
NetCheck: Network Diagnoses from Blackbox Traces

Yanyan Zhuang†‡∗, Eleni Gessiou†∗, Steven Portzer/, Fraida Fund†,
Monzur Muhammad†, Ivan Beschastnikh‡, Justin Cappos†

†NYU Poly, ‡University of British Columbia, /University of Washington

Abstract

This paper introduces NetCheck, a tool designed to di-
agnose network problems in large and complex applica-
tions. NetCheck relies on blackbox tracing mechanisms,
such as strace, to automatically collect sequences of
network system call invocations generated by the appli-
cation hosts. NetCheck performs its diagnosis by (1) to-
tally ordering the distributed set of input traces, and by
(2) utilizing a network model to identify points in the to-
tally ordered execution where the traces deviated from
expected network semantics.

Our evaluation demonstrates that NetCheck is able to
diagnose failures in popular and complex applications
without relying on any application- or network-specific
information. For instance, NetCheck correctly identified
the existence of NAT devices, simultaneous network dis-
connection/reconnection, and platform portability issues.
In a more targeted evaluation, NetCheck correctly de-
tects over 95% of the network problems we found from
bug trackers of projects like Python, Apache, and Ruby.
When applied to traces of faults reproduced in a live net-
work, NetCheck identified the primary cause of the fault
in 90% of the cases. Additionally, NetCheck is efficient
and can process a GB-long trace in about 2 minutes.

1 Introduction
Application failures due to network issues are some of
the most difficult to diagnose and debug. This is be-
cause the failure might be due to in-network state or state
maintained by a remote end-host, both of which are in-
visible to an application host. For instance, data might
be dropped due to MTU issues [26], NAT devices and
firewalls introduce problems due to address changes and
connection blocking [11], default IPv6 options can cause
IPv4 applications to fail [8], and default buffer size set-
tings can cause UDP datagrams to be dropped or trun-
cated [49].

∗The two authors are co-primary authors.

Such application failures are challenging for develop-
ers and administrators to understand and fix. Hence, nu-
merous fault diagnosis tools have been developed [3, 13,
17, 37, 23, 19]. However, few of these tools are applica-
ble to large applications whose source code is not avail-
able. Without source code, administrators often resort
to probing tools such as ping and traceroute, which
can help to diagnose reachability, but cannot diagnose
application-level issues.

This paper presents NetCheck. In contrast with most
prior approaches, NetCheck does not require application-
or network-specific knowledge to perform its diagnoses,
and no modification to the application or the infrastruc-
ture is necessary. NetCheck treats an application as a
blackbox and requires only a set of system call (syscall)
invocation traces from the relevant end-hosts. These
traces can be easily collected at runtime with standard
blackbox tracing tools, such as strace. To perform its
diagnosis, NetCheck derives a global ordering of the in-
put syscalls by simulating the syscalls against a network
model. The model is also used to identify those syscalls
that deviate from expected network semantics. These de-
viations are then mapped to a diagnosis using a set of
heuristics.

NetCheck diagnosis output is intended for application
developers and network administrators. NetCheck out-
puts high-level diagnosis information, such as “an MTU
issue on a flow is the likely cause of loss,” which may
be useful to network administrators. NetCheck also out-
puts detailed low-level information about the sequence of
system calls that triggered the high-level diagnosis. This
information can help developers locate the underlying is-
sue in the application code.

This work makes the following three contributions:

• Accurate diagnosis of network issues from plau-
sible global orderings. Because of complex net-
work semantics, it is not always possible to glob-
ally order an input set of host traces without a global



clock. NetCheck approximates the true ordering by
generating a plausible ordering of the input traces.
We show that for 46 of the bugs reproduced from
public bug-trackers, this strategy correctly detected
and diagnosed over 90% of the bugs. Additionally,
NetCheck found and diagnosed a new bug in Virtu-
alBox [49].

• Modeling expected network behavior to identify
unexpected behavior. By using a model of an ide-
alized network environment NetCheck is capable of
diagnosing issues even in applications that execute
in complex environments. We demonstrate that this
approach is effective at detecting many real-world
problems, including failures reported in bug track-
ers of projects like Python and Apache, and prob-
lems in everyday applications such as Pidgin, Skype
and VirtualBox.

• Efficient algorithm for finding plausible global
orderings. We present a heuristic trace-ordering
algorithm that utilizes valuable information inher-
ent in network API semantics. We prove that our
algorithm has a best-case linear running time and
demonstrate that NetCheck needs less than 1 second
to process most of the traces studied in this paper
(Section 6.4). Even on large traces, such as a 1 GB
trace collected from Skype, NetCheck completes in
less than two minutes.

The following section provides an overview of
NetCheck. Section 3 describes the challenges and
corresponding contributions of this work. Details of
NetCheck’s design and implementation are given in Sec-
tions 4 and 5, respectively. In Section 6, we evaluate
the accuracy, effectiveness, and efficiency of NetCheck.
Section 7 outlines limitations of NetCheck and our fu-
ture work. Related work is discussed in Section 8 and
we conclude with Section 9.

2 NetCheck Overview
To use NetCheck, a user needs to first gather a set of
host traces for an application using a tool like strace,
dtrace, ktrace, or truss. The user invokes NetCheck
with a configuration file that lists the host trace files to
analyze and the IP addresses of the hosts. A host trace,
as in Figure 1, is a sequence of syscall invocations at
a single host. A syscall invocation is a 4-tuple that in-
cludes (1) a string, such as socket denoting the name
of the syscall, (2) the arguments passed to the invoked
syscall, (3) the returned value, and optionally, (4) an er-
ror number (errno) that is returned upon a syscall failure.

For example, the first line of the host A trace in Fig-
ure 1 is socket(...)=4, which is a socket syscall in-
vocation with a return value of 4. For certain syscalls the

Host A trace: Host B trace:
A1. socket(...) = 4 B1. socket(...) = 3
A2. bind(4, ...) = 0 B2. connect(3, ...) = 0
A3. listen(4, 1) = 0 B3. send(3, "Hello", ...) = 5
A4. accept(4, ...) = 6
A5. recv(6, "Hola!", ...) = 5

Figure 1: An example input trace detailing a TCP connection
between two hosts. Many system call arguments are omitted
for readability. Returned values (including buffer contents) are
underlined. Data sent by host B (“Hello”) has been modified
in-transit before being received by host A (“Hola!”).

A1. socket(...) = 4
B1. socket(...) = 3
A2. bind(4, ...) = 0
A3. listen(4, 1) = 0
B2. connect(3,...) = 0
A4. accept(4, ...) = 6
B3. send(3,"Hello",...) = 5
A5. recv(6,"Hola!",...) = 5

Figure 2: A valid global ordering of syscall invocations from
the two host traces in Figure 1.

value is returned through an argument pointer1. Figure 1
shows an example of this: recv call on host A passes a
buffer to a location in memory where the kernel writes
a 5-byte string indicated by one of the logged arguments
(“Hola!”). For clarity we omit some arguments and errno
from syscall invocations in this paper.

The example traces in Figure 1 indicate an error with
the network. Host B sends a 5-byte string “Hello” to A,
but A receives “Hola!”, a different 5-byte string. Used in-
dependently, the two host traces are insufficient to iden-
tify this issue — the corresponding send and recv calls
both returned successfully. To detect the problem, a de-
veloper must manually reason about both the order in
which the calls occurred (their serialization) and the un-
derlying behavior of the calls (their semantics). For the
traces in Figure 1, the logical serialization of the two host
traces reveals a semantic problem: what was received is
different from what was sent. NetCheck automatically
detects this and other issues by serializing the traces, sim-
ulating the calls, and then observing their impact on net-
work and host state.

To detect and diagnose network problems such as the
issue in Figure 1, NetCheck uses a global ordering that
it automatically reconstructs from the input set of black-
box host traces. Figure 2 shows one global ordering for
the two input traces in Figure 1. A valid global order-
ing must preserve the local orders of host traces, and
conform to the network API semantics. For example,
the local ordering at host A in Figure 1 requires that
bind occur after socket has returned successfully. And,
connect at host B cannot be ordered before listen at
host A, as such an ordering violates the network API se-

1NetCheck expects the host traces to include such return values,
which are provided by most common tools.

2



Host A trace: Host B trace:
A1. send("hello") = 5 B1. send("hi") = 2
A2. recv("hi") = 2 B2. recv() = -1, EWOULDBLOCK

(a) Two input host traces. All operations are performed on a single con-
nected TCP socket.

