.theArray[].getClass() elements == null
this.currentSize == 0
..
this.back <= size(this.theArray[])-1
..
this.back <= size(this.theArray[])-1
..
this.back <= size(this.theArray[])-1
..
this.back <= size(this.theArray[])-1
..
this.theArray[] elements == null
this.theArray[].getClass() elements == null
this.currentSize == 0
this.front one of { 0, 6 }

web log
dining

phil.
data struct. data inv. log

Spec Patterns to Mine

• In this talk, focus on mining temporal specs

– open() is always followed by close() (response pattern)

• Many temporal properties could be mined:

9

[1] J. Yang, D. Evans, D. Bhardwaj, T. Bhat and M. Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE’06.

[2] M. Gabel and Z. Su. Javert: Fully Automatic Mining of General Temporal Properties from Dynamic Traces. FSE’08.

[3] D. Lo, S-C. Khoo, and C. Liu. Mining Temporal Rules for Software Maintenance. Journal of Software Maintenance and Evolution: Research and Practice, 20 (4), 2008.

[4] G. Reger, H. Barringer, and D. Rydeheard. A Pattern-Based Approach to Parametric Specification Mining. In Proceedings of ASE’13.

[5] D. Fahland, D. Lo, and S. Maoz. Mining Branching-Time Scenarios. In Proceedings of ASE’13.

variations of

response

pattern [1]

strict response

pattern + resource

allocation [2]

response

patterns of

arbitrary length [3]

lots of small

patterns to combine

into big ones [4]

branching live-

sequence

charts [5]

…

Spec Patterns to Mine

• In this talk, focus on mining temporal specs

– open() is always followed by close() (response pattern)

• Many temporal properties could be mined:

10

[1] J. Yang, D. Evans, D. Bhardwaj, T. Bhat and M. Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE’06.

[2] M. Gabel and Z. Su. Javert: Fully Automatic Mining of General Temporal Properties from Dynamic Traces. FSE’08.

[3] D. Lo, S-C. Khoo, and C. Liu. Mining Temporal Rules for Software Maintenance. Journal of Software Maintenance and Evolution: Research and Practice, 20 (4), 2008.

[4] G. Reger, H. Barringer, and D. Rydeheard. A Pattern-Based Approach to Parametric Specification Mining. In Proceedings of ASE’13.

[5] D. Fahland, D. Lo, and S. Maoz. Mining Branching-Time Scenarios. In Proceedings of ASE’13.

variations of

response

pattern [1]

strict response

pattern + resource

allocation [2]

response

patterns of

arbitrary length [3]

lots of small

patterns to combine

into big ones [4]

branching live-

sequence

charts [5]

…

Which temporal spec mining tool should I use?

“Ultimate” Temporal Spec Inference

• pattern-based: can output a set of simple patterns, or

more general patterns

• patterns specified in LTL, includes 67 pre-defined

templates

 11

mine any general temporal pattern

Texada

Contributions

• Texada: general LTL specification miner

• Approximate confidence/support measures for LTL

• Concurrent system analysis

– Dining Philosophers

– Sleeping Barber

12

textual log any LTL formula inferred specs

Texada
a

b

c

e

d

Ψ(x,y)

Ψ(a,b)

Ψ(c,e)
Ψ(e,d)

Texada Outline

13

G(x→XFy)

Log

Property Type

Log

Parser

SPOT[1]

LTL

Parser

Property

Instance

Checker Valid Property Instances

login attempt
guest login
auth failed
authorized
--
login attempt
auth failed
login attempt
authorized
--
login attempt
auth failed
login attempt
auth failed
--
login attempt
auth failed
login attempt
guest login
authorized
--

G(guest login → XFauthorized)

Property

Instance

Generator

Texada

parsed log

events

formula tree

property

instances

[1] A. Duret-Lutz and D. Poitrenaud. Spot: an Extensible Model Checking Library using Transition-Based Generalized Buchi automata. In Proceedings of MASCOTS’04.

inputs

output

“x is always followed by y”

Property Type Mining

• Parse each property type into interpretable format (tree)

• For each property type, dynamically generate and check

property instances on log:

 14

G(x→XFy)

G(guest login → XFauthorized)

G(authorized → XFguest login)

G(authorized → XFlogin attempt)

G(authorized → XFauth failed)

G(auth failed→ XFauthorized)

G(auth failed→ XFguest login)

