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ABSTRACT
Understanding how software utilizes resources is an important soft-
ware engineering task. Existing software comprehension approaches
rarely consider how resource utilization affects system behavior. We
present Perfume, a general-purpose tool to help developers under-
stand how resource utilization impacts their systems’ control flow.
Perfume is broadly applicable, as it is configurable to parse a wide
variety of execution log formats and applies to all resource types
that can be represented numerically. Perfume mines temporal prop-
erties that hold over the logged executions and represents system
behavior in a resource finite state automaton that satisfies the mined
properties. Perfume’s interactive interface allows the developers to
understand system behavior and to formulate and test hypotheses
about system executions. A controlled experiment with 40 stu-
dents shows that Perfume effectively supports understanding and
debugging tasks. Students using Perfume answered 8.3% more
questions correctly than those using execution logs alone and did
so 15.5% more quickly. Perfume is open source and deployed at
http://perfume.cs.umass.edu/.

Perfume demo video: http://perfume.cs.umass.edu/demo

CCS Concepts
•Software and its engineering→ Software system models; Ab-
straction, modeling and modularity; Dynamic analysis; Soft-
ware maintenance tools; Model checking;

Keywords
Model inference, Specification mining, System understanding, Soft-
ware comprehension, Resource modeling

1. INTRODUCTION
Debugging software systems requires understanding implementa-

tion behavior. One of the factors complicating such understanding
is the system behavior’s dependency on resources. For example, a
system that uses a cache may exhibit different behavior in seemingly
identical situations because the cache is in different states.

To help developers understand and debug system behavior and
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how resource use affects that behavior, we developed Perfume. Per-
fume uses logs of system executions with resource-use data to infer
resource-aware execution properties and concise, precise models of
system behavior. Perfume then visualizes these properties and be-
havioral models, enabling the developer to visually explore system
behavior and to interact with individual executions and abstracted
behavioral representations. These processes support understanding
system behavior and testing hypotheses, an important step in the
debugging process.

Unlike other tools, Perfume is applicable to all resources that can
be represented numerically. For example, Perfume can be used to
model the LED luminosity on a Rasberry Pi device, a workstation’s
memory management, a mobile phone’s network usage, and a web
server’s response time.

This paper presents the design of an interactive, graphical, web-
based Perfume interface for behavioral understanding and debug-
ging. We have previously described Perfume’s property mining and
model inference algorithms [16]. These algorithms use the temporal
relationships and resource-use information encoded in the logs to
generalize the logged executions into likely system behavior, ab-
stract common execution behavior, and infer a resource finite state
automaton (RFSA) that expresses the generalized, abstracted behav-
ior. Each edge in the RFSA is associated with a system behavior
(e.g., a method call, an event execution, or a sent message) and a
distribution of resource utilization.

In a controlled study with 40 students performing system under-
standing and debugging tasks, we found that students using Perfume
answered 8.3% more questions correctly than those using execution
logs alone and did so 15.5% more quickly. Perfume source code is
available at https://people.cs.umass.edu/~ohmann/perfume/, and the
tool is deployed at http://perfume.cs.umass.edu/.

Perfume’s interactive interface overcomes four research chal-
lenges. Perfume’s objective is to effectively help developers under-
stand and debug systems by inferring a behavioral RFSA model
using the information recorded in execution logs. This objective re-
quires that the model captures and summarizes key system behavior
in a human-readable way (Challenges 1 and 2) and that the interac-
tive visualization effectively connects model behavior to recorded
system executions (Challenges 3 and 4).
Challenge 1. Knowing invariant properties of system behavior can

reveal both desired and unexpected behavior. Precisely mining
and effectively presenting these properties can thus aid under-
standing and debugging.

Challenge 2. Inferred behavioral models must be understandable
by humans. Inferred models generalize the system behavior from
the observed executions. To be used effectively by developers,
the models must be concise, abstracting and grouping similar
behavior together.
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Figure 1: The online Perfume interface. À The log and parsing expressions. Á The inferred RFSA model. Â The inferred temporal
properties. Ã & Ä Two inferred properties. Å A slow play-song edge, highlighted by a click. Æ Two log lines corresponding to
the highlighted play-song edge. Ç A send-to-fs edge indicating that the execution never played after pausing. È A button to
remove executions containing the highlighted log lines. É A fast send-to-fs edge indicates the cause of the bug.

