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solution: infer specs 



Uses of Inferred Specs in Familiar Systems 

• program maintenance[1]  

• confirm expected behavior[2] 

• bug detection[2] 

• test generation[3] 
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Spec Mining Sources 

• Specs can be mined from various program artifacts. 

– Source code [1] 

– Documentation [2] 

– Revision histories [3] 

• Focus of talk: textual logs (e.g., execution traces) 

– Easy to instrument, extensible 
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Spec Patterns to Mine 

• In this talk, focus on mining temporal specs 

– open() is always followed by close() (response pattern) 

• Many temporal properties could be mined: 
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Which temporal spec mining tool should I use? 

 



“Ultimate” Temporal Spec Inference 

• pattern-based: can output a set of simple patterns, or 

more general patterns 

• patterns specified in LTL, includes 67 pre-defined 

templates 
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Contributions 

• Texada: general LTL specification miner 

 

 

 

 

 

 

 

• Approximate confidence/support measures for LTL 

• Concurrent system analysis 

– Dining Philosophers 

– Sleeping Barber 
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Texada Outline 
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Property Type Mining 

• Parse each property type into interpretable format (tree) 

• For each property type, dynamically generate and check 

property instances on log: 
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Linear Log Parsing 
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Property Instance Checking (Linear Alg) 
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Linear Algorithm Observations 
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• Linear checker works but … is slow.  

• Notice: most temporal operators rely on relative positions 

• Optimization: use map format 
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Checking on Map Traces 
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• Check on trace in map form also tree-based 

– but also uses the negation of nodes  
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• Check on trace in map form also tree-based 
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• Check on trace in map form also tree-based 

– but also uses the negation of nodes  
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• Check on trace in map form also tree-based 

– but also uses the negation of nodes  

• Map form allows algorithm to skip over trace 
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Checking on Map Traces 
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• Check on trace in map form also tree-based 

– but also uses the negation of nodes  

• Map form allows algorithm to skip over trace 
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Checking on Map Traces 
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• Check on trace in map form also tree-based 

– but also uses the negation of nodes  

• Map form allows algorithm to skip over trace 
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Memoization (reuse of computation) 

36 

• To check property type, check each instance on log 

– for N unique events, M variables, ~NM instances 

– tree form allows for specialized memoization 

 

 

 

 

 

 

 

 

• Preliminary memo over 3 instantiations: 7% speedup 
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Memoization (reuse of computation) 
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• To check property type, check each instance on log 

– for N unique events, M variables, ~NM instances 

– tree form allows for specialized memoization 
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Support, Confidence for LTL 
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• Want to know which instances “almost never” violated 

• check guest login is always followed by authorized: 

 

 

 

 

 

 

• Can we formalize this? 
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Initial Support, Confidence Concept 
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• Proposal: support for G(p) = # number of time points 

where p holds 
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pppq pqpp rrrr 
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4 
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• Proposal: support for G(p) = # number of time points 

where p holds 
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Initial Support, Confidence Concept 
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• Proposal: support for G(p) = # number of time points 

where p holds 

 

 

 

• But: support for G(p→XFq) 
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sup G(p)= 0 sup G(p)= 1 sup G(p)= 4 

pppq pqpp rrrr 
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4 



Initial Support, Confidence Concept 
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• Proposal: support for G(p) = # number of time points 

where p holds 

 

 

 

• But: support for G(p→XFq) 

 

 

 

 

qqqq qpqq pppp 
sup G(p)= 0 sup G(p)= 1 sup G(p)= 4 

pppq pqpp rrrr 
sup G(p→XFq)= 4 sup G(p→XFq)= 2 sup G(p→XFq)= 4 



Support, Confidence Heuristic 
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• What we do: focus on falsifiability 

 

 

 

 

• Call these vacuously true time points not falsifiable 

• Approximate support, support potential for arbitrary LTL 

– Support potential of Ψ: number of falsifiable time points 

– Support of Ψ: number of falsifiable time points on which Ψ is 

satisfied 

– Confidence of Ψ: support/support potential (or 1 if both are 0) 

 

login attempt 
guest login 
auth failed 
authorized 
guest login 
authorized 
guest login 

guest login→ XFauthorized 

vacuously true on 



Texada Evaluation 

47 

• Can Texada mine a wide enough variety of temporal 

properties?  