G(auth failed → XFauthorized)

G(login attempt → XFguest login)

G(login attempt → XFauth failed)

G(guest login→ XFlogin attempt)

G(guest login→ XFauth failed)

G(login attempt → XFauthorized)

“x is always followed by y”

Linear Log Parsing

15

Texada parses logs by regexes (specify event line format,

trace separator)

 set of traces in linear format

login attempt
guest login
auth failed
authorized
--
login attempt
auth failed
login attempt
authorized
--
login attempt
auth failed
login attempt
auth failed
--
login attempt
auth failed
login attempt
guest login
authorized
--

login attempt guest login auth failed authorized

login attempt auth failed login attempt authorized

login attempt auth failed login attempt auth failed

login attempt auth failed login attempt guest login authorized

1.

2.

3.

4.

Property Instance Checking (Linear Alg)

16

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

0 1 2 3

Property Instance Checking (Linear Alg)

17

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

0 1 2 3

Property Instance Checking (Linear Alg)

18

guest login

G

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

s

q

p

0 1 2 3

Property Instance Checking (Linear Alg)

19

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

q

r

0 1 2 3

Property Instance Checking (Linear Alg)

20

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

r

0 1 2 3

Property Instance Checking (Linear Alg)

21

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

X(s): check if s holds at next time point

s

0 1 2 3

Property Instance Checking (Linear Alg)

22

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

X(s): check if s holds at next time point

F(a): check if a holds at some time point

0 1 2 3

Property Instance Checking (Linear Alg)

23

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

X(s): check if s holds at next time point

F(a): check if a holds at some time point

0 1 2 3

Property Instance Checking (Linear Alg)

24

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

X(s): check if s holds at next time point

F(a): check if a holds at some time point

0 1 2 3

Property Instance Checking (Linear Alg)

25

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

X(s): check if s holds at next time point

s

0 1 2 3

Property Instance Checking (Linear Alg)

26

guest login

G

X

→

F

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

q→r :check if q→r

q

r

0 1 2 3

Property Instance Checking (Linear Alg)

27

guest login

G

→

authorized

• Check each instance on each trace in log

• holds on trace ⇔ holds on first event of trace

guest login login attempt auth failed authorized

G(p): check if p holds at every time point

s

q

p

0 1 2 3

Linear Algorithm Observations

28

• Linear checker works but … is slow.

• Notice: most temporal operators rely on relative positions

• Optimization: use map format

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

event posns

login attempt [0,2]

auth failed [1,3]

login attempt guest login auth failed authorized

login attempt auth failed login attempt auth failed

Checking on Map Traces

29

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

Checking on Map Traces

30

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

G(p) holds at 0 if !p never occurs

find first occurrence of !p

Checking on Map Traces

31

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

G(p) holds at 0 if !p never occurs

find first occurrence of !p

guest login X

&

G

authorized

!

Checking on Map Traces

32

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

G(p) holds at 0 if !p never occurs

find first occurrence of !p

guest login X

&

G

authorized

!

search for first occurrence

of guest login (1)

Checking on Map Traces

33

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

G(p) holds at 0 if !p never occurs

find first occurrence of !p

guest login X

&

G

authorized

!

search for first occurrence

of guest login (1)

first occurs at last occurrence

of authorized (3)

Checking on Map Traces

34

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

G(p) holds at 0 if !p never occurs

find first occurrence of !p

guest login X

&

G

authorized

!

search for first occurrence

of guest login (1)

first occurs at last occurrence

of authorized (3)

first occ ≥ 3

Checking on Map Traces

35

• Check on trace in map form also tree-based

– but also uses the negation of nodes

• Map form allows algorithm to skip over trace

event posns

login attempt [0]

guest login [1]

auth failed [2]

authorized [3]

guest login

G

X

→

F

authorized

G(p) holds at 0 if !p never occurs

find first occurrence of !p

!p never occurs in trace, G(p) holds.

guest login login attempt

Memoization (reuse of computation)

36

• To check property type, check each instance on log

– for N unique events, M variables, ~NM instances

– tree form allows for specialized memoization

• Preliminary memo over 3 instantiations: 7% speedup

G

X

→

F

G

X

→

F

authorized authorized

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

guest login login attempt

Memoization (reuse of computation)

