
Comparing Repositories Visually with RepoGrams

Daniel Rozenberg* Ivan Beschastnikh* Fabian Kosmale+ Valerie Poser+
Heiko Becker+ Marc Palyart* Gail C. Murphy*

*University of British Columbia +Saarland University
Vancouver, BC, Canada Saarbrücken, Germany

{rodaniel, bestchai, mpalyart, murphy}@cs.ubc.ca {s9kofabi, s9vapose, s9hhbeck}@stud.uni-saarland.de

ABSTRACT
The availability of open source software projects has created an
enormous opportunity for software engineering research. How-
ever, this availability requires that researchers judiciously select an
appropriate set of evaluation targets and properly document this ra-
tionale. After all, the choice of targets may have a significant effect
on evaluation.

We developed a tool called RepoGrams to support researchers
in qualitatively comparing and contrasting software projects over
time using a set of software metrics. RepoGrams uses an exten-
sible, metrics-based, visualization model that can be adapted to a
variety of analyses. Through a user study of 14 software engineer-
ing researchers we found that RepoGrams can assist researchers
in filtering candidate software projects and make more reasoned
choices of targets for their evaluations. The tool is open source and
is available online: http://repograms.net/

1. INTRODUCTION
Software engineering (SE) researchers are increasingly using open

source project information stored in centralized hosting sites, such
as GitHub and Bitbucket, to help evaluate their ideas. For example,
GitHub hosts tens of millions of projects, has about 9 million reg-
istered users and is one of the top 100 most popular sites [29]; all
of these projects are potential targets to use in an evaluation.

Some SE studies target hundreds or thousands of projects in
their evaluations [36, 11]. For these studies, projects can be se-
lected solely on the basis of meta-data and simple metrics, such as
the programming language used. A variety of tools exist to help
researchers with selecting projects in this manner. For example,
GHTorrent [21] is a database of meta-data of GitHub repositories
that can be queried for large-scale project selection. Another exam-
ple is Boa [17], a database and query language designed to support
researchers in finding projects that match certain criteria.

However, many SE studies use just a handful of evaluation tar-
gets. In our reading of 114 papers from six major SE conferences
we found that 84 of these papers performed an empirical evaluation
on some artifacts of software projects and 63 of these 84 papers
(75%) used 8 or fewer evaluation targets. For such studies, tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901768

A B C

Length : commit size

Block : commit

Time

Project :

Color : commit metric value

Figure 1: Repository footprint visual abstraction.

12-13

0-1 2-3 4-5 6-7

8-9 10-11 14-16

sqlitebrowser:

postr:

Metric: number of concurrent branches

Legend:

Figure 2: Two example repository footprints.

like GHTorrent and Boa are only useful in identifying an initial
set of targets. Filtering the initial set down to a final selection of
projects requires additional analysis; analysis that is not supported
by existing tools.

We propose RepoGrams, a new tool that helps support SE re-
searchers to qualitatively study and compare several software project
repositories. RepoGrams juxtaposes the evolution of several projects
to support SE researchers in exploring potential evaluation targets.
RepoGrams is built on an extensible, metrics-based, visualization
model that can be adapted to a variety of analyses. RepoGrams
displays a repository footprint abstraction for a repository (Fig-
ure 1), which represents the commits in a project repository as a
sequence of blocks, one block per commit. The blocks are colored
according to a user-defined metric: a block’s color represents the
corresponding commit’s metric value. A block’s length represents
the corresponding commit’s size (LoC changed). RepoGrams sup-
ports researchers in studying metrics related to project evolution
and presents multiple metrics across multiple projects to facilitate
comparison of projects.

For example, Figure 2 shows two footprints: a sqlitebrowser [4]
footprint (top) and a postr [5] footprint (bottom). In this example
the metric is the count of the number of concurrent branches ac-
tive when a commit was introduced. From this figure we can make
two observations: (1) sqlitebrowser’s footprint contains com-
mits that are significantly larger than those in postr. We can see

http://repograms.net/

Figure 3: Five repositories used in a study on the impact of developer turnover on software quality, visualized with RepoGrams using
its commit author metric (top) and author experience metric (bottom).

this by comparing the length of the commit blocks between the two
footprints. (2) in contrast to postr, sqlitebrowser progressively
uses more concurrent branches over time. We can see this by ob-
serving the footprints left to right: the footprint for sqlitebrowser
becomes darker and it eventually has as many as 14-16 concurrent
branches. In contrast, the footprint for postr does not change its
color. Understanding these differences between the projects can
help a researcher choose appropriate repositories to demonstrate
the range of their approach; for instance, these two projects exhibit
opposite patterns of branching use that may help demonstrate gen-
eralizability of a tool.

To evaluate RepoGrams we performed a user study and a case
study. We conducted a user study with 14 active SE researchers
from the MSR community and determined that they can use Re-
poGrams to understand and compare characteristics of a project’s
source repository. We also evaluated the effort involved in adding
six new metrics to RepoGrams in a case study with two different
individuals.

In summary, we make the following contributions:

∗ We designed and implemented RepoGrams, a tool to juxtapose
the evolution of multiple projects. RepoGrams supports SE re-
searchers in exploring the space of possible evaluation targets
and is built on an extensible, metrics-based, visualization model
that can be adapted to a variety of analyses.

∗ We evaluated RepoGrams in a user study with active SE re-
searchers and determined that they can use RepoGrams to un-
derstand and compare characteristics of a project’s source repos-
itory. We also report on the effort involved in extending Re-
poGrams with new metrics.

2. MOTIVATING EXAMPLES
To concretely describe how RepoGrams may be used, we de-

scribe the application of the tool to two examples drawn from pre-
viously published papers [18, 23]. We describe how RepoGrams
can help to understand the diversity of the evaluation targets and
how RepoGrams can be used to form hypothesis about target eval-
uation projects.

Developer turn-over in open-source projects.
Foucault et al. [18] studied developer turnover in open source

projects, with a focus on the impact of developer turnover on soft-
ware quality. The authors performed an in-depth quantitative study

of five large projects, finding that the activity of developers joining
the project negatively impacts software quality.

Figure 3 visualizes the RepoGrams repository footprints for the
five projects used by Foucault et al. using two metrics: 1) the com-
mit author metric that assigns a unique color to each committer
of the project and 2) the author experience metric that indicates at
the time of commit how many commits its author has already per-
formed in this project. In both cases, for simplicity, we fixed the
block length used in RepoGrams to a constant; as a result, com-
mit size is not illustrated (this feature and the available metrics are
detailed in the next section).

