
Scalable Consistency 
in Scatter

Lisa Glendenning
Ivan Beschastnikh
Arvind Krishnamurthy
Thomas Anderson

University of Washington

1

A Distributed Key-Value Storage System

October 2011Supported by NSF CNS-0963754

1



Internet services depend on 
distributed key-value stores 

2

Dynamo

C
o
n
s
i
s
t
e
n
c
y

Scalability

Scatter

2



Scatter:
Goals

3

✓ linearizable consistency semantics

✓ scalable in a wide area network

✓ high availability

✓ performance close to existing systems

3



Scatter:
Approach

4

scalable peer-to-peer
systems

consistent datacenter
systems

combine ideas from:

✓distributed hash table
✓ self-organization
✓decentralization

✓ consensus
✓ replication
✓ transactions

4



Distributed Hash Tables:
Background

5

links between nodes form overlay

nodes

keys

partition and assign keys to nodescore functionality:

system structure:
knowledge of system state is 
distributed among all nodes

system management:
nodes coordinate locally to 
respond to churn, e.g.,
• give keys to new nodes
• take over keys of failed 

nodes

5



Distributed Hash Tables:
Faults Cause Inconsistencies

6

ka kb

ba

c.pred = a

c.succ = b

a.succ = c

b.pred = c

b.keys = (kc,kb]

c.keys = (ka,kc]

c

Example: c joins between a and b

ka kb

ba

c

kc

JOIN

6



Distributed Hash Tables:
Faults Cause Inconsistencies

6

ka kb

ba

c.pred = a

c.succ = b

a.succ = c

b.pred = c

b.keys = (kc,kb]

c.keys = (ka,kc]

c

Example: c joins between a and b

ka kb

ba

c

kc

JOIN

what could go wrong?

communication 
fault between b 

and c

FAULT OUTCOME
both b and c claim 

ownership of 
(ka,kc]

c fails during 
operation

no node claims 
ownership of 

(ka,kc]

communication 
fault between a 

and c

routes through a 
skip over c

6



Distributed Hash Tables:
Weak Atomicity Causes Anomalies

7

what happens if...

DHTs use ad-hoc protocols to add and remove nodes

• two nodes join at the same place at the same time

• two adjacent nodes leave at the same time

• during a node join the predecessor leaves

• one node mistakenly thinks another node has failed

...
7



8

Scatter:
Design Overview

group

node

use groups as building blocks instead of nodes
How is Scatter different?

What does this give us?

set of nodes that cooperatively manage a key-range
What is a group?

• nodes within a group act as a single 
entity

• a group is much less likely to fail than an 
individual node

• distributed transactions for operations 
involving multiple groups

8



Scatter:
Group Anatomy

9

‣ each node orders client 
operations on its keys

a b c

kakz kckb

nodes = {a,b,c}
keys = (kz,kc]
values = {...}

• include new nodes

•exclude failed nodes

‣ group replicates all state 
among members with Paxos

a.keys = (kz,ka]
b.keys = (ka,kb]
c.keys = (kb,kc]‣ changes to group membership 

are Paxos reconfigurations: 

‣ key-range further partitioned 
among nodes of group for 
performance

9



Scatter:
Self-Reorganization

10

multi-group operations:

MERGE

SPLIT

some problems can’t be handled within a single group
• small groups are at risk of failing
• large groups are slow
• load imbalance across groups

a

b

c

b1

a

c

b2

• merge two small groups into 
one
• split one large group into two
• rebalance keys and nodes 

between groups

distributed transactions coordinated locally by groups

10



Example: Group Split

11

2PC
a

b

c

split?

11



Example: Group Split

11

2PC
a

b

c

split?

ok!

ok!

a

b

c

11



Example: Group Split

11

2PC
a

b

c

split?

ok!

ok!

a

b

c

a

b

c

split!

11



Example: Group Split

11

2PC
a

b

c

split?

ok!

ok!

a

b

c

a

b

c

split!

a

b2

c

b1

11



Example: Group Split

11

b split?

ok!

ok!

2PC
a

b

c

split?

ok!

ok!

a

b

c

a

b

c

split!

a

b2

c

b1

11



Example: Group Split

11

b split?

ok!

ok!

a

c split b?

ok!

split b?

ok!

ok!

ok!

2PC
a

b

c

split?

ok!

ok!

a

b

c

a

b

c

split!

a

b2

c

b1

11



Example: Group Split

11

b split?

ok!

ok!

a

c split b?

ok!

split b?

ok!

ok!

ok!

2PC
a

b

c

split?

ok!

ok!

a

b

c

a

b

c

split!

a

b2

c

b1

b split!

ok!

ok! b1

b2

RECONFIGURE!

committed
11



Example: Group Split

11

b split?

ok!

ok!

a

c split b?

ok!

split b?

ok!

ok!

ok!

a

c

b split!

ok!

ok!

b split!

ok!

ok!

2PC
a

b

c

split?

ok!

ok!

a

b

c

a

b

c

split!

a

b2

c

b1

b split!

ok!

ok! b1

b2

RECONFIGURE!

committed
11



✓ linearizable consistency semantics

✓ scalable in a wide area network

✓ high availability

✓ performance close to existing systems

Scatter

12

...local operations

...replication, reconfiguration

...group consensus, transactions

...key partitioning, optimizations

12



13

Evaluation:
Overview

Questions:
1.How robust is Scatter in high-churn peer-to-

peer environment?
2.How does Scatter adapt to dynamic 

workload in datacenter environment?

Comparisons:

Environment P2P Datacenter

Comparison 
System OpenDHT ZooKeeper

13



Comparison: OpenDHT

14

Layered OpenDHT’s recursive 
routing on top of Scatter groups

Implemented a Twitter-
like application, Chirp

Experimental Setup:
• 840 PlanetLab nodes
• injected node churn at varying rates
• Twitter traces as a workload
• tweets and social network stored in DHT

14



Comparison: OpenDHT

15

Consistency Availability

Consistency

Scatter has zero inconsistencies and high availability 
even under churn

75

80

85

90

95

100

100 300 500 700 900

co
ns

is
te

nt
 f
et

ch
es

 (
%

)

node lifetime (seconds)

Scatter
OpenDHT

75

80

85

90

95

100

100 300 500 700 900

co
m

pl
et

ed
 f
et

ch
es

 (
%

)
node lifetime (seconds)

Scatter
OpenDHT

15



Comparison: OpenDHT

16

Latency

Scalable consistency is cheap

0

350

700

1050

1400

100 300 500 700 900

fe
tc

h 
la

te
nc

y 
(m

s)

node lifetime (seconds)

Scatter
OpenDHT

10-12%]

16



Comparison: Replicated ZooKeeper

17

• testbed: Emulab
• varied total number of nodes
• no churn
• same Chirp workload

statically partitioned global key-space to 
multiple, isolated ZooKeeper instantiations 

small-scale, centralized coordination service
ZooKeeper:

Experimental Setup:Z1

Z2

Z3

Toward Replayable 
Research in Networking 

and Systems 

Replicated ZooKeeper:

17



Comparison: Replicated ZooKeeper

18

Dynamic partitioning adapts to changes in workload

0

100

200

300

400

5 25 50 75 100 125 150

th
ro

ug
hp

ut
 (

10
00

 o
ps

/s
ec

)

total number of nodes

Scatter
ZooKeeper

Scalability

18



✓ consensus groups of nodes as fault-
tolerant building blocks

✓ distributed transactions across groups 
to repartition the global key-space

✓ evaluation against OpenDHT and 
ZooKeeper shows strict consistency, 
linear scalability, and high availability

Scatter:
Summary

19

19