37

• To check property type, check each instance on log

– for N unique events, M variables, ~NM instances

– tree form allows for specialized memoization

• Preliminary memo over 3 instantiations: 7% speedup

G

X

→

F

G

X

→

F

authorized authorized

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

G

X

→

F

Support, Confidence for LTL

38

• Want to know which instances “almost never” violated

• check guest login is always followed by authorized:

• Can we formalize this?

login attempt
guest login
auth failed
authorized
guest login
authorized
guest login

only one guest login not followed by

authorized – guest login is almost

always followed by authorized

Initial Support, Confidence Concept

39

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Initial Support, Confidence Concept

40

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Initial Support, Confidence Concept

41

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Initial Support, Confidence Concept

42

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Initial Support, Confidence Concept

43

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Initial Support, Confidence Concept

44

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Initial Support, Confidence Concept

45

• Proposal: support for G(p) = # number of time points

where p holds

• But: support for G(p→XFq)

qqqq qpqq pppp
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4

pppq pqpp rrrr
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4

Support, Confidence Heuristic

46

• What we do: focus on falsifiability

• Call these vacuously true time points not falsifiable

• Approximate support, support potential for arbitrary LTL

– Support potential of Ψ: number of falsifiable time points

– Support of Ψ: number of falsifiable time points on which Ψ is

satisfied

– Confidence of Ψ: support/support potential (or 1 if both are 0)

login attempt
guest login
auth failed
authorized
guest login
authorized
guest login

guest login→ XFauthorized

vacuously true on

Texada Evaluation

47

• Can Texada mine a wide enough variety of temporal

properties?

• Can Texada help comprehend unknown systems?

– Real estate web log

– StackAr

• Can Texada confirm expected behavior of systems?

– Dining Philosophers

– Sleeping Barber

• Is Texada fast?

– Texada vs. Synoptic

– Texada vs. Perracotta

• Can we use Texada’s results to build other tools?

– Quarry prototype

Texada Evaluation

48

• Can Texada mine a wide enough variety of temporal

properties?

• Can Texada help comprehend unknown systems?

– Real estate web log

– StackAr

• Can Texada confirm expected behavior of systems?

– Dining Philosophers

– Sleeping Barber

• Is Texada fast?

– Texada vs. Synoptic

– Texada vs. Perracotta

• Can we use Texada’s results to build other tools?

– Quarry prototype

NEW

Expressiveness of Property Types

• Texada can express properties from prior work

– Synoptic[1]

– Perracotta[2]

– Patterns in Property Specifications for Finite-State Verification

 [Dwyer et al. ICSE’99]

49

[1] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained

Models. FSE11.

[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06.

Name Regex LTL

Always Followed by G(x→XFy)

Never Followed by G(x→XG!y)

Always Precedes (!y W x)

Alternating (xy)* (!y W x) & G((x→X(!x U y)) & (y→ X(!y W x)))

MultiEffect (xyy*)* (!y W x) & G(x→X(!x U y))

MultiCause (xx*y)* (!y W x) & G((x→XFy) & (y→X(!y W x)))

EffectFirst y*(xy)* G((x→X(!x U y)) & (y→ X(!y W x)))

OneCause y*(xyy*)* G(x→X(!x U y))

CauseFirst (xx*yy*)* (!y W x) & G(x→XFy)

OneEffect y*(xx*y)* G((x→XFy) & (y→X(!y W x)))

Expressiveness of Property Types

• Texada can express properties from prior work

– Synoptic[1]

– Perracotta[2]

– Patterns in Property Specifications for Finite-State Verification

 [Dwyer et al. ICSE’99]

50

[1] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained

Models. FSE11.

[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06.

Name Regex LTL

Always Followed by G(x→XFy)

Never Followed by G(x→XG!y)

Always Precedes (!y W x)

Alternating (xy)* (!y W x) & G((x→X(!x U y)) & (y→ X(!y W x)))

MultiEffect (xyy*)* (!y W x) & G(x→X(!x U y))

MultiCause (xx*y)* (!y W x) & G((x→XFy) & (y→X(!y W x)))

EffectFirst y*(xy)* G((x→X(!x U y)) & (y→ X(!y W x)))

OneCause y*(xyy*)* G(x→X(!x U y))

CauseFirst (xx*yy*)* (!y W x) & G(x→XFy)

OneEffect y*(xx*y)* G((x→XFy) & (y→X(!y W x)))

• Texada can mine a wide variety of properties

• Texada can mine concurrent sys. properties

• Texada has reasonable performance



Dining Philosophers
• Classic concurrency problem: philosophers sit around a

table, thinking, hungry, or eating.