Using the RepoGrams footprint for Commit Author, one can see
a diversity of patterns in the footprint, although all projects accu-
mulate contributors over time. For example, Angular.JS [2] has a
few dominant contributors at the start of the project, but the project
quickly gains new committers. On the other hand, Jenkins [1]
contains a single dominant contributor at the start (color yellow),
who is then replaced by another dominant contributor (color grey),
and later a third dominant contributor (color purple).

Although using the commit author metric on such large projects
yields a complex picture, one can see from the figure that Jenkins,
Ansible [3], and jQuery [6] had one dominant contributor at the
beginning. This information could have been useful to the researchers
(two of whom are authors on this paper) since for the study they
had to select releases with a diversity of contributors. Since part
of the study involved manually analyzing bugs associated with the
releases studied, which was time-consuming, there was a desire to
select the appropriate releases up-front. RepoGrams could have
saved the researchers time by helping them to focus on sections of
the project timeline that had the most commit author diversity.

Considering the same set of repositories through the author ex-
perience metric we can see that all five projects have a variety of
patterns according to this metric. For example, the initial domi-
nant contributor in Jenkins is much more dominant than contrib-
utors across all other projects (in terms of number of commits). By
comparison, Angular.JS and jQuery have a much more evenly
distributed author experience over time, while Ansible has sev-
eral pronounced but distributed metric value peaks throughout its
history.

The two RepoGrams footprints in Figure 3 demonstrate that the
projects analyzed in the original study had diverse patterns of de-
veloper activity and experience. The authors could have used these
footprints to help support the generality of their findings.

Figure 4: Three repositories used in a study of tangled code, visualized with RepoGrams using its commit localization metric.

Tangled code changes.
The role of tangled code changes and their impact on quality

were studied by Herzig and Zeller [23]. Figure 4 illustrates the
set of evaluation targets used in this study using the RepoGrams’
commit localization metric. This metric computes the fraction of
the number of unique project directories containing files modified
by the commit. This value ranges from 0 (all the project directories
contain a file modified by the commit) to 1 (all modified files in
a commit are in a single directory). This metric captures commit
modularity and can be used to identify cross-cutting commits or
commits that mix multiple tasks (i.e., tangled code changes). As
before, we fixed the block length in RepoGrams, so commit size is
not illustrated.

From Figure 4, we can see that the XStream project (shown at the
bottom of the footprint) has a continuous stream of outlier (tangled)
commits with a low commit localization metric value. By contrast,
the Jaxen project has almost no commits with a low metric value.

The authors in the study manually inspected over 7,000 change-
sets across these five projects and manually determined which of
these were associated with an issue and whether the change-set
was tangled or not. Using this process the authors determined
that according to the change-sets they studied, the projects had
the following fraction of tangled changes (ordered from least to
most): ArgoUML (5.8%), Jaxen (8.1%), GWT (8.4%), jRuby (9.3%),
XStream (11.9%). Considering the footprint in Figure 4, one can
make a similar assessment from the diagram. The RepoGrams foot-
print cannot be used to derive an exact fraction, but one can get a
general sense for which projects have any tangled changes and how
two projects compare in the number of tangled changes they con-
tain.

Summary.
Both examples illustrate how RepoGrams may be used to eval-

uate project repositories using metrics that closely match features
relevant to the study. Based on this information, a researcher may
decide to add another project to improve the diversity of RepoGrams
footprints, or this may help the researcher argue that the evaluation
targets they have selected generalize to projects with similar Re-
poGrams footprints.

3. REPOGRAMS DESIGN
We designed RepoGrams to compare and contrast project repos-

itories over time to help SE researchers in qualitatively filtering a
set of potential evaluation targets. RepoGrams is qualitative in the
sense that it presents data in a way that can be observed but not
measured. For example, researchers can use RepoGrams to iden-
tify and compare visual patterns in the sequence of colors and the
lengths of the commit blocks.

RepoGrams has three key features. First, RepoGrams captures
project repository activity over time. Second, RepoGrams is de-
signed to present multiple metrics side-by-side to help characterize
informal qualities or artifacts relating to the software development
activity in a project overall. Third, to support researchers in project

selection RepoGrams supports comparison of metrics for about a
dozen projects.

This last point is supported by a literature survey in which four
of the authors considered a random set of 114 research track papers
from five SE conference proceedings in 2012–2014. The five con-
ferences were ICSE, FSE, ASE, MSR, and ESEM. For each paper
we considered the number of distinct evaluation targets used in the
paper’s evaluation. We recorded the number of targets that the au-
thors claim to evaluate as some targets can be considered to be a
single project or multiple projects. For example, Android is an op-
erating system with many sub-projects: one paper can evaluate An-
droid as a single target, while another paper can evaluate Android’s
many sub-projects. We found that 84 papers (74%) performed an
empirical evaluation on some artifacts of software projects, and 63
of these 84 papers (75%) evaluated their work with 8 or fewer eval-
uation targets. Evaluations with large datasets are uncommon.

The rest of this section details RepoGrams’ design and imple-
mentation.

3.1 Overview
RepoGrams is a client-server web application. Figure 5 shows a

screenshot of a session with three projects and two metrics.

Workflow.
To use the tool the user starts by importing some number of

project repositories. She does this by either adding a particular can-
didate projects’ Git repository URL to RepoGrams or by adding
a random GitHub repository (1 in Figure 5). The server clones
each added repository and computes metric values for each com-
mit in the repository. Next, the user selects one or more metrics
(2 in Figure 5) that are relevant to her research. This causes the
server to transmit the pre-computed metric values to the client for
display. The metric values are assigned to colors and the interface
presents the computed project repository footprints to the user (3
in Figure 5) along with the legend for each metric (4 in Figure 5).

Repository footprint.
RepoGrams visualizes a set of metrics over the commits of a set

of repositories as a continuous horizontal line that we call a reposi-
tory footprint, or footprint for short (Figure 5 shows six repository
footprints). The footprints are displayed in a stack to facilitate com-
parison between projects/metrics. A footprint is composed of a se-
quence of commit blocks, each of which represents one commit in a
repository. RepoGrams serializes the commits across all branches
of a repository into a footprint using the commits’ timestamps. The
metric value computed for a commit determines the block’s color.

