

How do we troubleshoot this?

How does Esmeralda know how to fix this?

2

• Find bugs in networked applications
• Large complex unknown applications
!
!
!

• Large complex unknown networks
!
!
!

• Understandable output / fix

Goal

3

Motivation Apache Server

Chrome Client

4

Motivation Apache Server

Chrome Client Different traffic (ICMP)
Often different result

probing
ping

6

Motivation Apache Server

Chrome Client
packet capture

Requires detailed
protocol / app knowledge

9

Motivation Apache Server

Chrome Client

Model
Model

Need a model
per application

12

Model apps
Magpie, Xtrace,

Pip...

Motivation
Chrome Client

Network Config
Analysis

Model &
Config

Model &
Config

Model &
Config

Model &
Config

14

 Header
 Space
 Analysis, etc.

Apache Server

Motivation Apache Server

Chrome Client

Network Config
Analysis

Model &
Config

Model &
Config

Model &
Config

Model &
Config

Need detailed
network knowledge
HW + config

15

Motivation Apache Server

Chrome Client ?

16

NetCheck Apache Server

Chrome Client

programmer

programmer

17

NetCheck Apache Server

Chrome Client

programmer

programmer

18

NetCheck Apache Server

Chrome Client

Model Programmer’s
Understanding

Deutsch’s Fallacies

programmer

programmer

19

• Motivation
• NetCheck Overview
• Trace Ordering
• Network Model
• Fault Classification
• Results / Conclusion

Outline

20

NetCheck overview

Application
Fail

Traces

NetCheck

Likely Faults

21

NetCheck overview

Application

Traces

NetCheck

Likely Faults

Fail

ktrace strace

22

NetCheck overview

Application

Traces

NetCheck

Likely Faults

Ordering Algorithm

Network Model

Diagnoses Engine
Input

Diagnosis
Output

Host Traces

NetCheck

syscall simulation
result

simulation state
errors

23

NetCheck overview

Application

Traces

NetCheck

Likely Faults

Network Configuration Issues

Traffic Statistics

Problem Detected

24

• Motivation
• NetCheck Overview
• Trace Ordering
• Network Model
• Fault Classification
• Results / Conclusion

Outline

25

Traces (a) Trace
Ordering

Series of locally ordered system calls
 Don’t want to modify apps or use a global clock
 Gathered by strace, ktrace, systrace, truss, etc.
Call arguments and “return values”
!
socket() = 3
bind(3, …) = 0
listen(3, 1) = 0
accept(3, …) = 4
recv(4, "HTTP", …) = 4
close(4) = 0

Traces

26

Call arguments

Return values

Return buffer

!
Node A Node B
1. socket() = 3 1. socket() = 3
2. bind(3, ...) = 0 2. connect(3,...) = 0
3. listen(3, 1) = 0 3. send(3, "Hello",.) = 5
4. accept(3, ...) = 4 4. close(3) = 0
5. recv(4,"Hello", ..) = 5
6. close(4) = 0

What we see is this:

- one trace per host
- local order but no global order
Q: how do we reconstruct what really happened?

27

A1. socket() = 3
B1. socket() = 3
A2. bind(3, .. .) = 0
A3. listen(3, 1) = 0
B2. connect(3,...) = 0
A4. accept(3, ...) = 4
B3. send(3, "Hello", ...) = 5
A5. recv(4, "Hello", ...) = 5
B4. close(3) = 0
A6. close(4) = 0

What we want is this

The ground truth

A B

28

A1. socket() = 3
B1. socket() = 3
A2. bind(3, .. .) = 0
A3. listen(3, 1) = 0
B2. connect(3,...) = 0
A4. accept(3, ...) = 4
B3. send(3, "Hello", ...) = 5
A5. recv(4, "Hello", ...) = 5
B4. close(3) = 0
A6. close(4) = 0

What we want is this

The ground truth
!
!
!
!
!
!
!
Goal: find an
equivalent
interleaving

A B

29

!
Node A Node B
1. socket() = 3 1. socket() = 3
2. bind(3, ...) = 0 2. connect(3,...) = 0
3. listen(3, 1) = 0 3. send(3, "Hello",.) = 5
4. accept(3, ...) = 4 4. close(3) = 0
5. recv(4,"Hello", ..) = 5
6. close(4) = 0

Observation 1: Order Equivalence

- one trace per host
- local order but no global order
Q: how do we reconstruct what really happened?
The socket() calls are not visible to the other side
 Some orders are equivalent! 30

!
Node A Node B
1. socket() = 3 1. socket() = 3
2. bind(3, ...) = 0 2. connect(3,...) = 0
3. listen(3, 1) = 0 3. send(3, "Hello",.) = 5
4. accept(3, ...) = 4 4. close(3) = 0
5. recv(4,"Hello", ..) = 5
6. close(4) = 0

- one trace per host
- local order but no global order
Q: how do we reconstruct what really happened?

31

Observation 2: Return Values Guide
Ordering

Return values guide ordering

A2. bind(3, ...) = 0
A3. listen(3, 1) = 0
B2. connect(3, ...) = 0
!!
A2. bind(3, ...) = 0
B2. connect(3, ...) = -1, ECONNREFUSED
A3. listen(3, 1) = 0
!
!
A call’s return value may-depend-on a remote
call’s action

Result indicates order of calls 32

!!!!

!!!!

One valid ordering: all syscalls
returned successfully.

A second valid ordering:
connect failed with
ECONNREFUSED.