Valid ordering 1: Valid ordering 2:
B1. send("hi") = 2 A1. send("hello")= 5
B2. recv() = -1, EWOULDBLOCK B1. send("hi") = 2
A1. send("hello")= 5 A2. recv("hi") = 2
A2. recv("hi") = 2 B2. recv() = -1, EWOULDBLOCK

(b) Two valid orderings of (a): (left) recv returned EWOULDBLOCK be-
cause the data has not been sent yet. (right) recv returned EWOULDBLOCK
because the content is still in the network.

A1. send("hello") = 5
A2. recv("hi") = 2
B1. send("hi") = 2
B2. recv() = -1, EWOULDBLOCK

(c) An invalid ordering of (a): data is received before being sent.

Figure 3: An example illustrating the ambiguity of recon-
structing a valid order from two host traces considered by
NetCheck. For the two host traces in (a), there are two pos-
sible valid orderings in (b). An invalid ordering, such as (c),
will never be produced by NetCheck.

mantics.
NetCheck reconstructs the global ordering without

relying on globally synchronized clocks or logical
clocks [18, 31]. Both approaches require modification
of the existing systems, and incur performance overhead
and complexity2. Instead, NetCheck uses a heuristic al-
gorithm and a network model to simulate and check if a
particular ordering of syscall invocations is feasible. As
a result, NetCheck has a higher level of transparency and
usability.

Next, we overview the challenges that NetCheck faces
in diagnosing network issues in complex applications,
and then describe the contributions of our work.

3 Challenges and Contributions
Challenge 1. Accuracy: ambiguity in order re-

construction. Reconstructing a global order of traces
collected from edge hosts without a globally synchro-
nized clock is sometimes impossible. For example,
Figure 3(b) lists two valid orderings of the traces in
Figure 3(a). In the ordering shown on the left the
recv call on B failed because it occurred before the
send("hello") call on A. In the ordering shown on the
right the send("hello") call on A occurred before the
recv call on B, but network delay prevented B from re-
ceiving the message when recv was invoked. The order-
ing in Figure 3(c) is invalid since data must be sent be-
fore it is received. However, even if invalid orderings are
eliminated, from the traces in Figure 3(a) it is impossible

2Over 90% of syscall invocations we observed completed in less
than 0.1 ms. Widespread and practical clock-synchronization tech-
niques do not provide a sufficiently fine timing granularity to unam-
biguously order traces from multiple hosts.

to tell if the send call on A occurred before or after the
recv call on B. How can NetCheck diagnose issues with-
out being able to reconstruct what actually happened?

Challenge 2. Network complexity: diagnosing is-
sues in real networks. The host traces that we consider
are blackbox traces: they omit information regarding the
physical network or the environment in which the traces
were collected. How can NetCheck diagnose network
issues without this crucial information?

Challenge 3. Efficiency: exploring an exponential
space of possible orderings. The space of the potential
sequences is exponential in the length of the host traces
and the number of hosts. Exhaustive exploration of this
space to find an ordering is intractable even at small trace
lengths (e.g., 30 – 100 syscalls). Real-world applica-
tions, such as a Pidgin client, make over 100K syscall
invocations in a single execution. Given this huge space
of possible orderings, how can NetCheck efficiently find
problems in user applications?

NetCheck handles each of the above three challenges
as follows:

Contribution 1. Deriving a plausible global order-
ing as a proxy for the ground truth. NetCheck ap-
proximates the true ordering by generating a plausible
ordering of the input traces that preserves the host-local
orderings of syscalls (Section 4.1). For this, NetCheck
assumes that syscalls are atomic: a syscall runs to com-
pletion before the next syscall in the trace. Our evalua-
tion shows that for 46 of the bugs reproduced from public
bug-trackers, NetCheck correctly detects and diagnoses
more than 90% of the problems (Sections 6.1 and 6.2).
Additionally, NetCheck fails to find a plausible ordering
in only 5% of the input traces that we studied in our eval-
uation.

Contribution 2. Modeling expected simple network
behavior to identify unexpected behavior. NetCheck
tackles the complexity of an application’s execution envi-
ronment by modeling an idealized network (Section 4.2).
We rely on the fact that, from the network edge, network
behavior can be described with a simple model due to
the end-to-end principle. Our network model is based on
Deutsch’s Fallacies [15, 16, 39], and encodes misconcep-
tions commonly held by developers, such as: the network
is reliable, latency is zero, hosts communicate over a di-
rect link, etc. NetCheck detects and diagnoses network
problems and application failures by finding deviations
from this ideal model of the network (Section 4.3). Our
evaluation (Section 6) demonstrates that this approach
is effective at detecting many real-world problems, in-
cluding failures reported in bug trackers of projects like
Python and Apache, and problems in everyday applica-
tions such as Pidgin, Skype and VirtualBox.

Contribution 3. A best-case linear time algorithm
to find a plausible global ordering. We present a

3



Ordering Algorithm

Network Model

Diagnoses Engine
Input

Diagnosis
Output

Host Traces

NetCheck

syscall simulation
result

simulation state
errors

Figure 4: Overview of NetCheck.

Algorithm 1 NetCheck pseudo code.
1: function NETCHECK(trace0, ..., tracen-1)
2: // tracei is a list of syscall invocations at host i
3: netModel = new POSIXNetworkModel()
4: (orderError, permReject) = (False, False)
5: try:
6: // Call Algorithm 2 for trace ordering
7: OrderingAlg(trace0,...,tracen-1, netModel)
8: catch OrderError:
9: orderError = True

10: catch PermanentReject:
11: permReject = True
12: diagnosis = DiagnosesEngine(netModel.state,

orderError, permReject)
13: Output diagnosis

heuristic trace-ordering algorithm that utilizes valuable
information inherent in network API semantics. The
best case running time of our algorithm is linear in the
length of the input host traces. In the worst case, our
algorithm is asymptotic with the length of the input host
traces times the number of traces. Our evaluation demon-
strates these bounds and illustrates that NetCheck needs
less than 1 second to process most of the traces studied
in this paper (Section 6.4). Even on large traces, such as
a 1 GB trace collected from Skype, NetCheck completes
in less than two minutes.

Next, we explain NetCheck’s design in further detail.

4 NetCheck Design
First, NetCheck orders the syscalls with a heuristic algo-
rithm and a network model. Following this, NetCheck
uses a diagnoses engine to compile any detected devia-
tions from the network model into a diagnosis. These
steps are overviewed in Figure 4 and Algorithm 1. The
next three sections describe each of these steps in further
detail.

4.1 Ordering host traces

Algorithm 2 lists the pseudocode of the trace-ordering
algorithm in NetCheck. The algorithm traverses the set
of all input traces in local-host order, and at each itera-
tion considers the calls that are at the top of each of the
host traces (maintained in a priority queue topCalls,
defined on line 5). In each iteration of the outer while
loop (line 3), one of the calls from topCalls is pro-
cessed. If this is not possible because no call at the top of

Algorithm 2 Trace ordering algorithm pseudo code.
1: function ORDERINGALG(trace0, ..., tracen-1, netModel)
2: // tracei is a list of syscall invocations at host i
3: while (trace0, ..., tracen-1) not empty do
4: // Record topmost calls
5: topCalls = top(trace0, ..., tracen-1)
6: // Assign each call a priority (see Table 1)
7: topCalls.sort()
8: // Process each call in topCalls or raise OrderError
9: while True do

10: if topCalls empty then // No calls can be processed
11: raise OrderError
12: // Highest priority call remaining
13: calli = topCalls.dequeue()
14: outcome = netModel.simulate(calli)
15: if outcome == ACCEPT then // Completed this call
16: ordered_trace.push(tracei.pop())
17: break // Break to outer while
18: else if outcome == REJECT then
19: continue // Continue in inner while
20: else // outcome == PERMANENT_REJECT
21: raise PermanentReject
22: end while
23: end while

the trace can be executed, an OrderError is raised. This
completes execution of the ordering algorithm (returning
to Algorithm 1) and thus no further calls are processed.

To find a call in topCalls to process, the algorithm
performs two steps. First, the algorithm sorts topCalls
(line 7) according to syscall priorities in Table 1. These
priorities are derived from the dependency graph in Fig-
ure 5 (discussed below). Second, the algorithm simu-
lates the highest priority call using the network model
(see Section 4.2). This simulation can result in one of
three outcomes: (1) accept the call (line 16) and con-
tinue with the outer while loop iteration, (2) reject the
call (line 19) and then try another call in priority order
from topCalls, or (3) a PermanentReject exception
is raised (line 21) — the syscall can never be processed
by the model, return back to the NetCheck algorithm (Al-
gorithm 1 line 10).