Block width.
The width of a each commit block can be either a constant value,

a linear representation of the number of LoC changed in the com-
mit, or a logarithmic representation of the same. We also sup-
port two normalization variants: project normalized and glob-
ally normalized. In a project normalized block width all widths

Figure 5: The RepoGrams interface and its key features: (1) input field to add a repository into view (with an option to add a
random repository from GitHub), (2) button to select the metric(s), (3) a repository footprint corresponding to a specific project/metric
combination. The color of a commit block represents the value of the metric on that commit, (4) the legend for commit values in the
selected metric(s), (5) zoom control, (6) button to change the block length representation, (7) buttons to remove or change the order of
repository footprints, (8) control to switch between grouping by metric/project (see Figure 7), (9) tool-tip with an exact metric value
and the commit message (truncated), (10) metric name and description, (11) import/export functionality and help documentation.

are normalized per project to utilize the full width available in the
browser window. This mode prevents meaningful comparison be-
tween projects if the user is interested in contrasting absolute com-
mit sizes. The footprints in Figure 5 use this mode. With the second
normalization mode, globally normalized, block widths are resized
to be relatively comparable across projects. Figure 6 illustrates the
six possible block widths.

Block color.
A commit block’s color is determined by a mapping function

that is implemented as part of a metric. RepoGrams currently sup-
ports three color mapping variants: fixed buckets, uniform buckets,
and discrete buckets (see Section 3.2.1). Each of these functions
maps a commit’s value in a metric to one of several metric value
buckets, and each of these buckets corresponds to a color for the
corresponding commit block.

The interface shows a color legend next to each selected metric
(4 in Figure 5). For example, the second metric in Figure 5 is
Author Experience. Using this example we can see that the most
experienced author in the sqlitebrowser repository committed
375–437 commits in this repository, according to the latest commits
in that project (right-most commit blocks). In contrast, no author
committed over 250 commits in the html-pipeline repository, and
no author committed over 374 commits in the postr project.

Supported interactions.
The RepoGrams interface supports a number of interactions. The

user can (1) scroll the footprints left to right and zoom in and out
to focus on either the entire timeline or a specific period in the
projects’ histories (5 in Figure 5), (2) change the block length
mapping (6 in Figure 5), (3) remove a project or change the order
in which the repository footprints are displayed (7 in Figure 5),

(4) change the footprint grouping (8 in Figure 5) to group foot-
prints by metric or by project (see Figure 7), and (5) hover over or
click on an individual commit block in a footprint to see the com-
mit metric value, commit message, and link to the commit’s page
on GitHub (9 in Figure 5). Finally, RepoGrams supports an im-

port/export functionality (11 in Figure 5), allowing users to store
and share their sessions with others.

Figure 5 shows a metric-grouped view (Figure 7(a)) of three
projects and two metrics. The most edited file metric (top three
repository footprints) represents the maximum number of times
that a file in a commit has been previously modified. This metric in-
dicates that edits to files in sqlitebrowser are more spread across
the system; there is no small set of frequently modified files. This
is in contrast to html-pipeline and postr. The author experience
metric (bottom three footprints in Figure 5) counts the number of
commits that a commit’s author has previously contributed to the
repository. This metric shows that the postr project had an active
committer with over 300 commits until about half-way through the
footprint; this committer then suddenly stopped contributing and
does not appear later in the history.

3.2 Metrics
As of this writing, RepoGrams has twelve built-in metrics, listed

in Table 1. We selected these metrics using our team’s past expe-
riences with empirical evaluations, and based on suggestions of SE
researchers in our user study (Section 4.1).

The type column in Table 1 lists the type of mapping function
used to assign a color to a metric value (described later in this sec-
tion). The LoC column in the table lists the lines of code involved
in the server-side calculation of a metric. Client-side display logic
and meta-data are not included in this count. The top six metrics
in Table 1 were developed in the first iteration of our prototype.

Modes Repository footprints

Fixed Glob.

Proj.

Linear Glob.

Proj.

Log. Glob.

Proj.

Figure 6: An illustration of six supported block widths using
footprints for two different repositories with the same metric.
The top repository has 6 commits with 1, 2, 3, 4, 5, and 6 LoC
changed, in that order. The bottom repository has 5 commits
with 1, 2, 4, 8, and 16 LoC changed, in that order.

The bottom six metrics were added by two developers to evaluate
metric development time, the Dev. time column (see Section 4.2).

We briefly describe one example metric from each of the three
information categories that we used to formulate our metrics:

Code metrics.
Information about code or artifacts inside the repository. For ex-

ample, the Commit localization code metric computes the fraction
of the number of unique project directories containing files modi-
fied by the commit. This value ranges from 0 (all the project direc-
tories contain a file modified by the commit) to 1 (all modified files
in a commit are in a single directory). This metric captures com-
mit modularity and can be used to identify cross-cutting commits
or commits that mix multiple tasks [32].

Process metrics.
Information about the process followed by the project. For ex-

ample, the Commit message length metric computes the number of
words in a commit message. Commit messages are used to docu-
ment changes in the repository and projects have varying rules on
how to write commit messages (e.g., must reference an issue in a
task tracker, must be at most 1 sentence, etc). This metric can ex-
pose trends in a project’s documentation policy, and can be used
to identify the commits that prompted a developer to write more
detailed commit messages.

Social metrics.
Information about contributors to the project, or their relation-

ships. For example, Author experience counts the number of com-
mits that a commit’s author has previously contributed to the repos-
itory. This metric can assist researchers who study code ownership
(e.g., [9, 34]) as this metric can categorize projects based on the
different patterns in the experience of their authors.

We note that the existing metrics are not intended to be com-
prehensive. RepoGrams’ power lies in its extensibility model (as
described in Section 4.2). Additionally, although RepoGrams re-
lies on an underlying set of quantitative metrics, the way in which
the results of these metrics are surfaced is qualitative.

