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Abstract
Constraint-based techniques can solve challenging
problems arising from highly diverse applications.
This paper considers the problem of virtual data cen-
ter (VDC) allocation, an important, emerging chal-
lenge for modern data center operators. To solve this
problem, we introduce NETSOLVER, which is based
on the general-purpose constraint solver MONO-
SAT. NETSOLVER represents a major improvement
over existing approaches: it is sound, complete, and
scalable, providing support for end-to-end, multi-
path bandwidth guarantees across all the layers of
hosting infrastructure, from servers to top-of-rack
switches to aggregation switches to access routers.
NETSOLVER scales to realistic data center sizes and
VDC topologies, typically requiring just seconds to
allocate VDCs of 5–15 virtual machines to phys-
ical data centers with 1000+ servers, maintaining
this efficiency even when the data center is nearly
saturated. In many cases, NETSOLVER can allocate
150%−300% as many total VDCs to the same phys-
ical data center as previous methods. Essential to
our solution efficiency is our formulation of VDC
allocation using monotonic theories, illustrating the
practical value of the recently proposed SAT modulo
monotonic theories approach.

1 Introduction
Constraint-based techniques, such as SAT and SAT mod-
ulo theory (SMT) solvers, play a key role in state-of-the-
art approaches for solving challenging problems across a
wide range of applications (see, e.g., [Prasad et al., 2005;
Cadar et al., 2008; Rintanen, 2011]). In this work, we demon-
strate how virtual data center (VDC) allocation, a prominent
and increasingly important problem arising in the operation of
modern data centers, can be tackled using a high-performance
SMT solver, MONOSAT [Bayless et al., 2015]. Using a novel
approach for handling multi-commodity flow constraints, we
obtain substantial improvements in performance and function-
ality over previous VDC allocation techniques.

A VDC consists of multiple communicating virtual ma-
chines (VMs), each with individual server resource require-
ments (e.g., CPU or RAM), along with a virtual network of

ms1

s2

s3

2

Physical
Data Center ToR1 ToR2

AggSw2AggSw1

  1 core
2 GB[ ]  1 core

2 GB[ ]   1 core
2 GB[ ]

  1 core
2 GB[ ]

  2 core
4 GB[ ]  2 core

4 GB[ ]   2 core
4 GB[ ]

Virtual
Data Center

1 1 33

4 4 4

2

22

Figure 1: (Top) Example physical data center topology with three
physical servers, two top-of-rack (ToR) switches, and two aggrega-
tion switches (AggSw). Circled numbers on links denote available
bandwidth in Gbps. (Bottom) Example Hadoop VDC with one mas-
ter (m) and three slave VMs (s1-s3) with a required throughput of 2
Gbps between each slave and the master (shown in circles). Each VM
also requires a certain number of CPU cores and RAM. The problem
is to find an allocation of the VDC to the physical data center, for
example, as illustrated with the dashed lines. Note that s1 and m are
mapped to the same physical server, while the virtual link m – s2 is
allocated a multi-path route.

pair-wise bandwidth requirements between the VMs. The
VDC allocation problem is to find a valid allocation of VMs to
servers and links in the virtual network to links in the physical
network. A valid allocation satisfies the compute, memory,
and network bandwidth requirements of each VM across the
entire data center infrastructure, including servers, top-of-rack
(ToR) switches, and aggregation switches [Popa et al., 2012;
Lee et al., 2014]. Figure 1 shows a simple instance of the
VDC allocation problem and one solution.

The key insight to our approach is that VDC allocation
can be formulated in terms of monotonic theories, a recently
developed concept that lies at the heart of the SMT solver
MONOSAT [Bayless et al., 2015]. Exploiting this insight,
we constructed NETSOLVER, a virtual data center allocation
procedure that is scalable, sound, and complete, with support



Algorithm Complete Multi-path VDC Topology Data Center Topology

SecondNet [Guo et al., 2010] All All
Importance Sampling [Tantawi, 2012] All Tree
Oktopus [Ballani et al., 2011] Star All
VDCPlanner [Zhani et al., 2013] All All
HVC-ACE [Rost et al., 2015] X Hose All
VirtualRack [Huang et al., 2014] X Hose All
Z3-AR [Yuan et al., 2013] X All Tree
NETSOLVER (this work) X X All All

Table 1: Characteristics of sound VDC allocation algorithms from
the literature and the NETSOLVER approach introduced in this work.

for end-to-end, multi-path bandwidth guarantees across all
the layers of the networking infrastructure, from servers to
top-of-racks to aggregation switches to access routers.