Challenge 3. Abstract behavior represented in the model must be
connected to the execution traces to enable developers to simulta-
neously reason about system behavior and executions.

Challenge 4. Understanding system behavior as a whole must be
viewed in the context of the individual executions. Developers
need to visualize individual executions within the behavioral
models and see the effects of removing select executions.

Section 2 describes how the Perfume interface solves these four
challenges, and Section 3 summarizes how the model inference
algorithm supports these solutions. Section 4 evaluates Perfume,
and Section 5 places our work in the context of related research.
Finally, Section 6 summarizes our contributions.

2. INTERACTIVE PERFUME INTERFACE
We explain Perfume using a simple cloud-based music player

called djQ. djQ loads a static playlist and allows the user to perform
only two actions: play and pause. When the user presses play for
the first time, or when a song finishes playing, djQ downloads the
next song and plays it. When the user presses pause, djQ stores the
currently playing song on the local file system so it can be un-paused
later without re-downloading it. Unfortunately, several users have
reported that hitting play when the song is paused sometimes causes
an unexpectedly long wait before the song starts playing.

A djQ developer wants to understand this buggy behavior and
find its cause using runtime logs from djQ users. Analyzing the
logs manually is hard. Even if the developer uses tools to separate
the intertwined executions and parse the logs, she is still forced to
consider each execution individually rather than system behavior as
a whole. Using Perfume is a better idea. Figure 1 shows a screenshot
of Perfume working with the djQ logs. The left side (À in Figure 1)

shows the execution logs (only a small part of the log is visible). The
middle part (Á in Figure 1) shows the RFSA model Perfume infers
(see Section 3). Each edge in the RFSA describes a system action
(e.g., play-song) and a range of time that this action took (e.g.,
[4.7, 8.2] seconds). A path from the INITIAL to the TERMINAL
state in the RFSA represents a djQ execution. Finally, the right
side (Â in Figure 1) shows temporal, resource-bounded properties
that hold true for all djQ executions; for example, every instance
of list-queue was eventually followed by play-song in no less
than 0.1 and no more than 45.9 seconds (Ã in Figure 1).

Understanding behavior with runtime properties. The devel-
oper wants to discover why djQ sometimes takes a long time to
play-song after pause-song; other than the initial play-song,
this should happen quickly because the song should be stored lo-
cally. The developer hypothesizes that djQ has a bug that sometimes
prevents the song from being stored to the local file system after
being paused. Challenge 1 (recall Section 1) posits that such sys-
tem properties should be easy to access and reason about. Perfume
addresses this challenge by mining and displaying (Â in Figure 1)
temporal properties that are true of all logged executions and that are
enforced in all abstracted executions displayed in the model. The de-
veloper can check that the property pause-song Always-Followed-
by send-to-fs is present (Ä in Figure 1), which disproves this
hypothesis.

Understanding behavior with the behavioral model. The RFSA
(Á in Figure 1) describes system-wide behavior of djQ. It groups
similar behavior in the observed and abstracted traces, addressing
Challenge 2 and helping developers understand system behavior as
a whole. Inspecting this model, the developer notes that the first
play-song of a user’s execution always takes between 4.7 and 8.2
seconds. This is expected, since the song needs to be downloaded



from the cloud. Subsequent play-song events should be much
faster, and they are most of the time, but one model edge (Å in Fig-
ure 1) is unexpectedly slow. This edge manifests the buggy behavior,
and the developer can focus her attention there. Clicking the edge
highlights the relevant execution log lines (Æ in Figure 1).

Reasoning about executions and abstract model behavior. To
focus on the buggy behavior, the developer may remove unrelated
executions. Perfume supports using the model to find executions
in the log that exhibit specific behavior, addressing Challenge 3 of
connecting the model to the original logs. Here, executions that
do not play-song after pause-song are irrelevant to the buggy
behavior. Clicking on the send-to-fs edge that goes straight to
quit instead of to play-song (Ç in Figure 1) highlights the relevant
log lines (highlighting not shown). Perfume allows the developer to
hide a behavior from the logs and the model, addressing Challenge 4;
clicking on “Remove Traces with Highlighted Lines” (È in Figure 1)
removes the executions exhibiting this behavior from consideration.