3.2.1 Representing metric values as colors
We decided to use colors to represent metric values for two rea-

sons: (1) RepoGrams is intended to support exploration and colors

Project 1 :
Metric A

Metric B

Project 2 :

Project 1 :
Project 2 :

Metric A :
Project 1

Project 2

Metric B :

Metric A :
Metric B :

(a) Metric-grouped view (b) Project-grouped view

Figure 7: Two ways of grouping footprints: (a) the metric-
grouped view facilitates comparison of different projects along
the same metric, and (b) the project-grouped view facilitates
comparison of different metrics for the same project.

make it easy to spot patterns such as alternation and gradient, (2)
colors provide efficient use of space due to their compact encoding.
The difficulty with colors is that the human perceptual system can
differentiate between just a handful of colors [30, chapter 10.3].
Our strategy for most metrics is to use a multi-hue progression of
eight colors that use the same base color, and to map metric values
to these eight colors by bucketing some set of metric values and
associating each bucket with one color1. Our prototype currently
supports three kinds of bucketing strategies:

Fixed buckets.
Metric values are bucketed into eight predefined buckets. For

example, the commit message length metric has predefined buckets
for commit messages with 0–1, 2–3, 4–5, 6–8, 9–13, 14–21, 22–34,
and 35+ words. Each commit block is colored based on the color of
the bucket corresponding to its commit message length. The colors
for the buckets is a multi-hue progression (see the color legends for
the two metrics, 4 in Figure 5).

Uniform buckets.
Metric values are bucketed into at most eight equally sized buck-

ets to contain all metric values across all commits in the current
view. For example, consider the languages in a commit metric, and
a repository containing a commit that modified files in 18 different
programming languages, and containing no commits that modify
files in 19 or more languages. The uniform buckets for this metric
will then look as follows: 0–2, 3–4, 5–6, 7–8, 9–11, 12–13, 14–
15, and 16–18. As with fixed buckets, the colors assigned to these
buckets is a multi-hue progression.

Discrete buckets.
A single metric value is assigned to one bucket. For example,

the commit author metric assigns each author to a unique color (up
to 728 authors).

The fixed and uniform buckets and the associated colors are de-
signed to be appropriate for color-blind users. However, the dis-
crete buckets, which encode the commit author and branches used
metrics, are not accessible to the color-blind, as these may encode
a very large number of distinct colors.

Next, we describe our evaluation of RepoGrams.

4. EVALUATION
We developed RepoGrams to help SE researchers answer com-

plex questions about repository histories and to help them filter and

1In our implementation we used the ColorBrewer2 web tool [10]
to identify the colors for each metric.

Name Info.
category Description Color

buckets
LoC Dev.

time
In

iti
al

se
to

fm
et

ri
cs

Commit localization Code The fraction of the number of unique project directories con-
taining files modified by the commit.

Fixed 13 —

Most edited file Code The maximum number of times that a file in a commit has been
previously modified.

Uniform 11 —

Languages in a commit Code The number of unique programming languages used in a com-
mit based on filenames.

Uniform 15 —

Branches used Process Associate each branch with a unique value. A commit is as-
signed the value of the branch it is associated with.

Discrete 5 —

Number of branches Process The number of branches that are concurrently active at a commit
point.

Uniform 47 —

Commit message length Social The number of words in a commit’s log message. Fixed 6 —

A
dd

ed
by

D
ev

1 POM files Code The number of POM files (project configuration files used by
Maven [8]) changed in the commit.

Uniform 6 30 min

Commit age Code The elapsed time between a commit and its parent commit. Fixed 7 48 min

Commit author Social Associate each author with a unique value. A commit is as-
signed the value of its author.

Discrete 34 52 min

A
dd

ed
by

D
ev

2 Files modified Code The number of files modified in a commit, including new and
deleted files.

Fixed 6 42 min

Merge indicator Process The number of parent commits from which the commit is de-
rived (≥2 parents indicates a merge).

Uniform 5 44 min

Author experience Social The number of commits that the commit’s author has previously
contributed to the repository.

Uniform 8 26 min

Table 1: Metrics in the current RepoGrams prototype.

choose evaluation targets. To determine to what degree RepoGrams
serves this purpose, we posed the following research questions:

• RQ1: Can SE researchers use RepoGrams to understand
characteristics of a project’s source repository?

• RQ2: Can SE researchers use RepoGrams to compare char-
acteristics of a project’s source repository?

• RQ3: Will SE researchers consider using RepoGrams to se-
lect evaluation targets for experiments and case studies?

We investigated these questions through a user study with 14 SE
researchers in which each researcher used RepoGrams to answer
questions about repository footprints (Section 4.1).

One issue raised by SE researchers in our user study was the need
to define custom metrics. We therefore posed and investigated one
more research question:

• RQ4: How much effort is required to add metrics to Re-
poGrams?

To answer RQ4 we conducted a case study with two individuals
each of whom implemented three new metrics (Section 4.2).

Our evaluation methodology and results are further detailed on a
companion web-site [37].

4.1 Study with SE researchers
To investigate RQ1–RQ3, we performed a user study with re-

searchers from the SE community. This study had two parts: first,
participants used RepoGrams to answer a series of questions about
individual projects and comparisons between projects (using pre-
selected footprints); second, participants were interviewed about

RepoGrams. For this study we recruited participants from a subset
of authors from the MSR 2014 conference, as these authors likely
have experience with repository information. Some of the authors
forwarded the invitation to their students who we included in the
study.

The study had 14 participants: 5 faculty, 1 post doc, 6 PhD stu-
dents, and 2 masters students. Participants were affiliated with in-
stitutions from North America, South America, and Europe. All
participants have had research experience in analyzing the evolu-
tion of software projects and/or evaluating tools using artifacts from
software projects.

We raffled off a gift card to incentivize participation. The study
was performed in one-on-one sessions with each participant: 5 par-
ticipants were co-located with the investigator and 9 sessions were
performed over video chat.

4.1.1 Methodology
A session in the study began with a short demonstration of Re-

poGrams and gathering of demographic information. A participant
then worked through nine questions presented through a web-based
questionnaire.

The first three questions were aimed at helping a participant un-
derstand the user interface and various metrics (5 min limit total).
This ensured that each participant gained a similar level of expe-
rience with the tool. The remaining six questions tested whether
a participant could use RepoGrams to understand and compare a
variety of project source repository characteristics (RQ1 and RQ2).
Questions in this section were of the form “group the repositories
into two sets based on a characteristic”, where the characteristic
was implied by the chosen metric (3–7 min limit per question). Ta-

Question # repository
footprints

Answer
distribution

4 Which of the following statements is true? There is a general {upwards / constant /
downwards} trend to the metric values.

1

5 Categorize the projects into two clusters: (a) projects that use Maven (include .pom files), (b) projects
that do not use Maven.

9

6 Categorize the projects into two clusters: (a) projects that used a single master branch before branching
off to multiple branches, (b) projects that branched off early in their development.

5

7 Categorize the projects into two clusters: (a) projects that have a correlation between branches and
authors, (b) projects that do not exhibit this correlation.