NETSOLVER harnesses MONOSAT to solve our novel for-
mulation of the VDC allocation problem and efficiently allo-
cates VDCs with a dozen or more VMs to full-size physical
data centers (with 1000+ servers), typically in seconds per allo-
cation. In many cases, NETSOLVER can allocate 150%−300%
as many total VDCs to the same physical data center as state-
of-the-art heuristic methods, such as SecondNet’s VDCAlloc
algorithm [Guo et al., 2010], while offering the flexibility and
extensibility characteristics of a constraint-based approach.

2 Related Work
We now survey prior work with respect to features of VDC
allocation that are relevant to modern data centers. As can
be seen from Table 1, all prior approaches have important
limitations relative to the one we present here.
1. Soundness. Sound VDC allocation tools respect end-to-
end bandwidth guarantees, while unsound tools only attempt
to minimize data center network traffic without a guarantee
that VMs will have sufficient dedicated bandwidth. Examples
of unsound approaches to VDC allocation include [Meng et
al., 2010; Kakadia et al., 2013], which dynamically identify
VM communication patterns through network traffic analysis.

This prior work is in contrast to the approaches discussed
in this paper, all of which, including our contribution, NET-
SOLVER, are sound and assume that VDCs and their commu-
nication requirements are explicitly known to the allocator.
2. Completeness. Most VDC allocation tools that respect
bandwidth guarantees are incomplete: they can fail to find
feasible VDC allocations in cases where such allocations exist
(even when given unlimited runtime). Oktopus [Ballani et al.,
2011], VDCPlanner [Zhani et al., 2013], HVC-ACE [Rost et
al., 2015], and SecondNet [Guo et al., 2010] are examples of
incomplete allocation algorithms. For example, SecondNet’s
algorithm is greedy in that it maps VMs to servers before
checking for available paths, and allocates bandwidth one path
at a time; if either of these steps fail, it will fail to allocate the
VDC1.

In contrast, the constraint-solver-based approaches de-
scribed in [Yuan et al., 2013] and NETSOLVER are both com-
plete: they are guaranteed to (eventually) find a feasible al-
location if one exists. We will show in our experiments that
completeness does not merely represent a theoretical benefit,

1In fact, SecondNet will try this process several times on different
sub-sets of the data center before giving up.

but can translate into substantial gains in practical allocation
capability. NETSOLVER is the first sound and complete VDC
allocator that can be applied to any VDC and data center
topology without simplifying abstractions.
3. Multi-path allocations. Many data centers use multi-
path allocations to maximize bandwidth and to provide fault-
tolerance and load-balancing [Raiciu et al., 2011; Alizadeh et
al., 2014]. Lack of multi-path support in traditional L2/L3-
based networks was a primary motive for data center operators
to develop networking stacks with multi-path support [Vahdat,
2015]. There are now multiple efforts underway to eliminate
this restriction, which include using architectures specifically
designed for multi-path routing, e.g., BCube [Guo et al., 2009],
VL2 [Greenberg et al., 2009], and making the data center net-
working fabric itself multi-path [IETF, 2016].

Despite the increasing importance of multi-path routing, to
the best of our knowledge, there is only one previous VDC
allocator that supports multi-path communication between
VMs: HVC-ACE [Rost et al., 2015], a sound but incomplete
allocator that uses a hose-model for VDCs. There are also
several incomplete algorithms for virtual network embedding
that have support for multi-path allocation for smaller physical
networks with 50-150 servers [Yu et al., 2008; Chowdhury et
al., 2009; Cheng et al., 2011]. NETSOLVER is the first sound
and complete multi-path tool for VDC allocation.
4. Unrestricted topologies. Many VDC allocators simplify
the problem, either by abstracting VDC topologies into simpler
ones that are easier to allocate, or by restricting the physical
data center to simpler topologies. For example, the abstraction-
refinement encodings from [Yuan et al., 2013] only apply to
tree-topology data centers. Oktopus [Ballani et al., 2011] ab-
stracts VDCs into virtual clusters, which are VMs connected to
central virtual switch in a star topology. VirtualRack [Huang
et al., 2014] and HVC-ACE [Rost et al., 2015] use a less-
restricted hose-model [Duffield et al., 1999] abstraction for
VDCs. NETSOLVER is the first sound and complete VDC al-
location approach that supports arbitrary VDC and data center
topologies.