Armed with a more concise model of djQ executions, the devel-
oper refocuses on the bottom-left play-song [4.7, 8.2] edge
(Å in Figure 1). Following the path from INITIAL to that edge,
the developer notices that this edge is preceded by a much shorter
send-to-fs edge ([0.2, 0.5], É in Figure 1) than the faster
play-song edges. This means executions with slow play-song
events have less time to store the song on the local file system. The
developer now understands the bug: a pause-song followed very
quickly by a play-song causes djQ to re-download the song from
the cloud. The developer may reproduce the bug to generate new
logs and verify that they follow the expected path in the model.
Clicking on the slow play-song edge (Å in Figure 1) highlights
the buggy executions.

Once the developer repairs the bug, she can analyze new execution
logs with Perfume to help confirm that the slow play-song edge is
gone and the bug is fixed.

3. PERFUME BEHAVIORAL INFERENCE
Perfume has two inputs: the system’s runtime log and a set of

regular expressions for parsing the log. The regular expressions
extract the individual execution traces from the log. Perfume sup-
ports any log that regular expressions can parse where each trace
consists of a sequence of event instances and each event instance
is associated with a resource measurement. For example, in the
log in Figure 1, a trace is a session for one IP address, an event
instance is a specific user action that appears on each log line, such
as play-song, and the resource measurement is the elapsed time
associated with each event. The regular expressions below the log
in Figure 1 parse this log. The first expression matches the log lines
and extracts the elapsed time, the event type, and the IP address
from each line. The second expression maps log lines with the same
IP address to the same execution.

Perfume first mines temporal properties from the logs and then
uses the logs and temporal properties to construct and iteratively
refine an abstract model of behavior. The model generalizes the
observed behavior and groups similar behavior. We now describe
these two steps.

Property mining. To generalize observed behavior, Perfume
mines resource-bounded temporal properties true of every logged
execution. One such property for the log in Figure 1 is “pause-song
Always-Followed-by send-to-fs in at least 0.1 and at most 19 sec-
onds.” These properties later guide which predicted, generalized
behavior is allowed in the model. By default, Perfume mines four
types of properties [16] based on the most common and representa-
tive specification patterns [8] but can be extended to mine others.

Model construction. To construct a behavioral model, Perfume

first builds a minimal model. This initial model is imprecise be-
cause it allows many executions that do not satisfy the mined prop-
erties. Next, Perfume iteratively refines the initial model to satisfy
the mined properties. For example, if the model allows an exe-
cution that falsifies a mined property (e.g., an execution in which
a pause-song is not followed by send-to-fs, or is followed by
send-to-fs but either less than 0.1 or more than 19 seconds later),
Perfume refines the model by splitting states to disallow such execu-
tions. Perfume uses counterexample guided abstraction refinement
(CEGAR) [7]: Iteratively, Perfume (1) model checks the model to
find a predicted path that violates a mined property, and (2) removes
this counterexample path by using the path to localize the violation
and split into two a state that allows the violation. Perfume iter-
ates model refinement until all the mined properties are satisfied,
which is guaranteed to happen [16]. Perfume’s model inference task
is NP-complete [1, 11], so it approximates a solution and may at
times make suboptimal refinements; a post-processing step corrects
some such refinements. In our experience, this refinement process
finds concise and precise models. We have previously described the
property mining and model inference procedures in more detail and
proven inference termination and model precision properties [16].

4. CONTROLLED USER STUDY
To understand if Perfume models support system understand-

ing and debugging, we conducted a controlled, within-participants
mixed design experiment across 40 students at the University of Mas-
sachusetts, Amherst in a joint undergraduate-graduate software en-
gineering course. The user study materials are available online [18].
The study compared Perfume behavioral resource models to the raw
execution log information that developers typically inspect.