8

8 Categorize the projects into two clusters: (a) projects that have one dominant contributor, based on num-
ber of lines of code changed, (b) projects that do not have such a contributor. A dominant contributor is
one who committed at least 50% of the LoC changes in the project.

3

9 Same as 8, with number of commits instead of number of lines of code changed. 3

Table 2: Main set of questions from the user-study with SE researchers. The last column summarizes the answers with a graphic.
Each participant’s answer is represented by a block; blocks of the same color denote identical answers.

Figure 8: Repository footprints used in question 5.

ble 2 details these questions.
We then interviewed each participant in a semi-structured inter-

view to investigate RQ3 (Section 4.1.3).
For the study we chose the top 25 trending projects (pulled on

February 3rd, 2015) for each of the ten most popular languages on
GitHub [45]. From this set we systematically generated random
permutations of 1–9 projects for each question until we found a
set of projects whose repository footprints fit the intended purpose
of the questions. One author came up with ground truth for the
questions based on the selected projects. The other authors then in-
dependently answered the questions and verified that their answers
matched the ground truth. The final set of project repositories in
the study had a min / median / max commit counts of 128 / 216 /
906, respectively.

4.1.2 Study results
To give an overall sense of whether SE researchers were in agree-

ment about the answers posed, we use a graphic to capture the dis-
tribution of answers in the right-most column of Table 2. In this
graphic, each participant’s answer is represented by a block; blocks
of the same color denote identical answers. For example, for ques-
tion 6, twelve participants chose one answer and two participants
chose a different answer each; a total of three distinct answers to
that question. We now overview the six questions and elaborate on
a few of them.

Question 4 asked the participants to recognize a trend in the met-
ric value in a single repository. The majority of participants (12 of
14) managed to recognize the trend almost immediately by observ-
ing the visualization.

Question 5 asked the participants to identify repositories that
have a non-zero value in one metric. The participants considered
9 repository footprints (Figure 8) with the POM files metric2: a
metric value of n indicates that n POM files were modified in a
commit. This metric is useful for quickly identifying projects that
use the Maven build system and commits in those projects that
change the Maven configuration. All except one participant agreed
on the choice of nine repositories. This question indicates that Re-
poGrams is useful in distinguishing whether a software project ex-
hibits a characteristic over time. Using this metric in combina-
tion with other metrics an SE researchers can filter out irrelevant
projects that do not exhibit a characteristic that they care about in a
potential evaluation target.

The right-most column of Table 2 shows widespread agreement
amongst the researchers for questions 4 and 5. These questions are
largely related to interpreting metrics for a project. This quantita-
tive agreement lends support to RQ1. More variance in the answers
resulted from the remaining questions that target RQ2; these ques-
tions required more advanced interpretation of metrics and inter-
project comparison.

Question 6 asked the participants to identify those repositories in
which the repository footprints started with a sequence of commit
blocks of a particular color. The participants considered 5 repos-
itory footprints. The metric was branches used: each branch is
given a unique color, with a specific color reserved for commits to
the master branch. All five footprints contained hundreds of colors.

The existence of a leading sequence of commit blocks of a single

2POM stands for “Project Object Model”. It is an XML represen-
tation of a Maven [8] project held in a file named pom.xml.

color in a branches used metric footprint indicates that the project
used a single branch at the start of its timeline or the project was
imported from a centralized version control system to Git. All par-
ticipants agreed on three of the footprints and all but two agreed
on the remaining two footprints. This indicates that RepoGrams is
useful in finding long sequences of colors, even within footprints
that contain hundreds of colors.

Question 7 asked the participants to identify those repositories
in which the repository footprints for two metrics contained a cor-
respondence between the colors of the same commit block. The
participants considered a total of 8 repository footprints (see Fig-
ure 9), with two metrics for four project. The two metrics were
commit author and branches used. The commit author metric as-
signs all commits by the same author a unique color. The branches
used metric was described in question 6 above.

A match in colors between the two metrics in this question would
indicate that committers in the project follow the practice of having
one branch per author. This type of information can be useful in
choosing evaluation targets for a research project that studies code
ownership or the impact of committer diversity on feature develop-
ment, such as [9].

For this question the number of colors in a pair of footprints for
a repository ranged from a few (<10) to many (>20). The majority
of participants (12 of 14) agreed on a choice of first, second, and
fourth footprint pairs. But, they were about evenly split (8 vs. 6) on
the third pair of footprints for the stackit project (see Figure 9).
In fact, some sections of stackit’s repository history do exhibit
this correlation, but not the entire history.

Questions 8 and 9 asked the participants to estimate the magni-
tude of non-continuous regions of discrete values. The participants
were split in their answers, though more than half of the partici-
pants answered identically.

4.1.3 Semi-structured interview
IQ1: do you see RepoGrams being integrated into your re-

search/evaluation process? If so, can you give an example of a
research project in which you could use RepoGrams?

Of the 14 participants 11 noted that they want to use RepoGrams
in their future research: “I would use the tool to verify or at least
to get some data on my selected projects” [P12]3 and “I would
use RepoGrams as an exploratory tool to see the characteristics of
projects that I want to choose” [P9]. They also shared past research
projects in which RepoGrams could have assisted them in making
a more informed decision while choosing or analyzing evaluation
targets. The remaining 3 participants said that they do not see them-
selves using RepoGrams in their research but that either their stu-
dents or colleagues might benefit from the tool.

IQ2 what are one or two metrics that you wish RepoGrams
included that you would find useful in your research? How
much time would you be willing to invest to implement these
new metrics?

Most participants found the existing metrics useful: “Sometimes
I’m looking for active projects that change a lot, so these metrics
[e.g., Commit age] are very useful” [P8]. However, they all sug-
gested new metrics and mentioned that they would invest 1 hour to
1 week to add their proposed metric to RepoGrams. In Section 4.2
we detail a case study in which we add three of the proposed met-
rics to RepoGrams and show that this takes less than an hour per
metric.

The participants also found that RepoGrams helped them to iden-

3We use numbers to identify the 14 anonymous participants.

tify general historical patterns and to compare projects: “I can use
RepoGrams to find general trends in projects” [P3] and “You can
find similarities . . . it gives a nice overview for cross-projects com-
parisons” [P13]. They also noted that RepoGrams would help them
make stronger claims in their work: “I think this tool would be use-
ful if we wanted to claim generalizability of the results” [P4].