• Can Texada help comprehend unknown systems? 

– Real estate web log 

– StackAr 

• Can Texada confirm expected behavior of systems? 

– Dining Philosophers 

– Sleeping Barber 

• Is Texada fast? 

– Texada vs. Synoptic  

– Texada vs. Perracotta 

• Can we use Texada’s results to build other tools? 

– Quarry prototype 



Texada Evaluation 
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• Can Texada mine a wide enough variety of temporal 

properties?  

• Can Texada help comprehend unknown systems? 

– Real estate web log 

– StackAr  

• Can Texada confirm expected behavior of systems? 

– Dining Philosophers  

– Sleeping Barber  

• Is Texada fast? 

– Texada vs. Synoptic  

– Texada vs. Perracotta 

• Can we use Texada’s results to build other tools? 

– Quarry prototype 

NEW 



Expressiveness of Property Types 

• Texada can express properties from prior work 

 

 
– Synoptic[1] 

 

 

 

– Perracotta[2] 

 

 

 

 

– Patterns in Property Specifications for Finite-State Verification  

 [Dwyer et al. ICSE’99] 
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[1] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained 

Models.  FSE11.  

[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06. 

Name Regex LTL 

Always Followed by G(x→XFy) 

Never Followed by G(x→XG!y) 

Always Precedes (!y W x) 

Alternating (xy)* (!y W x) & G((x→X(!x U y)) & (y→ X(!y W x))) 

MultiEffect (xyy*)* (!y W x) & G(x→X(!x U y)) 

MultiCause (xx*y)* (!y W x) & G((x→XFy) & (y→X(!y W x))) 

EffectFirst y*(xy)* G((x→X(!x U y)) & (y→ X(!y W x))) 

OneCause y*(xyy*)* G(x→X(!x U y)) 

CauseFirst (xx*yy*)* (!y W x) & G(x→XFy) 

OneEffect y*(xx*y)* G((x→XFy) & (y→X(!y W x))) 



Expressiveness of Property Types 

• Texada can express properties from prior work 

 

 
– Synoptic[1] 

 

 

 

– Perracotta[2] 

 

 

 

 

– Patterns in Property Specifications for Finite-State Verification  

 [Dwyer et al. ICSE’99] 
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[1] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan and M. D. Ernst. Leveraging Existing Instrumentation to Automatically Infer Invariant-Constrained 

Models.  FSE11.  

[2] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. Perracotta: Mining Temporal API Rules from Imperfect Traces. ICSE06. 

Name Regex LTL 

Always Followed by G(x→XFy) 

Never Followed by G(x→XG!y) 

Always Precedes (!y W x) 

Alternating (xy)* (!y W x) & G((x→X(!x U y)) & (y→ X(!y W x))) 

MultiEffect (xyy*)* (!y W x) & G(x→X(!x U y)) 

MultiCause (xx*y)* (!y W x) & G((x→XFy) & (y→X(!y W x))) 

EffectFirst y*(xy)* G((x→X(!x U y)) & (y→ X(!y W x))) 

OneCause y*(xyy*)* G(x→X(!x U y)) 

CauseFirst (xx*yy*)* (!y W x) & G(x→XFy) 

OneEffect y*(xx*y)* G((x→XFy) & (y→X(!y W x))) 

• Texada can mine a wide variety of properties 

• Texada can mine concurrent sys. properties 

• Texada has reasonable performance 

 



Dining Philosophers 
• Classic concurrency problem: philosophers sit around a 

table, thinking, hungry, or eating. 

 

 

 

 

 

 

 

 

• These specs could not be checked with previous 

temporal spec miners!  

