


How do we troubleshoot this?

How does Esmeralda know how to fix this?
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• Find bugs in networked applications 
• Large complex unknown applications 
!
!
!

• Large complex unknown networks 
!
!
!

• Understandable output / fix

Goal
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Motivation Apache Server

Chrome Client
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Motivation Apache Server

Chrome Client Different traffic (ICMP) 
Often different result

probing 
ping
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Motivation Apache Server

Chrome Client
packet capture

Requires detailed 
protocol / app knowledge
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Motivation Apache Server

Chrome Client

Model
Model

Need a model 
per application
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Model apps 
Magpie, Xtrace,  

Pip...



Motivation
Chrome Client

Network Config  
Analysis

Model &  
Config

Model &  
Config

Model &  
Config

Model &  
Config
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    Header  
    Space  
   Analysis, etc.

Apache Server



Motivation Apache Server

Chrome Client

Network Config  
Analysis

Model &  
Config

Model &  
Config

Model &  
Config

Model &  
Config

Need detailed 
network knowledge 
HW + config
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Motivation Apache Server

Chrome Client ?
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NetCheck Apache Server

Chrome Client

programmer

programmer
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NetCheck Apache Server

Chrome Client

programmer

programmer
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NetCheck Apache Server

Chrome Client

Model Programmer’s 
Understanding 

Deutsch’s Fallacies

programmer

programmer
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• Motivation 
• NetCheck Overview 
• Trace Ordering 
• Network Model 
• Fault Classification 
• Results / Conclusion

Outline
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NetCheck overview 

Application
Fail

Traces

NetCheck

Likely Faults
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NetCheck overview 

Application

Traces

NetCheck

Likely Faults

Fail

ktrace strace
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NetCheck overview 

Application

Traces

NetCheck

Likely Faults

Ordering Algorithm

Network Model

Diagnoses Engine
Input

Diagnosis
Output

Host Traces

NetCheck

syscall simulation
result

simulation state
errors
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NetCheck overview 

Application

Traces

NetCheck

Likely Faults

Network Configuration Issues

Traffic Statistics

Problem Detected
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• Motivation 
• NetCheck Overview 
• Trace Ordering 
• Network Model 
• Fault Classification 
• Results / Conclusion

Outline
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Traces (a) Trace 
Ordering



Series of locally ordered system calls 
 Don’t want to modify apps or use a global clock 
 Gathered by strace, ktrace, systrace, truss, etc. 
Call arguments and “return values” 
!
socket()                = 3  
bind(3, …)             = 0       
listen(3, 1)            = 0   
accept(3, …)         = 4 
recv(4, "HTTP", …) = 4 
close(4)                 = 0 

Traces
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Call arguments

Return values

Return buffer



!
Node A                                Node B 
1. socket()              = 3        1. socket()               = 3 
2. bind(3, ...)          = 0        2. connect(3,...)      = 0 
3. listen(3, 1)          = 0        3. send(3, "Hello",.)  = 5 
4. accept(3, ...)       = 4        4. close(3)               = 0 
5. recv(4,"Hello", ..) = 5 
6. close(4)               = 0 

What we see is this:

- one trace per host 
- local order but no global order 
Q: how do we reconstruct what really happened?
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A1. socket()                 = 3       
B1. socket()                 = 3 
A2. bind(3, ..  .)           = 0       
A3. listen(3, 1)             = 0     
B2. connect(3,...)         = 0 
A4. accept(3, ...)          = 4       
B3. send(3, "Hello", ...) = 5 
A5. recv(4, "Hello", ...) = 5 
B4. close(3)                  = 0 
A6. close(4)                  = 0

What we want is this

The ground truth 

A                      B
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A1. socket()                 = 3       
B1. socket()                 = 3 
A2. bind(3, ..  .)           = 0       
A3. listen(3, 1)             = 0     
B2. connect(3,...)         = 0 
A4. accept(3, ...)          = 4       
B3. send(3, "Hello", ...) = 5 
A5. recv(4, "Hello", ...) = 5 
B4. close(3)                  = 0 
A6. close(4)                  = 0

What we want is this

The ground truth 
!
!
!
!
!
!
!
Goal: find an 
equivalent 
interleaving

A                      B
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!
Node A                                Node B 
1. socket()              = 3        1. socket()               = 3 
2. bind(3, ...)          = 0        2. connect(3,...)      = 0 
3. listen(3, 1)          = 0        3. send(3, "Hello",.)  = 5 
4. accept(3, ...)       = 4        4. close(3)               = 0 
5. recv(4,"Hello", ..) = 5 
6. close(4)               = 0 

Observation 1: Order Equivalence

- one trace per host 
- local order but no global order 
Q: how do we reconstruct what really happened? 
The socket() calls are not visible to the other side 
 Some orders are equivalent! 30



!
Node A                                Node B 
1. socket()              = 3        1. socket()               = 3 
2. bind(3, ...)          = 0        2. connect(3,...)      = 0 
3. listen(3, 1)          = 0        3. send(3, "Hello",.)  = 5 
4. accept(3, ...)       = 4        4. close(3)               = 0 
5. recv(4,"Hello", ..) = 5 
6. close(4)               = 0 

- one trace per host 
- local order but no global order 
Q: how do we reconstruct what really happened? 
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Observation 2: Return Values Guide 
Ordering



Return values guide ordering

A2. bind(3, ...)       = 0  
A3. listen(3, 1)      = 0  
B2. connect(3, ...) = 0 
!!
A2. bind(3, ...)       = 0 
B2. connect(3, ...) = -1, ECONNREFUSED 
A3. listen(3, 1)      = 0 
!
!
A call’s return value may-depend-on a remote 
call’s action 
  
Result indicates order of calls  32

!!!!