IQ3: what are the best and worst parts of RepoGrams?
One of our design goals was to support qualitative analysis of

software repositories. However, multiple participants noted that
the tool would be more useful if if exposed statistical information:
“It would help if I had numeric summaries.” and “When I ask an
exact numeric question this tool is terrible for that. For aggregate
summaries it’s not good enough” [P6]

Another noted design limitation is the set temporal ordering of
commits in the repository footprint abstraction: “Sometimes I would
like to order the commits by values, not by time” [P7] and “I would
like to be able to remove the merge commits from the visualiza-
tions.” [P14]. Related to this, a few participants noted the limita-
tion that RepoGrams does not capture real time in the sequence of
commit blocks: “the interface doesn’t expose how much time has
passed between commits, only their order.” [P7]

In response to what worked well, participants noted that “this
tool would give us a nice overview in terms of developer contribu-
tions” (P4), and thought it would be useful for inspecting project
activity: “Sometimes I’m looking for active projects that change
a lot, so these metrics [e.g., Commit age] are very useful” (P8).
Finally, several people thought that the tool could be useful for dis-
cerning representative project groups: “there’s potential there to
try to visualize project to see if they’re better representative of some
set of different groups” (P1).

IQ4: how would you approach solving one or more of the
main tasks without using RepoGrams?

The participants proposed two general approaches as alternatives
to using RepoGrams. The most common proposed approach was to
write a custom script that clones the repositories and performs the
analysis.

Other participants proposed to import the meta-data of the repos-
itories into a spreadsheet and perform a manual analysis. A few
participants mentioned that GitHub exposes several repository vi-
sualizations, such as a histogram of contributors to a repository.
However, these visualizations are per-repository, do not facilitate
comparison, and cannot be extended with new metrics.

4.1.4 Summary
This study shows that SE researchers can use RepoGrams to un-

derstand characteristics about a project’s source repository (RQ1)
and that they can, in a number of cases, use RepoGrams to compare
repositories (RQ2), although the researchers noted areas for im-
provement. Through interviews, we determined that RepoGrams is
of immediate use to today’s researchers (RQ3) and that researchers
were interested in specialized metrics.

4.2 Effort in adding new metrics
The SE researchers who participated in the first study had a strong

interest in new metrics. Because researchers tend to have unique
projects that they are interested in evaluating, it is likely that this
interest is true of the broader SE community, as well. Thus, we
evaluated the effort in adding new metrics to RepoGrams (RQ4).

The metrics were implemented by two junior SE researchers:
(Dev1) a masters student who is a co-author on this paper, and
(Dev2) a fourth year CS undergraduate student. Dev1 was, at the

Figure 9: Repository footprints used in question 7.

time, not directly involved in the programming of the tool and was
only slightly familiar with the code base. Dev2 was unfamiliar with
the project code base. Each developer added three new metrics
(bottom six rows in Table 1).

Dev1 added the POM files, commit author, and commit age met-
rics. Prior to adding these metrics Dev1 spent 30 minutes setting
up the environment and exploring the code. The POM files met-
ric took 30 minutes to implement and required changing 16 LoC.
Dev1 then spent 52 minutes and 48 minutes developing the commit
author and commit age metrics, changing a similar amount of code
for each metric.

Dev2 implemented three metrics based on requests made by SE
researchers (Section 4.1.3): files modified, merge indicator, and au-
thor experience. Prior to adding these metrics Dev2 spent 39 min-
utes setting up the environment and 40 minutes exploring the code.
These metrics took 42, 44, and 26 minutes to implement, respec-
tively. All metrics required changing fewer than 30 LoC.

4.2.1 Summary
The min/avg/med/max times to implement the six metrics were

26 min / 40 min / 43 min / 52 min. These values compares favorably
with the time that it would take to write a custom script to extract
metric values from a repository (an alternative practiced by almost
all SE researchers in our user study). The key difference, however,
is that by adding the new metric to RepoGrams the researcher gains
two advantages: (1) the resulting project pattern for the metric can
be juxtaposed against project patterns for all of the other metrics
already present in the tool, and (2) the researcher can use all of
the existing interaction capabilities in RepoGrams (changing block
lengths, zooming, etc).

5. DISCUSSION
We now briefly discuss the limitations of the RepoGrams tool

and how we plan to address these in our future work.
Supporting other project information. RepoGrams currently sup-

ports Git repositories. However, Software projects may have bug
trackers, Wikis, and other resources that are increasingly studied
by SE researchers. It would be helpful to extend RepoGrams to
support analysis of these other resources over time along with the
repository history. We plan to integrate this information into Re-
poGrams using the GitHub API, taking into account concerns pointed
out in prior work [25].

End-to-end support for evaluation target selection. RepoGrams
is designed for qualitative repository analysis, supporting researchers
in comparing and filtering a handful of evaluation targets. Comple-
mentary approaches, such as Boa [17], support selection and filter-
ing of projects at scale. We are interested in integrating RepoGrams
with these existing approaches to provide researchers with a com-
plete, end-to-end, solution for selecting high-quality evaluation tar-
gets in their research.

Robust bucketing of metric values. Uniform bucket sizing cur-
rently implemented in RepoGrams has several issues. For example,
a single outlier metric value can cause the first bucket to become so
large as to include most other values except the outlier. One solu-
tion is to generate buckets based on different distributions and to
find outliers and place them in a special bucket.

Supporting custom metrics. SE researchers in our user study
(Section 4.1) wanted more specialized metrics, that were, unsur-
prisingly, related to their research interests. We are working on
a solution in which a researcher would write a metric function in
Python and submit it to the server through the browser. The server
would integrate and use this user-defined metric to derive reposi-
tory footprints. We plan to explore the challenges and benefits of
this strategy in our future work.

Scalability. RepoGrams can visualize huge repositories, such as
the Rails repository (visualized in Figure 3), which contains over
60K commits. However, repositories with long histories result in
dense footprints that are difficult to navigate. We plan to include
new features to improve RepoGram’s scalability. For example, Re-
poGrams could allow a user to generate a footprint for a window of

commits, rather than for the entire history.
Other use-cases. RepoGrams targets SE researchers. However,

it can be also used by managers to track project activity, or by de-
velopers to understand a project’s practices (e.g., use of branches).
For example, a member of Software Carpentry4 wanted to use Re-
poGrams to determine if lesson repositories have similar or differ-
ent contributorship patterns as code and/or documentation.