• These specs could not be checked with previous

temporal spec miners!

0

51

3 2

4 1

needs two

chopsticks

to eat

so this pair

can’t eat at

the same time

but this pair

can eat at the

same time

Multi-Propositional Traces

52

• LTL: multiple atomic propositions may hold at a time

• Standard log model: one event at each time point

• Texada supports multi-propositional logs: multiple

events can occur at one time point

• Dining philosophers log: 5 one minute traces, 6.5K lines

0 is THINKING
1 is HUNGRY
2 is THINKING
3 is THINKING
4 is THINKING
..
0 is THINKING
1 is EATING
2 is THINKING
3 is THINKING
4 is THINKING
..
 ...

time point

separator

multiple events at

single time point

Dining Phil. Mutex (safety property)

• Two adjacent philosophers never eat at the same time

• Property pattern: G(x →!y) “if x occurs, y does not”

• Texada output for G(x →!y) includes

53

1

0

4

3 2

G(3 is EATING → ! 4 is EATING)

G(0 is EATING → ! 4 is EATING)

G(0 is EATING → ! 1 is EATING)

G(2 is EATING → ! 3 is EATING)

G(1 is EATING → ! 2 is EATING)

G(4 is EATING → ! 3 is EATING)

G(3 is EATING → ! 4 is EATING)

together, mean that two

adjacent philosophers

never eat at the same time

Dining Phil. Efficiency (liveness property)

• Non-adjacent philosophers eventually eat at the same time

• Property pattern: F(x & y) “eventually x and y occur together”

• Texada output for F(x & y) includes

54

1

0

4

3 2

F(2 is EATING & 4 is EATING)

F(4 is EATING & 2 is EATING)

F(0 is EATING & 3 is EATING)

F(0 is EATING & 2 is EATING)

F(1 is EATING & 4 is EATING)

F(1 is EATING & 3 is EATING)

F(2 is EATING & 4 is EATING)

together, mean that non-

adjacent philosophers

eventually eat at the same time

Dining Phil. Efficiency (liveness property)

• Non-adjacent philosophers eventually eat at the same time

• Property pattern: F(x & y) “eventually x and y occur together”

• Texada output for F(x & y) includes

55

1

0

4

3 2

F(2 is EATING & 4 is EATING)

F(4 is EATING & 2 is EATING)

F(0 is EATING & 3 is EATING)

F(0 is EATING & 2 is EATING)

F(1 is EATING & 4 is EATING)

F(1 is EATING & 3 is EATING)

F(2 is EATING & 4 is EATING)

together, mean that non-

adjacent philosophers

eventually eat at the same time

• Texada can mine a wide variety of properties

• Texada can mine concurrent sys. properties

• Texada has reasonable performance




Texada vs. Synoptic

• Texada performs favourably against Synoptic’s miner on

three property types it is specialized to mine.

• More results in paper.

• Texada algs benefit from log-level short-circuiting.

56

Texada vs. Perracotta

• Perracotta performs favourably against Texada:

• Perracotta’s algorithm particularly effective at reducing
instantiation effect on runtime.

• Further memoization work (along with good expiration
policies) might help reduce instantiation effect

57

Unique events
(10K events/trace, 20

traces/log)

Perracotta Texada

(map miner)

120 0.85 s 2.42 s

160 0.97 s 4.07 s

260 1.42 s 10.21 s

Texada vs. Perracotta

• Perracotta performs favourably against Texada:

• Perracotta’s algorithm particularly effective at reducing
instantiation effect on runtime.

• Further memoization work (along with good expiration
policies) might help reduce instantiation effect

58

Unique events
(10K events/trace, 20

traces/log)

Perracotta Texada

(map miner)

120 0.85 s 2.42 s

160 0.97 s 4.07 s

260 1.42 s 10.21 s

• Texada can mine a wide variety of properties

• Texada can mine concurrent sys. properties

• Texada has reasonable performance




Conclusion

• Many temporal spec miners, unclear which to use

• Texada: general LTL spec miner

– confirms expected behavior, discovers unexpected use patterns

– prototyped confidence measures (future work to improve this)

– can examine concurrent system logs

• Open source and ready to use:

https://bitbucket.org/bestchai/texada/

59