Deciding call order

full set of may-depend-on relations

socketbind getsockopt,
setsockoptgetsockname

accept getpeername

poll, select

connect recv, recvfrom,
recvmsg, read

send, sendto, sendmsg,
write, writev, sendfileclose, shutdownlisten

33

Ordering Algorithm

34

Input traces

Output Ordering

Algorithm process
socket socket

connect

send

recv

accept

listen

bind

A B

Ordering Algorithm

35

Input traces

Output Ordering

Try socket on host A: accepted

Algorithm process
socket socket

connect

send

recv

accept

listen

bind

A B

socket

A

connect

Ordering Algorithm

36

Input traces

Output Ordering

Try connect on host B:

Algorithm process

send

recv

accept

listen

A B

socket

A
socket

B
bind

A

connect rejected

listen

Ordering Algorithm

37

Input traces

Output Ordering

Try listen on host A: accepted

Algorithm process
connect

send

recv

accept

A B

socket

A
socket

B
bind

A
listen

A

recvrecv rejected

Ordering Algorithm

38

Input traces

Output Ordering

Try recv on host A:

Algorithm process

send

A B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

TCP BUFFER: “”

“Hola!”

None

Ordering Algorithm

39

Input traces

Output Ordering

Try send on host B: accepted

Algorithm process

sendrecv

A B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

sendB

TCP BUFFER: “”

“Hola!”

Ordering Algorithm

40

Input traces

Output Ordering

Try send on host B: accepted

Algorithm process

recv

A B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

sendB

TCP BUFFER: “Hello”

None

“Hola!”

recvrecv

Fatal Error

Ordering Algorithm

41

Input traces

Output Ordering

Try recv on host A:

Algorithm processA B

socket

A
socket

B
bind

A
listen

A
connect

B
accept

A

None

sendB

TCP BUFFER: “Hello”

“Hola!”

• Motivation
• NetCheck Overview
• Trace Ordering
• Network Model
• Fault Classification
• Results / Conclusion

Outline

42

Model

Accept

Reject

Fatal Error

● Simulates invocation of a syscall
○ datagrams sent/lost
○ reordering / duplication is notable

○ track pending connections
○ buffer lengths and contents
○ send -> put data into buffer
○ recv -> pop data from buffer !

● Simulation outcome
○ Accept → can process (correct buffer)
○ Reject → wrong order (incomplete buffer)
○ Permanent reject → abnormal behavior (incorrect buffer)

Network Model

Model

Accept

Reject

Fatal Error

43

● Simulates invocation of a syscall

● Capture programmer assumptions

● Assumes a simplified network view
• Assume transitive connectivity
• Little, random loss
• No middle boxes

• Assume uniform platform
• Flag OS differences

Network Model

44

● Blackbox Tracing mechanism

How Model Return Values Impact
Trace Ordering

Trace Ordering: linear running time (total trace
length) * number of traces

45

Ordering Algorithm

Network Model

Diagnoses Engine
Input

Diagnosis
Output

Host Traces

NetCheck

syscall simulation
result

simulation state
errors

• Motivation
• NetCheck Overview
• Trace Ordering
• Network Model
• Fault Classification
• Results / Conclusion

Outline

46

(c) Fault
Classifier

Output
46

● Goal: Decide what to output
● Problem: Show relevant information
● Fault classifier: global (rather than local) view

○ uncovers high-level patterns by extracting low-level
features
○ Examples: middleboxes, non-transitive

connectivity, MTU, mobility, network
disconnection

○ All look like loss, but have different patterns in
the context of other flows

Fault Classifier

47

● Options to show different levels of detail
● Network admins / developers

● detailed info
● End users

● Classification
● Recommendations

Fault Classifier

Network Configuration Issues

Traffic Statistics

Problem Detected

48

• Motivation
• NetCheck Overview
• Trace Ordering
• Network Model
• Fault Classification
• Results / Conclusion

Outline

49

● Reproduce reported bugs from bug trackers
(Python, Apache, Ruby, Firefox, etc.)
○ A total of 71 bugs
○ Grouped into 23 categories

■ Virtualization incurred/portability bugs
■ SO_REUSEADDR behaves differently across OSes
■ accept inherit O_NONBLOCK
■ …

○ Correct analysis of >95% bugs

Evaluation: Production Application
Bugs

50

● Twenty faults observed in practice on a
live network
○ MTU bug

■ Intermediary device
○ Port forward

■ Traffic sent to non-relevant addresses
○ Provide supplemental info

■ packet loss
■ buffers being closed with data in

○ 90% of cases correctly detected

Evaluation: Observed Network
Faults

51

● Middle boxes
○ Multiple unaccepted connections
■ client behind NAT in FTP

• TCP/UDP
▪ non-transitive connectivity in VLC

• Complex failures
oVirtualBox send data larger than buffer size
oPidgin returned IP different from bind
oSkype NAT + close socket from a different thread

• Used on Seattle Testbed seattle.poly.edu

General Findings in Practice

52

NetCheck Performance Overhead

53

Firefox

Skype

Telnet

SSH

VLC

Built and evaluated NetCheck, a tool to
diagnose network failures in complex apps

!
● Key insights:

○ model the programmer’s misconceptions
○ relation between calls → reconstruct order

● NetCheck is effective

○ Everyday applications & networks
○ Real network / application bugs
○ No per-network knowledge
○ No per-application knowledge

Try it here: https://netcheck.poly.edu/ 54

Conclusion