Prioritizing syscalls. The key to the efficiency of the
order reconstruction algorithm is to simulate syscalls in
an order that is derived from the POSIX syscalls depen-
dency graph in Figure 5. This graph was created by ex-
amining the POSIX specification for each system call
and looking at which calls can modify the state used by
other calls. This graph can be used to derive a priority
value for each syscall (for simplicity we use integer pri-
ority values): if syscall x may-depend-on y, then x has
a higher priority value and should be simulated before y
(Table 1). For example, according to Figure 5, connect
should be simulated before listen. This scheme is justi-
fied because processing a syscall y in the network model
could affect x and make it impossible to simulate x with-
out undoing y. This helps NetCheck to avoid significant

4



Priority value Syscalls

0 socket, bind, getsockname,
getsockopt, setsockopt

1 poll, select, getpeername
2 accept, recv, recvfrom, recvmsg, read

3 connect, send, sendto, sendmsg,
write, writev, sendfile

4 close, shutdown, listen

Table 1: Simulation priority of common syscalls: the lower
the priority value, the higher the priority.

socketbind getsockopt,
setsockoptgetsockname

accept getpeername

poll, select

connect recv, recvfrom, 
recvmsg, read

send, sendto, sendmsg, 
write, writev, sendfileclose, shutdownlisten

Figure 5: Dependency graph of system calls in the POSIX
networking API. Edges represent the may-depend-on relation.

backtracking in the case where the return value of x re-
quires that y has not yet occurred.

Syscall prioritization enables the ordering algorithm to
permanently process a syscall after trying (in the worst
case) the top syscall on each trace. The inner while loop
(line 9) iterates through the top-most syscalls on each
trace and removes them from a priority queue (thus con-
sidering each syscall at most once per inner loop execu-
tion). If this syscall is accepted (lines 15–17), then pop
removes it from tracei (line 16) which permanently con-
sumes the syscall (there is no way to later undo this call).
If this call cannot currently be processed and is rejected
(lines 18–19), then it will be placed again in topCalls
(line 5) after a syscall in the current priority queue (and
thus on the top of a trace) is consumed. Therefore, in the
worst case, Algorithm 2 will never backtrack beyond the
current rejected call. This makes the trace-ordering algo-
rithm in Figure 2 efficient — its best-case running time
is linear in the length of the input host traces if no back-
tracking occurs, and its worst-case running time is the
length of the input host traces multiplied by the number
of host traces i.e., the number of hosts (see Section 6.4).

4.2 Model-based syscall simulation

The network model component of NetCheck simulates
syscalls (line 14 in Algorithm 2) to determine if a given
syscall can be added as the next syscall in the global or-
der. The network model treats the network and the ap-
plication that generated the traces as a blackbox and re-
quires no application-specific information.

To simulate a syscall, the model uses the current net-
work and host states tracked by the model, and net-

A2. bind(3, ...) = 0
A3. listen(3, 1) = 0
B2. connect(3, ...) = 0

(a) One valid ordering: all syscalls returned successfully.

A2. bind(3, ...) = 0
B2. connect(3, ...) = -1, ECONNREFUSED
A3. listen(3, 1) = 0

(b) A second valid ordering: connect returned ECONNREFUSED.

Figure 6: An example that demonstrates how return values of
syscalls can guide trace ordering.

work semantics defined by the POSIX API. The network
model state includes information related to the observed
connections/protocols (e.g., pending or established TCP
connections), buffer lengths and their contents, data-
grams sent/lost, etc. Simulating a syscall with a model
results in one of three determinations: accept the call,
reject the call, or permanently reject the call.

A key technique used by the model to determine if a
syscall can be accepted is to use the syscall’s logged re-
turn and errno values. As an example, Figure 6 shows
two possible orderings for bind and listen calls at host
A, and a connect call at host B. For connect to return
0 (success), it is necessary for listen to have already
occurred. So, a return value of 0 by connect indicates
that (a) is a valid ordering. However, had connect at
host B returned -1 (and a connection refused errno), then
(b) would have been the valid ordering.

The current state of the model determines if the model
can accept a syscall invocation with a specific return
value. In certain cases the model can accept a syscall
with a range of possible return values. For example, if
the model’s receive buffer for a connection has n bytes,
then the return value of the read syscall (number of bytes
read) may be a value between 0 and n.

We now explain how NetCheck produces one of the
three outcomes through Figure 7, which illustrates how
NetCheck processes the log in Figure 1. We use A.x to
denote a syscall x at host A. When a call is accepted, the
vertex of this syscall and all of its incoming edges are
removed in the next step in the figure; the removed call
is added to the final output ordering in Figure 7(l). If
a call is rejected, the dashed-arrow may-depend-on rela-
tion edge between two syscalls is converted into a solid-
arrow depends-on relation edge. The network model pro-
duces one of three outcomes:

Accept the syscall: the simulation of the syscall is
successful, and the return value and errno match the
logged values. In Figure 7(a), the syscalls in priority
queue topCalls (defined on line 5 of Algorithm 2) are
A.socket and B.socket, shaded in yellow. The prior-
ity of the two calls are the same, so either of them could
be simulated. In this case, A.socket is simulated, ac-
cepted, and then removed from the trace. In Figure 7(a),

5



this corresponds to removing the vertex and all its incom-
ing edges to generate Figure 7(b). Similarly, B.socket
and A.bind are accepted and removed from the traces in
Figure 7(b) and (c), indicated by the bold circle around
each syscall.

Reject the syscall: the network model cannot simulate
the syscall because the model is not in a state that can
accept the syscall with its logged return value and er-
rno. This indicates that the syscall should be simulated
at a later point. In Figure 7(d), the calls A.listen and
B.connect are dependent according to Figure 5. In Ta-
ble 1, connect has a higher priority than listen, so
B.connect is simulated first. (This is necessary because
of situations like Figure 6(b) where connect fails be-
cause listen was not yet called.) However, the network
model rejects this syscall (indicated by a bold and red cir-
cle) because for B to successfully connect to A, A must
be actively listening. In Figure 7(e), the directed edge
from B.connect to A.listen indicates that B.connect
should be ordered after A.listen. As A.listen is the
next call with the highest priority in topCalls, it gets sim-
ulated and accepted — its vertex and all incoming edges
are removed in Figure 7(f).

We describe all of the cases in which our NetCheck
prototype rejects a syscall on our wiki3.

Permanently reject the syscall: there are errors during
the simulation of the syscall and the call can never be
correctly simulated at a future point. In Figure 7(j) and
(k), the network model first accepts B.send and then at-
tempts to simulate A.recv. This triggers an error since
the content in the receiving buffer of A, “Hola!”, is dif-
ferent from the content in the send buffer. No additional
system calls will allow A.recv to correctly complete in
the future.

4.3 Fault diagnoses engine

When NetCheck finished processing the trace (Algo-
rithm 1), either through consuming all actions, finding an
order error, or permanently rejecting an action, the state
of the model contains valuable information. The diag-
noses engine analyzes the model simulation state and any
simulation errors to derive a diagnosis. The diagnoses
engine makes the simulation results more meaningful to
an administrator who might be tasked with resolving the
issue.

The diagnoses engine infers a diagnosis based on a set
of rules. If the simulation state matches a rule, then the
corresponding diagnosis is emitted. Table 2 summarizes
the rules; our technical report contains example output
for each of the rules [56]. Although the diagnosis rules
are heuristics, Section 6 shows that these are effective at

3https://netcheck.poly.edu/projects/project/wiki/
network_model

detecting problems in a wide range of applications.

Figure 8 lists an example of NetCheck output for the
multibyte unit test from Table 4. In this test, the server
incorrectly uses byte size to calculate the content-length
of an HTTP header. This gives the wrong value for HTTP
responses with multi-byte characters and the client fails
to get the entire content that it requested. This fault was
listed on the Ruby bug tracker (test case 2.16 in [56]).