RepoGrams may be also useful in SE education. We performed a
user study with 91 senior undergraduates in a software engineering
class to understand whether individuals less experienced with soft-
ware repositories could comprehend the repository footprint con-
cept. We found that RepoGrams can be used successfully by this
less experienced population. However, when individuals rely on the
visualization without an understanding of the metric underlying the
visualization, mis-interpretation of the data may occur.

6. RELATED WORK
The problem of helping SE researchers perform better evalua-

tions has been previously considered from three different angles.
First, there are ongoing efforts to curate high-quality evaluation tar-
gets in the form of bug reports [35, 7], faults [24], source code [41],
and other artifacts. Such databases artifacts promote comparison
between proposed techniques and scientific repeatability. Second,
researchers have developed tools like GHTorrent [21], Lean GHTor-
rent [22], Boa [17], and MetricMiner [39] to simplify access to, fil-
tering, and analysis of projects hosted by sites like GitHub. These
tools make it easier to carry out evaluations across a large number
of projects. Recent work by Nagappan et al. has proposed improve-
ments for sampling projects [31]. Their notion of sample coverage
is a metrics-based approach for selecting and reporting the diver-
sity of a sample set of SE projects. Finally Foucault et al. proposed
another approach [19] based on double sampling to improve repre-
sentativeness. Unlike these four strands of prior work, RepoGrams
supports SE researchers in narrowing down the set of evaluation
targets. In particular, RepoGrams supports qualitative analysis and
comparison of the evolution of projects’ source code repositories
across several metrics.

RepoGrams also builds on a broad set of prior work on visual-
ization of software evolution [16] and software metrics [28]. We
now overview the most relevant work from this space.

Novel visualizations span a broad range: revision towers [40]
presents a visual tower that captures file histories and helps to cor-
relate activity between files. Gevol [12] is a graph-based tool for
capturing the detailed structure of a program, correlating it against
project activity and showing how it evolves over time. Chronos [38]
assists developers in tracking the changes to specific code snippets
across the evolution of a program. RelVis [33] visualizes multi-
variate release history data using a view based on Kiviat diagrams.
The evolution matrix [26] supports multiple metrics and shows the
evolution of system components over time. Chronia [20] is a tool
to visualize the evolution of code ownership in a repository. Spec-
tographs [46] shows how components of a project evolve over time
and like RepoGrams extensively uses color. Other approaches to vi-
sualizing software evolution are further reviewed in [13]. Some key
features that differentiate RepoGrams from this rich prior work are
its focus on commit granularity, no assumptions about the repos-
itory contents, support for comparison of multiple projects across
multiple metrics, and a highly compact representation.

A more recent effort, The Small Project Observatory [27], visu-
alizes ecosystems of projects. RepoGrams differs in its emphasis
on a single unifying view for all metrics and a focus on supporting

4http://software-carpentry.org

SE researchers.
The evolution radar [15] visualizes logical coupling between mod-

ules and files in a repository using shared commits between files as
a coupling measure. This logical granularity is more fine-grained
than what RepoGrams presents, but it is also a specific measure.
Also, unlike RepoGrams, this tool is not designed for comparing
multiple project histories.

The CVSgrab tool [44, 43] creates a visualization based on files
in the repository: a stripe in the visualization is a single file, and a
metric is applied to its different versions, which results in a view
similar to a RepoGrams footprint. The file stripes are then stacked
to present a complete project view. In many ways RepoGrams is
a simplification of this file-based view: RepoGrams shows a sin-
gle stripe, corresponding to commits in the repository, rather than
a file. This simplified view loses information, but makes the result-
ing visualization more concise and makes it possible to compare
several histories, which is difficult to do with CVSgrab.

ConcernLines [42] is a tool to visualize the temporal pattern of
software concerns. It plots the magnitude of concerns on a time-
line and uses color to distinguish high and low concern periods.
RepoGrams can be extended with a metric that counts concerns
expressed in commit messages or in code comments. Fractal Fig-
ures [14], visualizes commit authors from software repositories in
CVS, using either one of two abstractions. RepoGrams’s reposi-
tory footprint abstraction is similar to Fractal Figures’ abstraction
called TimeLine View, which assigns a unique color to each com-
mit author and lays all commits as colored squares on horizontal
lines. Similarly to RepoGrams, each horizontal line represents a
single software repository, and progression from left to right repre-
sents the passage of time. RepoGrams includes support for multiple
metrics based on the artifacts exposed by the source repository; it
also includes a metric that assigns a unique color per author.

7. CONCLUSION
The widespread availability of open source repositories has had

significant impact on SE research. It is now possible for a study to
consider hundreds of projects with thousands of commits, hundreds
of authors, and millions of lines of code. Unfortunately, more is not
necessarily better or easier. To properly select evaluation targets for
a research study the researcher must be highly aware of the features
of the projects that may influence the results.

To help with this issue we developed RepoGrams, a tool for ana-
lyzing and comparing software repositories across multiple dimen-
sions. The key idea is a flexible repository footprint abstraction
that can compactly represent a variety of user-defined metrics to
help characterize software projects over time. We evaluated Re-
poGrams in a user study with 14 SE researchers and found that it
helped them to answer advanced, open-ended, questions about the
relative evolution of software projects. The tool is open source and
is available online: http://repograms.net/

Acknowledgments
We would like to thank Maike Maas, Sebastian Becking, and Marc
Jose who helped build the initial RepoGrams prototype. We would
also like to thank Stewart Grant for implementing three of the met-
rics. Finally, a big thank you to everyone who participated in our
user studies and helped us with evaluating the tool. This research
is supported by an NSERC discovery award.

http://software-carpentry.org
http://repograms.net/

8. REFERENCES
[1] An extendable open source automation server.

https://jenkins-ci.org.
[2] AngularJS âĂŤ Superheroic JavaScript MVW Framework.

https://angularjs.org.
[3] Ansible is Simple IT Automation. https://www.ansible.com/.
[4] DB Browser for SQLite project.

https://github.com/sqlitebrowser/sqlitebrowser.
[5] Flickr uploading tool for GNOME.

https://github.com/GNOME/postr.
[6] jQuery. https://jquery.com/.
[7] Summarizing Software Artifacts.

https://www.cs.ubc.ca/cs-research/software-practices-lab/
projects/summarizing-software-artifacts.

[8] Welcome to Apache Maven. http://maven.apache.org/.
[9] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu.