 

0 

51 

3 2 

4 1 

needs two 

chopsticks 

to eat 

so this pair 

can’t eat at 

the same time 

but this pair 

can eat at the 

same time 



Multi-Propositional Traces 
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• LTL: multiple atomic propositions may hold at a time  

• Standard log model: one event at each time point 

• Texada supports multi-propositional logs: multiple 

events can occur at one time point 

• Dining philosophers log: 5 one minute traces, 6.5K lines  

0 is THINKING 
1 is HUNGRY 
2 is THINKING 
3 is THINKING 
4 is THINKING 
.. 
0 is THINKING 
1 is EATING 
2 is THINKING 
3 is THINKING 
4 is THINKING 
.. 
      ... 

time point 

separator 

multiple events at  

single time point 



Dining Phil. Mutex (safety property) 

• Two adjacent philosophers never eat at the same time 

• Property pattern: G(x →!y) “if x occurs, y does not” 

 

 

 

 

• Texada output for G(x →!y) includes 
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1 

0 

4 

3 2 

G(3 is EATING → ! 4 is EATING)  

G(0 is EATING → ! 4 is EATING)  

G(0 is EATING → ! 1 is EATING)  

G(2 is EATING → ! 3 is EATING)  

G(1 is EATING → ! 2 is EATING)  

G(4 is EATING → ! 3 is EATING)  

G(3 is EATING → ! 4 is EATING)  

together, mean that two 

adjacent philosophers 

never eat at the same time 



Dining Phil. Efficiency (liveness property) 

• Non-adjacent philosophers eventually eat at the same time 

• Property pattern: F(x & y) “eventually x and y occur together” 

 

 

 

 

• Texada output for F(x & y) includes 
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1 

0 

4 

3 2 

F(2 is EATING & 4 is EATING)  

F(4 is EATING & 2 is EATING)  

F(0 is EATING & 3 is EATING)  

F(0 is EATING & 2 is EATING)  

F(1 is EATING & 4 is EATING)  

F(1 is EATING & 3 is EATING)  

F(2 is EATING & 4 is EATING)  

together, mean that non-

adjacent philosophers 

eventually eat at the same time 



Dining Phil. Efficiency (liveness property) 

• Non-adjacent philosophers eventually eat at the same time 

• Property pattern: F(x & y) “eventually x and y occur together” 

 

 

 

 

• Texada output for F(x & y) includes 
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1 

0 

4 

3 2 

F(2 is EATING & 4 is EATING)  

F(4 is EATING & 2 is EATING)  

F(0 is EATING & 3 is EATING)  

F(0 is EATING & 2 is EATING)  

F(1 is EATING & 4 is EATING)  

F(1 is EATING & 3 is EATING)  

F(2 is EATING & 4 is EATING)  

together, mean that non-

adjacent philosophers 

eventually eat at the same time 

• Texada can mine a wide variety of properties 

• Texada can mine concurrent sys. properties 

• Texada has reasonable performance 

 
 



Texada vs. Synoptic 

• Texada performs favourably against Synoptic’s miner on 

three property types it is specialized to mine. 

 

 

 

 

 

 

 

• More results in paper.  

• Texada algs benefit from log-level short-circuiting.  
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Texada vs. Perracotta 

• Perracotta performs favourably against Texada: 

 

 

 

 

 

 

 

• Perracotta’s algorithm particularly effective at reducing 
instantiation effect on runtime. 

• Further memoization work (along with good expiration 
policies) might help reduce instantiation effect   
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Unique events 
(10K events/trace, 20 

traces/log) 

Perracotta  Texada  

(map miner) 

120 0.85 s 2.42 s 

160 0.97 s 4.07 s 

260 1.42 s 10.21 s 

 

 

 

 

 

 

 

 

 

 



Texada vs. Perracotta 

• Perracotta performs favourably against Texada: 

 

 

 

 

 

 

 

• Perracotta’s algorithm particularly effective at reducing 
instantiation effect on runtime. 

• Further memoization work (along with good expiration 
policies) might help reduce instantiation effect   
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Unique events 
(10K events/trace, 20 

traces/log) 

Perracotta  Texada  

(map miner) 

120 0.85 s 2.42 s 

160 0.97 s 4.07 s 

260 1.42 s 10.21 s 

 

 

 

 

 

 

 

 

 

 

• Texada can mine a wide variety of properties 

• Texada can mine concurrent sys. properties 

• Texada has reasonable performance 
 
 
 



Conclusion 

• Many temporal spec miners, unclear which to use 

• Texada: general LTL spec miner 

– confirms expected behavior, discovers unexpected use patterns 

– prototyped confidence measures (future work to improve this) 

– can examine concurrent system logs 

 

 

 

• Open source and ready to use: 

https://bitbucket.org/bestchai/texada/ 
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