The output in Figure 8 consists of three parts, each
of which can be optionally omitted. Part (1) lists non-
fatal errors uncovered through simulation by the network
model in the form of a snippet of the valid ordering de-
rived with OrderingAlg and any model deviations at the
syscall level. This information is useful to application
developers to understand the series of actions leading to
the fault. In the figure, the model detected that there is
still data remaining in the buffer at Browser even though
both close on Browser and shutdown on Server re-
turned successfully. Part (2) presents statistics for the
observed connections, which may be useful for network
administrators to perform performance debugging or see
loss / MTU issues. Finally, part (3) present a high-level
diagnosis summary generated by the diagnoses engine,
which is of interest to all users of NetCheck. Part (3)
of Figure 8 shows that the network connection with out-
standing data has been shut down by the Browser. This is
due to an application-level miscommunication between
the Browser and Server.

In larger applications, small network errors can accu-
mulate to cause an application failure. For example, an
MTU problem that can only be detected after consider-
ing a loss pattern across multiple transmission attempts.
Packet loss is not unexpected as the network may drop
packets, but diagnoses engine correctly diagnoses this as
an MTU issue by considering the pattern of loss over the
entire trace set (Section 6.2).

5 Implementation

NetCheck consists of 5.1K lines of Python code and is
released freely under an MIT license [33]. The imple-
mentation supports the widely used POSIX network API,
including support for common flags and optional argu-
ments. This includes all of the syscalls that operate on
file descriptors, and optional flags observed in traces of
popular applications. It took 2 person-months to imple-
ment the network model.

NetCheck currently supports traces generated by
strace on Linux. We are developing parsers for traces
generated by other syscall tracing tools, such as truss
on Solaris and dtrace on BSD and Mac OSX, to pro-
cess these traces in a uniform manner [35].

6

https://netcheck.poly.edu/projects/project/wiki/network_model
https://netcheck.poly.edu/projects/project/wiki/network_model


socket

bind

listen

accept

recv

socket

connect

send

bind

listen

accept

recv

socket

connect

send

bind

listen

accept

recv

connect

send

listen

accept

recv

connect

send

listen

accept

recv

connect

send

accept

recv

connect

send

accept

recv

connect

send

accept

recv

send recv send recv send

A.socket B.socket A.bind

A B A B A B A B A B

A B A B A B A B A B

A.listen B.connect A.accept B.send A.recv

(a) Accept A.socket (b) Accept B.socket (c) Accept A.bind (d) Reject B.connect (e) Accept A.listen

(f) Reject A.accept (g) Accept B.connect (h) Accept A.accept (i) Reject A.recv (j) Accept B.send

(l) Recovered ordering, with a permanent rejection of A.recv

recv

A

(k) Permanently reject 
A.recv

B

None

Figure 7: A step-by-step demonstration of how the ordering algorithm (Algorithm 1) processes the traces in Figure 1. Vertices
are syscall invocations and solid edges represent dependency — capturing both the local ordering constraint and dependencies
between remote syscall invocations. Shaded yellow vertices in each step represent the syscall invocations in the topCalls list in
Algorithm 2. The syscall invocation simulated by the model at each step of the algorithm is circled in bold. A dashed edge denotes
the may-depend-on relation from Figure 5. Each model simulation step either accepts or rejects a syscall. If accepted, the vertex of
the syscall and all its incoming edges are removed in the next step, and the call is placed in the final output ordering (l). Steps (d),
(f), and (i) show steps in which the syscall invocations were rejected (converting the may-depend-on relation edge into a depends-on
relation edge). In step (k), the A.recv is permanently rejected because the traces in Figure 1 contain a bug: what was received is
different from what was sent. The final output ordering in (l) orders all of the calls, except for the permanently rejected A.recv.

(1) Verifying Traces
-----------------------------------------------------
Serve: write(6, "<html>\n<head>\n<title> ... ") = 343
Browser: read(3, "<html>\n<head>\n<title> ... ") = 302
Browser: close(3) = 0
=> NONEMPTY_BUFFER: Socket closed with data in buffer.
Server: read(6, ...) = -1, ECONNRESET (Connection reset)
=> UNEXPECTED_FAILURE: Recv failed unexpectedly.
Server: shutdown (6) = 0
=> ENOTCONN: [Application Error] Attempted to shutdown

a socket that is not connected.
-----------------------------------------------------
(2) TCP Connection Statistics
-----------------------------------------------------
Connection from Browser (128.238.38.67:40830) to Server
(128.238.38.71:3000)
* Data sent to accepting Server: 114 bytes sent,

114 bytes received, 0 bytes lost
* Data sent to connected Browser: 517 bytes sent,

476 bytes received, 41 bytes lost (7.93%)
-----------------------------------------------------
(3) Possible Problems Detected
-----------------------------------------------------
* Browser has 1 TCP connection to 128.238.38.71:3000

with data in the buffer
* Connection to Server has been reset by Browser
* Server attempted to shutdown an unconnected socket
* Data loss is most likely due to application behavior

Figure 8: NetCheck’s output for the multibyte unit test from
Table 4.

Rule Description

1. Unaccepted
Connections

If a TCP connection has unaccepted (pending)
connections, this is an indicator that the con-
necting host may be behind a middlebox.

2. Ignored Accepts No matching connect corresponding for an ac-
cept (middlebox indicator).

3. Connect Failure
Connect fails for reasons other than (1) or (2),
indicating that a middlebox (e.g., NAT) is fil-
tering network connections.

4. Connection Refused Connection is refused to an address that is be-
ing listened on (middlebox indicator).

5. Nonblocking
Connect Failure

A nonblocking connect never connects (mid-
dlebox indicator).

6. No Relevant Traffic
A host has outgoing traffic, but not to a rele-
vant address, then the host is likely connecting
through a proxy.

7. Datagram Loss A significant (user-defined) fraction of data-
grams are lost.

8. MTU Datagrams larger than a certain size are
dropped by the network.

9. Non-transitive
Connectivity

A can communicate with B, B can communi-
cate with C, but A cannot communicate with C.

Table 2: NetCheck post-processing diagnoses. Example of
rule (1): when a client is behind a NAT, (i) the client uses a
private IP, (ii) the peer socket address in server’s accept is not
the client’s IP.

7



6 Evaluation
We evaluated NetCheck in four ways. First, we ex-
amined network issues in popular applications reported
on public bug trackers (Section 6.1). NetCheck diag-
nosed known bugs across multiple projects with a rate
of 95.7%, demonstrating its accuracy. Second, we repli-
cated failures on a real network, the WITest testbed [51],
and used NetCheck to diagnose the issues (Section 6.2).
This result indicates that we can diagnose real network
issues as deviations from a simple model of expected
network behavior. Third, we used NetCheck to diag-
nose the root cause of faults in widely-used applications,
such as FTP, Pidgin, Skype and VirtualBox (Section 6.3).
Finally, we evaluated NetCheck’s performance across all
of the test cases and applications detailed in our evalu-
ation and proved that the algorithm has a best-case lin-
ear running time (Section 6.4). This demonstrates that
NetCheck is efficient. A detailed description of all the
bug traces in this section, and the corresponding bug re-
ports are provided on our wiki [33] and in our technical
report [56].

6.1 Diagnosing Bugs Reported in Bug Trackers

As noted in Section 3, the first challenge for NetCheck
is to reconstruct a global ordering of traces. To evalu-
ate NetCheck’s accuracy, we collected bugs from pub-
lic bug trackers of 30 popular projects. We targeted
networked-related bugs that are small, reproducible, and
have a known cause. We did not intentionally select bugs
based on how NetCheck works. For each bug report we
reproduced the issue from the report description by writ-
ing code to cause the observed behavior. This generated
a total of 71 traces. Table 3 lists the results of running
NetCheck on these traces. The traces are grouped into
24 categories based on the exhibited bug or behavior.
Note that not all traces produce a bug. Some traces gen-
erate different behaviors on different OSes and can po-
tentially lead to portability problems. For example, the
loopback_address category captures the case when a
socket exhibited different behaviors bound to the local
interface (0.0.0.0 or 127.0.0.1). We briefly review four
bugs from this evaluation.

1. MySQL provides a server-side option to only accept
TCP connections from the loopback interface. If a user
connects to the local IP address of the host that is host-
ing the MySQL server configured with this option, the
connection is refused. This option provides extra secu-
rity, but it is also difficult to debug. NetCheck correctly
diagnoses the root cause as a socket bound to the loop-
back interface attempting to connect to a non-loopback
address — bind_local_interface in Table 3.