The study participants had 5 years of programming experience
on average, and 25 of the 39 (64%) who answered the question
reported that they use logging to debug their code “frequently” or
“very frequently.” None of the participants had previous experience
with Perfume. The participants were asked to perform a debugging
task on one system, djQ described above, and another on a second
system, a video game. For djQ, we manually constructed execution
logs exhibiting the bug described in Section 2. For the video game,
we manually constructed execution logs that simulate user play and
exhibit a memory-leak bug; in these logs, the resource recorded in
the logs was the memory usage. The study employed two treatments:
one had the participant use only the logs, and the other, the logs and
the Perfume deployment at http://perfume.cs.umass.edu/. Each par-
ticipant performed one task with djQ and one with the video game,
and each treatment once. The order of the tasks and the treatment
were chosen at random. Each task entailed reading a short descrip-
tion of a system, studying system behavior, and answering eight
system behavior understanding questions, leading to the underlying
system bug. The participants’ answers were recorded and timed.

The study answered two research questions:

• RQ1: How did Perfume affect the correctness of the
participants’ answers?
• RQ2: How did Perfume affect the participants’ effi-
ciency in answering questions?

Perfume positively affected both the answer correctness and the
efficiency. Participants who used Perfume answered, on average,
8.3% more questions correctly (284 out of 312 questions vs. 269 out
of 320 questions, going from 91.0% correctness when using Perfume
to 84.1% correctness when using logs; 284/312−269/320

269/320 = 8.3%).
Student’s t-test finds that the two answer distributions are the same
with only p = 0.0489. Perfume also reduced the time to answer the
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eight questions by 15.5% (1,325 sec. vs. 1,569 sec., on average).
Student’s t-test finds that the two timing distributions are the same
with only p = 0.0596.

After completing the two tasks, we asked the respondents to
reflect on their experience, and 38 did. Of those, 28 (74%) found
Perfume to be more useful than logs. Further, 27 said they would
use Perfume in the future, 3 more said they would use it if they had
to analyze logs, 5 were uncertain, 2 said they would not use Perfume,
and 1 did not respond to this question. Participants reported that
Perfume was “very useful for visualizing the information a log gives
you” and that “it gives a nice view of what’s going on in the program.”
One respondent suggested that “Perfume would be very useful when
performing testing to see which paths lead to inefficiencies” and
envisioned using it “to track performance analytics for a large set
of users.” Others liked that Perfume “simplifies and compacts” the
log and that it “makes system design easy to understand and follow.”
One participant found Perfume especially intuitive, reporting that
when using runtime logs, he “establish[es] a similar flow in [his]
mind to debug.”

Overall, participants using Perfume answered questions about
debugging more correctly and more quickly. While the study was
small, these preliminary results suggest that Perfume can help de-
velopers understand unfamiliar systems and debug effectively.

5. RELATED WORK
Perfume’s interactive interface builds on the Perfume algorithm

and prototype [16, 17]. Other model-inference algorithms, e.g., [3,
4, 5, 6, 14, 15], can benefit from similar interfaces.

Perfume mines temporal, resource-bounded properties. Prior
work has focused on mining pure temporal [10, 21] and data [9]
properties, and richer performance-related properties of distributed
systems [13]. Mined properties alone can easily overwhelm a devel-
oper, so Perfume uses them to infer a more comprehensible, concise
behavioral model.

Statistical debugging work suggests that most user-reported per-
formance issues are diagnosed through comparison analysis [19],
which Perfume can be extended to support. Perfume is not in-
tended to replace specialized and fine-grained performance anal-
ysis tools, such as visualization techniques designed for perfor-
mance debugging and optimization [12], runtime profilers like
YourKit (http://www.yourkit.com), or memory tools like Valgrind
(http://valgrind.org). These specialized tools provide thorough per-
formance analysis of a specific resource and require instrumentation.
Finally, Perfume-like measurement-based approaches to software
performance engineering focus on improving existing system com-
prehension [20], and are complementary to predictive model-based
approaches used in early development [2].

6. CONTRIBUTIONS
Perfume’s interactive interface enables users to visualize, under-

stand, and debug system behavior. Perfume uses execution logs to
infer precise, concise models of system behavior constrained by the
system’s resource use and tightly connects visual representations of
the behavior to the logs. A 40-student controlled experiment showed
that users answer 8.3% more questions correctly with Perfume than
when using execution logs alone and do so 15.5% more quickly.
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