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Internet services depend on 
distributed key-value stores 
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Scatter:
Goals
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✓ linearizable consistency semantics

✓ scalable in a wide area network

✓ high availability

✓ performance close to existing systems
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Scatter:
Approach
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scalable peer-to-peer
systems

consistent datacenter
systems

combine ideas from:

✓distributed hash table
✓ self-organization
✓decentralization

✓ consensus
✓ replication
✓ transactions
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Distributed Hash Tables:
Background
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links between nodes form overlay

nodes

keys

partition and assign keys to nodescore functionality:

system structure:
knowledge of system state is 
distributed among all nodes

system management:
nodes coordinate locally to 
respond to churn, e.g.,
• give keys to new nodes
• take over keys of failed 

nodes
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Distributed Hash Tables:
Faults Cause Inconsistencies
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ka kb

ba

c.pred = a

c.succ = b

a.succ = c

b.pred = c

b.keys = (kc,kb]

c.keys = (ka,kc]

c

Example: c joins between a and b
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Example: c joins between a and b

ka kb

ba

c

kc

JOIN

what could go wrong?

communication 
fault between b 

and c

FAULT OUTCOME
both b and c claim 

ownership of 
(ka,kc]

c fails during 
operation

no node claims 
ownership of 

(ka,kc]

communication 
fault between a 

and c

routes through a 
skip over c
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Distributed Hash Tables:
Weak Atomicity Causes Anomalies
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what happens if...

DHTs use ad-hoc protocols to add and remove nodes

• two nodes join at the same place at the same time

• two adjacent nodes leave at the same time

• during a node join the predecessor leaves

• one node mistakenly thinks another node has failed

...
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Scatter:
Design Overview

group

node

use groups as building blocks instead of nodes
How is Scatter different?

What does this give us?

set of nodes that cooperatively manage a key-range
What is a group?

• nodes within a group act as a single 
entity

• a group is much less likely to fail than an 
individual node

• distributed transactions for operations 
involving multiple groups
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Scatter:
Group Anatomy
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‣ each node orders client 
operations on its keys

a b c

kakz kckb

nodes = {a,b,c}
keys = (kz,kc]
values = {...}

• include new nodes

•exclude failed nodes

‣ group replicates all state 
among members with Paxos

a.keys = (kz,ka]
b.keys = (ka,kb]
c.keys = (kb,kc]‣ changes to group membership 

are Paxos reconfigurations: 

‣ key-range further partitioned 
among nodes of group for 
performance
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Scatter:
Self-Reorganization
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multi-group operations:

MERGE

SPLIT

some problems can’t be handled within a single group
• small groups are at risk of failing
• large groups are slow
• load imbalance across groups

a

b

c

b1

a

c

b2

• merge two small groups into 
one
• split one large group into two
• rebalance keys and nodes 

between groups

distributed transactions coordinated locally by groups
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Example: Group Split
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✓ linearizable consistency semantics

✓ scalable in a wide area network

✓ high availability

✓ performance close to existing systems

Scatter
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...local operations

...replication, reconfiguration

...group consensus, transactions

...key partitioning, optimizations
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Evaluation:
Overview

Questions:
1.How robust is Scatter in high-churn peer-to-

peer environment?
2.How does Scatter adapt to dynamic 

workload in datacenter environment?

Comparisons:

Environment P2P Datacenter

Comparison 
System OpenDHT ZooKeeper
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Comparison: OpenDHT
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Layered OpenDHT’s recursive 
routing on top of Scatter groups

Implemented a Twitter-
like application, Chirp

Experimental Setup:
• 840 PlanetLab nodes
• injected node churn at varying rates
• Twitter traces as a workload
• tweets and social network stored in DHT
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Comparison: OpenDHT
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Consistency Availability

Consistency

Scatter has zero inconsistencies and high availability 
even under churn
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Comparison: OpenDHT
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Latency

Scalable consistency is cheap
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Comparison: Replicated ZooKeeper
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• testbed: Emulab
• varied total number of nodes
• no churn
• same Chirp workload

statically partitioned global key-space to 
multiple, isolated ZooKeeper instantiations 

small-scale, centralized coordination service
ZooKeeper:

Experimental Setup:Z1

Z2

Z3

Toward Replayable 
Research in Networking 

and Systems 

Replicated ZooKeeper:
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Comparison: Replicated ZooKeeper
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Dynamic partitioning adapts to changes in workload
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✓ consensus groups of nodes as fault-
tolerant building blocks

✓ distributed transactions across groups 
to repartition the global key-space

✓ evaluation against OpenDHT and 
ZooKeeper shows strict consistency, 
linear scalability, and high availability

Scatter:
Summary
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