2. When a Skype call’s quality degrades, the user
often terminates and restarts the call or restarts Skype.
This may cause a known issue: when a TCP/UDP socket

Bug category (number of traces) Bugs detected & correctly
diagnosed / # Bugs

bind_local_interface (2) 2 / 2
block_udp_close_socket (2) 1 / 1
block_tcp_close_socket (2) 1 / 1
broadcast_flag (2) 2 / 2
buffer_full (1) 1 / 1
invalid_port (3) 3 / 3
loopback_address (7) 0 / 0
multicast_issue (3) 3 / 3
multiple_bind (1) 1 / 1
nonblock_connect (13) 8 / 9
nonblock_flag_inheritance (2) 1 / 1
oob_data (5) 5 / 5
readline (1) 0 / 0
recvtimeo (1) 1 / 1
setsockopt_misc (3) 2 / 2
shutdown_reset (1) 0 / 1
sigstop_signal (3) 0 / 0
so_linger (5) 2 / 2
so_reuseaddr (2) 2 / 2
tcp_nodelay (3) 0 / 0
tcp_set_buf_size_vm (4) 4 / 4
udp_large_datagram_vm (2) 2 / 2
udp_set_buf_size_vm (2) 2 / 2
vary_udp_datagram (1) 1 / 1
Total Number of Traces: 71 44 / 46 (95.7%)

Table 3: Evaluating NetCheck on reported network bugs.

is waiting on recv/recvfrom, a close call made on
the socket from a different thread will keep the socket
blocking indefinitely. This bug has also been reported
on GCC and Ruby bug trackers [10, 45]. We repro-
duced this bug, and NetCheck successfully diagnosed it
(block_tcp/udp_close_socket in Table 3).

3. Different interpretations of network APIs have re-
sulted in OS portability issues. For example, implemen-
tations of accept vary in whether file status flags, such
as O_NONBLOCK and O_ASYNC, are inherited from a lis-
tening socket [1]. This has caused faults in a variety
of applications, including Python’s socket implementa-
tion [2, 34]. This issue is successfully diagnosed by
NetCheck (nonblock_flag_inheritance in Table 3).

4. Variations in socket API implementations can
also have security implications. On Windows, an ap-
plication can exploit the SO_REUSEADDR socket option
to deny access to, or impersonate, services listening
on the same local address. Over a dozen major soft-
ware projects [47, 43, 41, 50, 42, 36] include platform-
specific code to mitigate security risks associated with
SO_REUSEADDR. This issue is successfully diagnosed by
NetCheck (so_reuseaddr in Table 3).

Overall, NetCheck correctly detected and diagnosed
95.7% of the 46 reported bugs we considered. This
indicates that NetCheck is accurate. Our technical re-
port [56] further details the test cases in Table 3.

6.2 Diagnosing Injected Bugs in a Testbed

Deployed applications run in complex networking envi-
ronments. To evaluate whether NetCheck can diagnose
issues in real networks, we conducted an experiment on
the WITest testbed [51] — a networking environment

8



Bug Total number
of diagnoses Bug detected Incorrect

diagnoses
bind6 1 3 0
bind6-2 1 3 0
clientpermission 2 3 0
closethread 3 7 0
conn0 1 3 0
firewall 2 3 1
gethostbyaddr 1 7 0
httpprox1 1 3 0
httpprox2 1 3 0
keepalive 1 3 0
local 3 3 0
max1 3 3 0
maxconn 4 3 0
maxconn2 6 3 0
mtu 2 3 0
multibyte 2 3 0
noread 1 3 0
permission 1 3 0
portfwd 1 3 0
special 1 3 0
Total: 38 18/20 (90%) 1/38 (3%)

Table 4: NetCheck’s classification of controlled network bugs.
The total number of diagnoses are all the issues detected by
NetCheck. The 3/7 indicate the success/failure of NetCheck
in diagnosing the root cause of the bug. Incorrect diagnoses are
false positives.

for studying wireless connectivity. We used a typical
setup for this testbed, running a client-side application
that issued requests to a WEBrick [48] HTTP server. For
the experiment, an administrator replicated and injected
network-related bugs from the WEBrick tracker into the
testbed. We then gathered trace data from both hosts with
strace. Table 4 lists the results from this evaluation.
We now review two categories of bugs that NetCheck
successfully diagnosed: IPv6 compatibility, and issues
related to middleboxes.

IPv6 compatibility. With pervasive IPv6 deployment,
applications are beginning to set IPv6-only socket op-
tions by default. However, IPv6 lacks backward compat-
ibility and can break many legacy IPv4 applications [8].
For example, the IPv6-only option breaks the network-
ing functionality in Java and triggers a “network un-
reachable” exception [21]. Other applications including
Eclipse, VNC, Google Go, etc., will generate similar ex-
ceptions that are too generic to diagnose the root cause.
NetCheck’s model expects that IPv6 does not preempt
IPv4 in an idealized environment, making it possible to
detect this incompatibility by tracking inconsistent ad-
dressing schemes (bind6/bind6-2 bugs in Table 4). As
a result, NetCheck generates a much more informative
diagnosis of this issue [56].

Middleboxes. Middleboxes, such as firewalls and
NATs, introduce features that impact most network ap-
plications. NetCheck can be used to detect and diag-
nose the effects of middleboxes on an application. For
example, in an FTP session, a PASV command on the
client-side allows the server to define an IP/port that the
client can use to connect to the server and receive data.

The negotiated port is usually a high numbered port on
the server that is typically blocked by firewalls on the
server-side. NetCheck can detect and diagnose this kind
of failure (firewall bug in Table 4).

Note that for many of the injected bugs, NetCheck also
provided accurate supplementary information (included
in the total diagnoses count in Table 4), such as packet
loss information and buffer state. For example, if a con-
nection is closed with data in the receive buffer, then
NetCheck warns that the connection might have been
closed prematurely by the receiver.

Our evaluation of injected bugs in a controlled net-
work environment (Table 4) shows that despite the com-
plexity of a real network, NetCheck’s idealized network
model is effective, diagnosing 90% of the injected bugs
with a false positive rate of 3%. The injected bugs used
in this study are detailed in [56].

6.3 Bugs in Popular Applications

We also evaluated NetCheck on traces generated by
large, widely used applications — an FTP client, Pid-
gin, Skype and VirtualBox. The issues detailed in this
section were uncovered through normal, practical use
of the applications on university and home networks.
NetCheck produced useful diagnosis for problems across
all of these applications (Table 5).

While using an FTP client to interact with an FTP
server, we noticed that certain commands, such as cd
and pwd, executed successfully, while others, like ls or
get, would not be processed. When one of the latter
command was issued, the FTP client was locked up until
the connection timed-out. We used NetCheck to diag-
nose the issue by applying it to traces from the server
and the client. NetCheck’s diagnoses are summarized
in Table 5. The problem is that commands like ls and
get are followed by a PORT command from the client to
inform the server about the IP/port that the client is lis-
tening on to receive the data (default behavior in most
FTP clients). Since the client was behind a NAT, the des-
tination IP address in the PORT command was a local ad-
dress. Therefore, all connection attempts from the server
failed to reach the client. NetCheck correctly identified
that the problem is that the client was behind a NAT. The
diagnoses engine in NetCheck did this by detecting a dif-
ference between the IP of the client’s original connection
to the server and the IP specified in the PORT command.

Pidgin is a commonly used chat client application.
Pidgin clients communicate with each other via an
XMPP server. During a group meeting, one of the users
(user A) was repeatedly dropped from the group con-
versation; another user (user B) could not log in with
the Pidgin client. Traces were gathered from all the
Pidgin clients and the XMPP server (4 hosts in total),
and NetCheck was used to diagnose the network issues.

9



Application: Issue NetCheck Diagnoses Trace Size
FTP: Could issue
only some of the
commands.

• Client is behind NAT.
• 42% data loss.

Client: 245 KB
Server: 497 KB

Pidgin: Loss of
connection; file
transfer and login
failure.

• The IP address that getsock-
name returns is different from
the one the socket is bound to.
• Message being received that
has not been sent.

Client1: 49 MB
Client2: 67 MB
Client3: 81 MB
Server: 93 MB

Skype: Poor call
quality and
messages lost.

• Data loss due to delay.
• A different thread attempts to
close sockets.
• Client is behind NAT.

Client1: 831 MB
Client2: 1.6 GB

VirtualBox: Silent
drop of large UDP
datagrams.

• Virtualization misbehavior.
• Guest OS: MTU.
• Host OS: UDP buffer size mis-
match.

2.5 MB

Table 5: NetCheck diagnosis of faults in popular applications.