Don’t touch my code!: Examining the effects of ownership
on software quality. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages
4–14, 2011.

[10] C. A. Brewer. ColorBrewer2. http://colorbrewer2.org/.
[11] K. Chen, P. Liu, and Y. Zhang. Achieving Accuracy and

Scalability Simultaneously in Detecting Application Clones
on Android Markets. In ICSE, 2014.

[12] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. In Proceedings of the 2003 ACM Symposium on
Software Visualization, SoftVis ’03, pages 77–ff, New York,
NY, USA, 2003. ACM.

[13] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger.
Analysing software repositories to understand software
evolution. In Software evolution, pages 37–67. Springer
Berlin Heidelberg, 2008.

[14] M. D’Ambros, M. Lanza, and H. Gall. Fractal figures:
Visualizing development effort for cvs entities. In Visualizing
Software for Understanding and Analysis, 2005. VISSOFT
2005. 3rd IEEE International Workshop on, pages 1–6, 2005.

[15] M. D’Ambros, M. Lanza, and M. Lungu. The Evolution
Radar: Visualizing Integrated Logical Coupling Information.
In MSR, 2006.

[16] S. Diehl. Software Visualization: Visualizing the Structure,
Behaviour, and Evolution of Software. Springer, 2010.

[17] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale
software repositories. In ICSE, 2013.

[18] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R.
Falleri. Impact of Developer Turnover on Quality in
Open-source Software. In ESEC/FSE, 2015.

[19] M. Foucault, M. Palyart, J.-R. Falleri, and X. Blanc.
Computing contextual metric thresholds. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing,
2014.

[20] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How
developers drive software evolution. In Proceedings of the
Eighth International Workshop on Principles of Software
Evolution, IWPSE ’05, pages 113–122, Washington, DC,
USA, 2005. IEEE Computer Society.

[21] G. Gousios. The ghtorent dataset and tool suite. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 233–236,
Piscataway, NJ, USA, 2013. IEEE Press.

[22] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman.
Lean ghtorrent: Github data on demand. In Proceedings of
the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 384–387, New York, NY,
USA, 2014. ACM.

[23] K. Herzig and A. Zeller. The Impact of Tangled Code
Changes. In MSR, 2013.

[24] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of
existing faults to enable controlled testing studies for Java
programs. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 437–440, San
Jose, CA, USA, July 23–25 2014.

[25] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian. The promises and perils of mining
github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, New York, NY,
USA, 2014. ACM.

[26] M. Lanza. The evolution matrix: Recovering software
evolution using software visualization techniques. In
Proceedings of the 4th International Workshop on Principles
of Software Evolution, IWPSE ’01, pages 37–42, New York,
NY, USA, 2001. ACM.

[27] M. Lungu, M. Lanza, T. Gîrba, and R. Robbes. The Small
Project Observatory: Visualizing Software Ecosystems. Sci.
Comput. Program., 75(4):264–275, Apr. 2010.

[28] T. Mens and S. Demeyer. Future trends in software evolution
metrics. In Proceedings of the 4th International Workshop on
Principles of Software Evolution, IWPSE ’01, pages 83–86,
New York, NY, USA, 2001. ACM.

[29] C. Metz. How github conquered google, microsoft, and
everyone else. http://www.wired.com/2015/03/
github-conquered-google-microsoft-everyone-else/.

[30] T. Munzner. Visualization Analysis and Design. CRC Press,
2014.

[31] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in
software engineering research. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 466–476, New York, NY, USA,
2013. ACM.

[32] D. L. Parnas. Classics in Software Engineering. chapter On
the Criteria to Be Used in Decomposing Systems into
Modules, pages 139–150. Yourdon Press, Upper Saddle
River, NJ, USA, 1979.

[33] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proceedings of the 2005 ACM
symposium on Software visualization, pages 67–75. ACM,
2005.

[34] F. Rahman and P. Devanbu. Ownership, Experience and
Defects: A Fine-grained Study of Authorship. In ICSE, 2011.

[35] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing
software artifacts: A case study of bug reports. In ICSE,
2010.

[36] B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A large scale
study of programming languages and code quality in github.
In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE
2014, New York, NY, USA, 2014. ACM.

[37] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser,
H. Becker, M. Palyart, and G. C. Murphy. RepoGrams
evaluation details. http://repograms.net/msr2016.

[38] F. Servant and J. A. Jones. History slicing: Assisting

https://jenkins-ci.org
https://angularjs.org
https://www.ansible.com/
https://github.com/sqlitebrowser/sqlitebrowser
https://github.com/GNOME/postr
https://jquery.com/
https://www.cs.ubc.ca/cs-research/software-practices-lab/projects/summarizing-software-artifacts
https://www.cs.ubc.ca/cs-research/software-practices-lab/projects/summarizing-software-artifacts
http://maven.apache.org/
http://colorbrewer2.org/
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://repograms.net/msr2016

code-evolution tasks. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of
Software Engineering, FSE ’12, pages 43:1–43:11, New
York, NY, USA, 2012. ACM.

[39] F. Sokol, M. Finavaro Aniche, and M. Gerosa. Metricminer:
Supporting researchers in mining software repositories. In
Source Code Analysis and Manipulation (SCAM), 2013
IEEE 13th International Working Conference on, pages
142–146, Sept 2013.

[40] C. Taylor and M. Munro. Revision towers. In Visualizing
Software for Understanding and Analysis, 2002.
Proceedings. First International Workshop on, pages 43–50,
2002.

[41] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. Qualitas corpus: A curated
collection of java code for empirical studies. In 2010 Asia
Pacific Software Engineering Conference (APSEC2010),

pages 336–345, Dec. 2010.
[42] C. Treude and M. Storey. Work item tagging:

Communicating concerns in collaborative software
development. Software Engineering, IEEE Transactions on,
38(1):19–34, Jan 2012.

[43] L. Voinea and A. Telea. An Open Framework for CVS
Repository Querying, Analysis and Visualization. In MSR,
2006.

[44] S. L. Voinea and A. Telea. CVSgrab: Mining the History of
Large Software Projects. In EuroVis, 2006.

[45] J. Warner. Top 100 most popular languages on github.
https://jaxbot.me/articles/github-most-popular-languages,
July 2014.

[46] J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. In Reverse Engineering, 2004.
Proceedings. 11th Working Conference on, pages 80–89,
Nov 2004.

https://jaxbot.me/articles/github-most-popular-languages