!!!!

One valid ordering: all syscalls  
returned successfully.

A second valid ordering:  
connect failed with   
ECONNREFUSED.



Deciding call order

full set of may-depend-on relations

socketbind getsockopt,
setsockoptgetsockname

accept getpeername

poll, select

connect recv, recvfrom, 
recvmsg, read

send, sendto, sendmsg, 
write, writev, sendfileclose, shutdownlisten
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Ordering Algorithm

34

Input traces

Output Ordering

Algorithm process
socket socket

connect

send

recv

accept

listen

bind

A B



Ordering Algorithm
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Input traces

Output Ordering

Try socket on host A: accepted

Algorithm process
socket socket

connect

send

recv

accept

listen

bind

A B

socket

A



connect

Ordering Algorithm
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Input traces

Output Ordering

Try connect on host B:

Algorithm process

send

recv

accept

listen

A B

socket

A
socket

B
bind

A

connect rejected



listen

Ordering Algorithm
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Input traces

Output Ordering

Try listen on host A: accepted

Algorithm process
connect

send

recv

accept

A B

socket

A
socket

B
bind

A
listen

A



recvrecv rejected

Ordering Algorithm
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Input traces

Output Ordering

Try recv on host A:

Algorithm process

send

A B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

TCP BUFFER: “”

“Hola!”



None

Ordering Algorithm
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Input traces

Output Ordering

Try send on host B: accepted

Algorithm process

sendrecv

A B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

sendB

TCP BUFFER: “”

“Hola!”



Ordering Algorithm
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Input traces

Output Ordering

Try send on host B: accepted

Algorithm process

recv

A B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

sendB

TCP BUFFER: “Hello”

None

“Hola!”



recvrecv

Fatal Error

Ordering Algorithm
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Input traces

Output Ordering

Try recv on host A: 

Algorithm processA B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

None

sendB

TCP BUFFER: “Hello”

“Hola!”



• Motivation 
• NetCheck Overview 
• Trace Ordering 
• Network Model 
• Fault Classification 
• Results / Conclusion

Outline
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Model

Accept

Reject

Fatal Error



● Simulates invocation of a syscall 
○ datagrams sent/lost 
○ reordering / duplication is notable 

○ track pending connections 
○ buffer lengths and contents 
○ send -> put data into buffer 
○ recv -> pop data from buffer !

● Simulation outcome 
○ Accept → can process (correct buffer) 
○ Reject → wrong order (incomplete buffer) 
○ Permanent reject → abnormal behavior (incorrect buffer)

Network Model 

Model

Accept

Reject

Fatal Error
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● Simulates invocation of a syscall 
  
● Capture programmer assumptions 

● Assumes a simplified network view 
• Assume transitive connectivity 
• Little, random loss 
• No middle boxes 

• Assume uniform platform 
• Flag OS differences

Network Model 
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● Blackbox Tracing mechanism

How Model Return Values Impact 
Trace Ordering

Trace Ordering: linear running time (total trace 
length) * number of traces
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Ordering Algorithm

Network Model

Diagnoses Engine
Input

Diagnosis
Output

Host Traces

NetCheck

syscall simulation
result

simulation state
errors



• Motivation 
• NetCheck Overview 
• Trace Ordering 
• Network Model 
• Fault Classification 
• Results / Conclusion

Outline
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(c) Fault 
Classifier

Output
46



● Goal: Decide what to output 
● Problem: Show relevant information 
● Fault classifier: global (rather than local) view 

○ uncovers high-level patterns by extracting low-level 
features 
○ Examples: middleboxes, non-transitive 

connectivity, MTU, mobility, network 
disconnection 

○ All look like loss, but have different patterns in 
the context of other flows

Fault Classifier 
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● Options to show different levels of detail 
● Network admins / developers 

● detailed info 
● End users 

● Classification 
● Recommendations

Fault Classifier 

Network Configuration Issues

Traffic Statistics

Problem Detected
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• Motivation 
• NetCheck Overview 
• Trace Ordering 
• Network Model 
• Fault Classification 
• Results / Conclusion

Outline
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● Reproduce reported bugs from bug trackers 
(Python, Apache, Ruby, Firefox, etc.) 
○ A total of 71 bugs 
○ Grouped into 23 categories 

■ Virtualization incurred/portability bugs 
■ SO_REUSEADDR behaves differently across OSes 
■ accept inherit O_NONBLOCK 
■ …  

○ Correct analysis of >95% bugs

Evaluation: Production Application 
Bugs
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● Twenty faults observed in practice on a 
live network 
○ MTU bug 

■ Intermediary device 
○ Port forward 

■ Traffic sent to non-relevant addresses 
○ Provide supplemental info  

■ packet loss 
■ buffers being closed with data in  

○ 90% of cases correctly detected

Evaluation: Observed Network 
Faults
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● Middle boxes 
○ Multiple unaccepted connections 
■ client behind NAT in FTP 

• TCP/UDP 
▪ non-transitive connectivity in VLC 

• Complex failures 
oVirtualBox send data larger than buffer size 
oPidgin returned IP different from bind 
oSkype NAT + close socket from a different thread 

• Used on Seattle Testbed seattle.poly.edu

General Findings in Practice
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NetCheck Performance Overhead
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Firefox

Skype

Telnet

SSH

VLC



Built and evaluated NetCheck, a tool to 
diagnose network failures in complex apps 

!
● Key insights: 

○ model the programmer’s misconceptions 
○ relation between calls → reconstruct order 

  
● NetCheck is effective 

○ Everyday applications & networks 
○ Real network / application bugs  
○ No per-network knowledge 
○ No per-application knowledge

Try it here: https://netcheck.poly.edu/ 54

Conclusion