NetCheck detected two important issues:
(1) Invocations of the getsockname syscall by user

A’s Pidgin client repeatedly returned an IP address that
was different from the address that the socket was bound
to. User A was multi-homed and was connected to both
an ethernet and a wireless network. The wireless con-
nection was poor, causing the default IP address of user
A to change as she disconnected and reconnected to the
wireless network. In this case, the network model simu-
lated a connect syscall call on a socket bound to one IP
to an endpoint that expected a different IP address. The
connect generated a permanent rejection (line 21 in Al-
gorithm 2). NetCheck therefore diagnosed the problem
as a mismatch between the intended IP address and the
IP address actually used.

(2) User B’s Pidgin client could send data to the XMPP
server, but all of the server’s responses were lost. User
B was behind a firewall that filtered packets with high-
numbered source port values, including port 5222 on the
XMPP server. By examining the model state towards the
end of the trace, specifically considering the pattern of
packet loss, diagnoses engine observed the selective fil-
tering and diagnosed the problem as a middlebox issue.

Skype is a widely used VoIP service and instant mes-
saging client. During a Skype session we noticed poor
call quality and that messages were frequently dropped.
Traces from two instances of Skype were gathered and
evaluated with NetCheck. NetCheck detected that both
clients were behind a NAT and that network delay caused
severe data loss. NetCheck also revealed that when call
quality degrades, Skype attempts to close its sockets
from a separate thread. However, this does not termi-
nate the blocked socket operation, but instead hangs the
thread that is blocked on this operation. This is a known
issue for some operating systems — a close call on
a blocking socket from a different thread will keep the
socket blocking indefinitely on recv or recvfrom [10,
45] (also block_tcp/udp_close_socket in Table 3).
NetCheck diagnoses this issue correctly. The diagnoses
engine also outputs a potential solution for Skype devel-

1MB 4MB 32MB 256MB 1G 4G

0.25sec

1sec

4sec

16sec

1min

4min

10min

Trace Size

R
un

tim
e

 

 

Linear

Quadratic

Figure 9: Runtime performance overhead of NetCheck. Data
includes all traces in Sections 6.1–6.3.

opers as part of the diagnoses: invoking shutdown on the
blocking socket immediately unblocks recv/recvfrom.

VirtualBox is a popular tool for running virtualized
operating system instances. We found and diagnosed a
new bug in VirtualBox using Netcheck – applications
running in a Linux VirtualBox instance on a Windows
host OS would discard UDP datagrams of size over 8 KB
when sent over an interface with VirtualBox’s NAT vir-
tual adapter [49]. When run on application traces gath-
ered from the Linux instance (the guest OS), NetCheck
correctly diagnoses the UDP datagram loss as a MTU
issue. This is because from the standpoint of the guest
VM, UDP datagrams over a certain size are discarded.

However, the root cause for this bug is as follows. The
default receive buffer size on Windows is 8 KB. When
the receive buffer is not full, Windows sockets can hold
at least one more datagram even if the total datagram
size exceeds the buffer size. When VirtualBox queries
the socket for the amount of received data, Windows re-
turns either the total size of datagrams in the buffer, or
the buffer size, whichever is smaller. When a datagram
larger than 8 KB is placed in the receive buffer, Virtual-
Box believes that the available datagram is only 8 KB
and allocates an 8 KB application buffer. VirtualBox
then silently drops the large datagram. To understand the
usefulness of NetCheck for diagnosing this bug in Virtu-
alBox, we collected traces of syscalls made by Virtual-
Box to the Windows host OS (udp_set_buf_size_vm
in Table 3) to reproduce this issue. The network model
of NetCheck correctly indicates the issue as being a UDP
buffer size mismatch interfering with datagram delivery.
Therefore, on the host OS, NetCheck also produces an
accurate diagnosis of the root cause.

Our evaluation shows that NetCheck is effective at di-
agnosing faults in large applications in practical use.

6.4 Performance

Dynamically recording syscall invocations of complex
applications can produce huge traces. Therefore, effi-

10



ciency is a key challenge to designing a diagnosis tool
that relies on logged syscall information. Figure 9 shows
NetCheck’s running time for traces of varying lengths.
The figure plots the data for all the traces mentioned in
this paper. Note that both the x and the y axes of Fig-
ure 9 have a logarithmic scale (i.e., a quadratic function
is a straight line). The figure illustrates that NetCheck’s
performance across the various input traces lies between
a quadratic and a linear function. NetCheck completes
in less than 1 second on most traces, and even on 1 GB
long traces, NetCheck completes in less that two min-
utes4. These measurements demonstrate that NetCheck
is efficient for practical use.

Algorithm complexity. We now consider the com-
plexity of the trace-ordering algorithm (Algorithm 2) —
the key algorithm in NetCheck. Let n be the number of
hosts, and l be the sum of the lengths of all input host
traces. The inner while loop in Algorithm 2 must accept
one syscall (if it rejects all syscalls, then the algorithm
terminates). In the best case, this loop accepts a syscall
on the first iteration, and in the worst case it must run
n times to accept a syscall. The outer while loop iterates
until all syscalls are accepted, or a total of l times. There-
fore, Algorithm 2 makes l simulation calls in the best
case, and n∗ l simulation calls in the worst case. Suppos-
ing that the model simulates a syscall in constant time,
the worst-case running time of Algorithm 2 is O

(
nl
)

and
its best-case running time is O

(
l
)
. Typically, the num-

ber of logged syscalls is much larger than the number of
hosts, so the runtime will trend towards O

(
l
)
.

Tracing overhead. To evaluate the overhead of
strace, we micro-benchmarked the unit tests in Sec-
tion 6.1, both with and without strace, 1K times.
The overhead of strace across these runs, measured in
elapsed time, had a median of 41 ms (0.79%), which is
negligible. The standard deviation was 60 sec, due to the
varying I/O behavior of the programs. Furthermore, in
our experience, the overhead of strace on larger appli-
cations, such as Pidgin and Skype, was not perceptible.

6.5 Ordering Heuristic Efficacy

Algorithm 2 in Section 4.1 is a heuristic. One poten-
tial problem is if this algorithm terminates early: line 11
terminates the trace-ordering algorithm when no calls in
topCalls can be accepted. Such a termination can oc-
cur before NetCheck detects an issue in the application
traces. To evaluate the frequency of this early termi-
nation one of the authors manually inspected all of the
traces collected in Sections 6.1 and 6.2, i.e., bug track-
ers evaluation (71 traces) and the testbed evaluation (20

4This suggests that NetCheck can derive multiple plausible order-
ings without a significant performance penalty and use these to diag-
nose the issue. However, this would make NetCheck unnecessarily
more complex and it already achieves high accuracy (Section 6.1).

traces). On just 2 of these traces (of 91), or 2.2%, did
NetCheck not find any bugs and terminated without fully
processing all the syscalls. This indicates that the order-
ing heuristic in NetCheck is effective at reconstructing
plausible orderings that can then be used for diagnosis.

7 Limitations
IPC blindspots. NetCheck cannot detect faults that do
not impact an application’s syscall trace. This limita-
tions impacts two situations. First, if an application
uses non-socket IPC mechanism, then NetCheck will
not see the resulting network traffic. For example, the
gethostbyaddr error in Section 6.2 is due to an is-
sue in how DNS requests are handled. Since DNS
requests are handled in part by a non-native program
avahi, the application’s strace information does not
include the relevant calls. However, NetCheck can be ex-
tended to parse strace call data and arguments to han-
dle application-specific situations, for instance, to better
understand DNS resolution errors reported by avahi.

Network blindspots. NetCheck observation of and
reasoning about the network is limited to what is cap-
tured in system call traces. For example, NetCheck does
not know the state of the OS network buffers, the network
topology, etc. However, NetCheck’s reliance on traces
allows it to process previously generated traces, which is
useful for reproducing and diagnosing bug reports.

Dynamic analysis. By relying on observed behav-
ior, NetCheck can be considered as a dynamic analysis
technique. As such, it cannot diagnose latent application
behaviors that are possible, but have not been observed.
However, dynamic analysis allows NetCheck to diagnose
application issues that arise in deployment, such as those
due to in-network state.

Improving the diagnoses engine. The diagnoses en-
gine in NetCheck may be further improved with machine
learning [3, 52]. For example, a supervised machine
learning approach can be used to derive a signature from
application traces or network packet traces, which can
then be labeled according to previously observed patterns
of correct and incorrect behavior [13].

Network model completeness. The network model in
NetCheck simulates the behavior of network syscalls in
an idealized network. To correctly perform this simula-
tion, the model must be faithful and complete. Currently,
the network model implements all syscalls and optional
flags observed in traces of popular applications (Sec-
tion 6). We continue to refine and improve this model
as we encounter important new behaviors.

Multithreading. Currently, NetCheck cannot model
systems with multiple threads that access shared re-
sources (e.g., use the same socket descriptor). Improving
multithreading support is part of our future work.

11



8 Related Work
Blackbox diagnosis. Aguilera et al. introduced an im-
portant blackbox approach to debugging distributed sys-
tems [4]. In this approach, observations of a distributed
executions are used to infer causality, dependencies,
and other characteristics of the system. This approach
was relaxed in later work to produce more informative
and application-specific results in Magpie [5] and X-
Trace [19]. This prior work focuses on tracking request
flows through a distributed system. BorderPatrol [27] is
another approach that traces requests among binary mod-
ules. In contrast, NetCheck is a blackbox approach to
diagnosing network issues in applications.

Khadke et al. [24] introduced a performance debug-
ging approach that relies on system call tracing. Unlike
this prior work, NetCheck does not assume synchronized
clocks and reconstructs a plausible global ordering.

Ordering events in a distributed setting. The
happens-before relation logically orders events in a dis-
tributed system [28]. This relation can be realized with
vector time, which produces a partial ordering of events
in the system [18, 31]. Vector time requires non-trivial
instrumentation of the application. NetCheck recon-
structs a plausible order of the captured syscalls through
heuristics, without modifying the application.

Globally synchronized clocks can order events across
hosts. However, over 90% of syscall invocations we ob-
served completed in less than 0.1 ms. Achieving syn-
chronization at a granularity that is sufficient to order
syscalls at hosts on a LAN is expensive and difficult.

Log mining. Prior work that uses dynamically cap-
tured logs of a program’s execution is extensive and in-
cludes work on detecting anomalies [12, 22, 52, 30],
linking logs and source code [55], identifying perfor-
mance bugs [40, 44], and generating models to support
system understanding [7, 6]. In contrast to this work,
NetCheck’s focus is on diagnosing network issues from
logs of syscalls, though prior work on log mining can be
used to expand the scope of NetCheck.

Debugging distributed systems. Techniques for de-
bugging distributed systems are relevant to NetCheck’s
context of diagnosing network issues in applications.
Many tools exist for run-time checking of distributed
systems. These tools monitor a system’s execution and
check for specific property violations [37, 20, 29, 54, 14].
NetCheck is a more light-weight approach to diagnose
issue observed through the syscall interface. This makes
NetCheck broadly applicable, but it also limits the kinds
of issues that NetCheck can uncover (see Section 7).

Specification and runtime verification. Substantial
work has been done in validating API and protocol be-
haviors, e.g., finding faults in Linux TCP implementa-
tion [32], SSH2 and RCP [46], BGP configuration [17],
and identifying network vulnerabilities [38]. Rigorously

specifying protocols and APIs for testing and trace vali-
dation has also been described in [9]. These techniques
are effective at finding bugs in an API or a protocol, but
are not effective when the environment and networking
semantic are also contributing factors. NetCheck can di-
agnose issues even if the input traces are valid API ac-
tions. Further, the simplicity of the NetCheck approach
is one of its key advantages over prior work.

Application-specific fault detection. Pip [37] and
Coctail [53] are distributed frameworks that enable de-
velopers to construct application-specific models, which
have proven effective at finding detailed application
flaws. However, to utilize these methods, a knowl-
edge of the nature of the failures needs to be ac-
quired, and the specific system properties must be spec-
ified. NetCheck diagnoses application failures without
application-specific models. Khanna [25] identifies the
source of failures using a rule base of allowed state tran-
sition paths. However, it requires specialized human-
generated rules for each application.

9 Conclusion
This work proposes NetCheck, a tool for fault detection
and diagnosis in networked applications. NetCheck is
a blackbox technique that performs its diagnosis on an
input set of traces of syscall invocations from multiple
application hosts. NetCheck derives a plausible global
ordering as a proxy for the ground truth, and uses a model
of expected and simple network behavior to identify and
diagnose unexpected behavior.

Our evaluation demonstrates that NetCheck is accu-
rate and efficient. It correctly diagnosed over 95% of
faults from traces that reproduce faults reported on bug
trackers of 30 popular open-source projects. When ap-
plied to injected faults in a testbed, NetCheck identi-
fied the main cause in 90% of the cases. Furthermore,
we used NetCheck to diagnose issues in large applica-
tions, such as Skype and VirtualBox, and in VirtualBox
NetCheck found a new bug. We proved that NetCheck’s
algorithm derives a plausible global ordering in best-case
linear running time and that it is efficient in practice.

Our experience with NetCheck demonstrates that it is
possible to have an application-agnostic tool that pro-
vides practical and accurate fault diagnosis. NetCheck
is freely available for download [33].

Acknowledgements
We thank our shepherd Dejan Kostic, Ulrike Stege for dis-
cussing ordering algorithms with us, and our reviewers for
their invaluable feedback. This work was supported in part by
the National Science Foundation through Awards 1223588 and
1205415, NSF Graduate Research Fellowship Award 1104522,
the NYU WIRELESS research center and the Center for Ad-
vanced Technology in Telecommunications (CATT).

12



References
[1] accept. Accessed 2/28/2014, http://pubs.opengroup.org/

onlinepubs/009695399/functions/accept.html.

[2] add SOCK_NONBLOCK and SOCK_CLOEXEC to socket
module. Accessed 2/28/2014, http://bugs.python.org/
issue7523.

[3] AGGARWAL, B., BHAGWAN, R., DAS, T., ESWARAN, S., PAD-
MANABHAN, V. N., AND VOELKER, G. M. Netprints: diagnos-
ing home network misconfigurations using shared knowledge. In
NSDI (2009).

[4] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. In SOSP (2003).

[5] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using magpie for request extraction and workload modelling. In
OSDI (2004).

[6] BESCHASTNIKH, I., BRUN, Y., ERNST, M. D., AND KRISHNA-
MURTHY, A. Inferring Models of Networked Systems from Logs
of their Behavior with CSight. In ICSE (2014).

[7] BESCHASTNIKH, I., BRUN, Y., SCHNEIDER, S., SLOAN, M.,
AND ERNST, M. D. Leveraging existing instrumentation to au-
tomatically infer invariant-constrained models. In FSE (2011).

[8] Biggest mistake for IPv6: It’s not backwards compat-
ible, developers admit. Accessed 2/28/2014, http:
//www.networkworld.com/news/2009/032509-ipv6-
mistake.html.

[9] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P.,
SMITH, M., AND WANSBROUGH, K. Rigorous specification and
conformance testing techniques for network protocols, as applied
to TCP, UDP, and sockets. In SIGCOMM (2005).

[10] Cannot interrupt blocking I/O calls with close(). Ac-
cessed 2/28/2014, http://gcc.gnu.org/bugzilla/show_
bug.cgi?id=15430.

[11] CHEN, K.-T., HUANG, C.-Y., HUANG, P., AND LEI, C.-L.
Quantifying skype user satisfaction. In ACM SIGCOMM Com-
puter Communication Review (2006), vol. 36, ACM, pp. 399–
410.

[12] CHEN, M., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem determination in large, dynamic
internet services. In DSN (2002).

[13] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND
CHASE, J. Correlating instrumentation data to system states: A
building block for automated diagnosis and control. In OSDI
(2004).

[14] DAO, D., ALBRECHT, J., KILLIAN, C., AND VAHDAT, A. Live
debugging of distributed systems. In Compiler Construction
(2009), Springer, pp. 94–108.

[15] Fallacies of distributed computing. Accessed 2/28/2014,
http://en.wikipedia.org/wiki/Fallacies_of_
Distributed_Computing.

[16] Deutsch’s fallacies, 10 years after. Accessed 2/28/2014, http:
//java.sys-con.com/node/38665.

[17] FEAMSTER, N., AND BALAKRISHNAN, H. Detecting BGP con-
figuration faults with static analysis. In NSDI (2005).

[18] FIDGE, C. J. Timestamps in message-passing systems that pre-
serve the partial ordering. In 11th Australian Computer Science
Conference (1988).

[19] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-Trace: A pervasive network tracing framework. In
NSDI (2007).

[20] GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND
STOICA, I. Friday: Global comprehension for distributed replay.
In NSDI (2007).

[21] net.ipv6.bindv6only=1 breaks some buggy programs. Ac-
cessed 2/28/2014, http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=560238#54.

[22] JIANG, G., CHEN, H., UNGUREANU, C., AND YOSHIHIRA, K.
Multi-resolution abnormal trace detection using varied-length N-
grams and automata. In International Conference on Automatic
Computing (2005).

[23] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,
PADHYE, J., AND BAHL, P. Detailed diagnosis in enterprise
networks. ACM SIGCOMM Computer Communication Review
39, 4 (2009), 243–254.

[24] KHADKE, N., KASICK, M. P., KAVULYA, S. P., TAN, J., AND
NARASIMHAN, P. Transparent system call based performance
debugging for cloud computing. In Workshop on Managing Sys-
tems Automatically and Dynamically (MAD) (2012).

[25] KHANNA, G., CHENG, M., VARADHARAJAN, P., BAGCHI, S.,
CORREIA, M., AND VERÍSSIMO, P. Automated rule-based di-
agnosis through a distributed monitor system. IEEE Transactions
on Dependable and Secure Computing 4, 4 (2007).

[26] KNOWLES, S. IESG advice from experience with path MTU
discovery. RFC, Internet Engineering Task Force, 1993.

[27] KOSKINEN, E., AND JANNOTTI, J. Borderpatrol: isolating
events for black-box tracing. In Eurosys (2008).

[28] LAMPORT, L. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM 21, 7 (1978), 558–
565.

[29] LIU, X., GUO, Z., WANG, X., CHEN, F., LIAN, X., TANG, J.,
WU, M., KAASHOEK, M. F., AND ZHANG, Z. D3S: Debugging
deployed distributed systems. In NSDI (2008).

[30] LOU, J.-G., FU, Q., YANG, S., XU, Y., AND LI, J. Mining
invariants from console logs for system problem detection. ATC
(2010).

[31] MATTERN, F. Virtual time and global states of distributed sys-
tems. Parallel and Distributed Algorithms 1, 23 (1989), 215–226.

[32] MUSUVATHI, M., AND ENGLER, D. R. Model checking large
network protocol implementations. In NSDI (2004).

[33] NetCheck. Accessed 2/28/2014, https://netcheck.poly.
edu/.

[34] On Mac / BSD sockets returned by accept inherit the parent’s
FD flags. Accessed 2/28/2014, http://bugs.python.org/
issue7995.

[35] Posix-omni-parser. Accessed 2/28/2014, https://github.
com/ssavvides/posix-omni-parser.

[36] Prevent socket hijacking on OSes that don’t prevent it by default
(Windows). Accessed 2/28/2014, https://tahoe-lafs.org/
trac/tahoe-lafs/ticket/870.

[37] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. In NSDI (2006).

[38] RITCHEY, R., AND AMMANN, P. Using model checking to ana-
lyze network vulnerabilities. In Security and Privacy (2000).

[39] ROTEM-GAL-OZ, A. Fallacies of distributed computing ex-
plained. Accessed 2/28/2014, URL http://www. rgoarchitects.
com/Files/fallacies. pdf (2006).

[40] SAMBASIVAN, R. R., ZHENG, A. X., DE ROSA, M., KREVAT,
E., WHITMAN, S., STROUCKEN, M., WANG, W., XU, L., AND
GANGER, G. R. Diagnosing performance changes by comparing
request flows. In NSDI (2011).

13

http://pubs.opengroup.org/onlinepubs/009695399/functions/accept.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/accept.html
http://bugs.python.org/issue7523
http://bugs.python.org/issue7523
http://www.networkworld.com/news/2009/032509-ipv6-mistake.html
http://www.networkworld.com/news/2009/032509-ipv6-mistake.html
http://www.networkworld.com/news/2009/032509-ipv6-mistake.html
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=15430
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=15430
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://java.sys-con.com/node/38665
http://java.sys-con.com/node/38665
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=560238#54
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=560238#54
https://netcheck.poly.edu/
https://netcheck.poly.edu/
http://bugs.python.org/issue7995
http://bugs.python.org/issue7995
https://github.com/ssavvides/posix-omni-parser
https://github.com/ssavvides/posix-omni-parser
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/870
https://tahoe-lafs.org/trac/tahoe-lafs/ticket/870


[41] Security: SO_EXCLUSIVEADDRUSE should be enabled when
binding to ports on Windows. Accessed 2/28/2014, http://
twistedmatrix.com/trac/ticket/4195.

[42] SO_REUSEADDR broken on Windows. Accessed 2/28/2014,
http://bugs.sun.com/bugdatabase/viewc_bug.do?
bug_id=4476378.

[43] SO_REUSEADDR doesn’t have the same semantics on Windows
as on Unix. Accessed 2/28/2014, http://bugs.python.org/
issue2550.

[44] SUBHLOK, J., AND XU, Q. Automatic construction of coordi-
nated performance skeletons. In IPDPS (2008).

[45] TCPSocket readline doesn’t raise if the socket is close’d in an-
other thread. Accessed 2/28/2014, http://bugs.ruby-lang.
org/issues/4390.

[46] UDREA, O., LUMEZANU, C., AND FOSTER, J. Rule-based
static analysis of network protocol implementations. Information
and Computation 206, 2 (2008), 130–157.

[47] Using SO_REUSEADDR and SO_EXCLUSIVEADDRUSE.
Accessed 2/28/2014, http://msdn.microsoft.com/en-us/
library/ms740621%28VS.85%29.aspx.

[48] webrick: Ruby Standard Library Documentation. Ac-
cessed 2/28/2014, http://www.ruby-doc.org/stdlib-1.
9.3/libdoc/webrick/rdoc/index.html.

[49] When using NAT interface on Windows host, guest can’t receive
UDP datagrams larger than 8 KB. Accessed 2/28/2014, https:
//www.virtualbox.org/ticket/12136.

[50] Windows ntpd should secure UDP 123 with
SO_EXCLUSIVEADDRUSE. Accessed 2/28/2014, https:
//support.ntp.org/bugs/show_bug.cgi?id=1149.

[51] Wireless Implementation Testbed Laboratory (WITest) at NYU-
Poly. Accessed 2/28/2014, http://witestlab.poly.edu.

[52] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,
M. I. Detecting large-scale system problems by mining console
logs. In SOSP (2009).

[53] XUE, H., DAUTENHAHN, N., AND KING, S. Using replicated
execution for a more secure and reliable web browser. In NDSS
(2012).

[54] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. Crystalball: Predicting and preventing inconsistencies in de-
ployed distributed systems. In NSDI (2009).

[55] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND
PASUPATHY, S. Sherlog: error diagnosis by connecting clues
from run-time logs. In ASPLOS (2010).

[56] ZHUANG, Y., BESCHASTNIKH, I., AND CAPPOS, J. NetCheck
Test Cases: Input Traces and NetCheck Output. Tech. Rep. TR–
CSE–2013–03, NYU Poly, 2013.

14

http://twistedmatrix.com/trac/ticket/4195
http://twistedmatrix.com/trac/ticket/4195
http://bugs.sun.com/bugdatabase/viewc_bug.do?bug_id=4476378
http://bugs.sun.com/bugdatabase/viewc_bug.do?bug_id=4476378
http://bugs.python.org/issue2550
http://bugs.python.org/issue2550
http://bugs.ruby-lang.org/issues/4390
http://bugs.ruby-lang.org/issues/4390
http://msdn.microsoft.com/en-us/library/ms740621%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms740621%28VS.85%29.aspx
http://www.ruby-doc.org/stdlib-1.9.3/libdoc/webrick/rdoc/index.html
http://www.ruby-doc.org/stdlib-1.9.3/libdoc/webrick/rdoc/index.html
https://www.virtualbox.org/ticket/12136
https://www.virtualbox.org/ticket/12136
https://support.ntp.org/bugs/show_bug.cgi?id=1149
https://support.ntp.org/bugs/show_bug.cgi?id=1149
http://witestlab.poly.edu

	1 Introduction
	2 NetCheck Overview
	3 Challenges and Contributions
	4 NetCheck Design
	4.1 Ordering host traces
	4.2 Model-based syscall simulation
	4.3 Fault diagnoses engine

	5 Implementation
	6 Evaluation
	6.1 Diagnosing Bugs Reported in Bug Trackers
	6.2 Diagnosing Injected Bugs in a Testbed
	6.3 Bugs in Popular Applications
	6.4 Performance
	6.5 Ordering Heuristic Efficacy

	7 Limitations
	8 Related Work
	9 Conclusion