3 The Multi-path VDC Allocation Problem
The problem we consider in this work is defined as follows.
We are given the description of a physical network (PN) and
a virtual data center (VDC). The PN is specified through a
set of servers S, switches N , and a directed (or undirected)
graph (S ∪ N,L), with capacities c(u, v) for each link in
L. The VDC consists of a set of virtual machines VM and a
set R ⊆ VM × VM × Z+ of directed (or undirected) band-
width requirements between those machines. For each server
s ∈ S, we have CPU core, RAM, and storage capacity spec-
ifications, cpu(s), ram(s), storage(s), and for each virtual
machine v ∈ VM, we are given CPU core, RAM, and storage
requirements cpu(v), ram(v), storage(v).

The objective in the multi-path VDC allocation problem
is to find an assignment A : VM 7→ S of virtual machines
v ∈ VM to servers s ∈ S along with an assignment of non-
negative bandwidth Bu,v(l) to links l ∈ L for each band-
width requirement (u, v, b) ∈ R, satisfying the following
constraints:



• Local VM allocation constraints (L) ensure that each
virtual machine is assigned to exactly one server,
and that each server provides sufficient CPU core,
RAM, and storage resources to accommodate the re-
quirements of all VMs allocated to it: ∀s ∈ S :∑

V (s) cpu(v) ≤ cpu(s) ∧∑
V (s) ram(v) ≤ ram(s) ∧∑

V (s) storage(v) ≤ storage(s), where V (s) = {v ∈
VM | A(v) = s}. Resource requirements are modelled
using integer values, and VMs do not share resources.

• Global bandwidth allocation constraints (G) ensure
that sufficient bandwidth is available in the physical
network to satisfy all bandwidth requirements between
pairs of VMs. We formalise this by requiring that for
all (u, v, b) ∈ R, the assignments Bu,v(l) form a valid
A(u) − A(v) network flow no smaller than b, and that
none of the link capacities l in the physical network is
exceeded: ∀l ∈ L :

∑
(u,v,b)∈R Bu,v(l) ≤ c(l). Band-

widths are represented by integer values; bandwidth be-
tween VMs allocated on the same server is unlimited.

It has been previously observed [Gupta et al., 2001; Szeto
et al., 2003; Yu et al., 2008; Chowdhury et al., 2009] that
when allowing path-splitting, the global bandwidth alloca-
tion constraints give rise to a multi-commodity flow problem,
which is strongly NP-complete even for undirected integral
flows [Even et al., 1975]. Conversely, any multi-commodity
flow problem maps directly into bandwidth constraints, es-
tablishing the NP-hardness of the multi-path VDC allocation
problem [Chowdhury et al., 2009].

4 NETSOLVER

We will now show how multi-commodity integral flow prob-
lems can be encoded as a conjunction of maximum flow
constraints over graphs with symbolic edge weights. By
combining this encoding for the global constraints G with
a pseudo-Boolean encoding of the local constraints L, we
are able to tackle the full multi-path VDC allocation problem
using MONOSAT, a SAT modulo theory (SMT) solver that
extends quantifier-free first-order Boolean logic with highly
efficient, built-in support for a wide set of finite monotonic
predicates [Bayless et al., 2015].

Intuitively, a finite monotonic predicate is a predicate for
which increasing the value of its arguments can never change
the value of the predicate from true to false, e.g., adding links
to a network can only increase the connectedness of the net-
work. MONOSAT supports many common graph constraints,
such as reachability, shortest paths, minimum spanning trees,
and maximum flows. MONOSAT also supports a subset of the
theory of fixed-width bitvectors.

MONOSAT accepts formulas with one or more directed
symbolic graphs, each of which comprises a fixed set of nodes
and symbolic edges (u, v). Each edge has an integer capacity,
c(u, v), which may be either a constant or a variable (a fixed-
width bitvector). Finally, MONOSAT supports a number of
common graph predicates, of which only one is relevant here:
maxFlows,t,G ≥ f, where G is a directed graph, s and t are
nodes in G, and f is a constant integer or a bitvector term.
This predicate is TRUE iff the maximum s-t flow in G, under
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Figure 2: (a) Example symbolic graph, with variable capacities
c(u, v) on each edge. includes the capacity assigned to each edge,
as well as the flow along that edge. (b) A formula constraining the
graph. (c) A solution, assigning a flow and a capacity (f/c) to each
edge.

assignment to the edge capacities associated with G, is greater
or equal to f .

As an example, consider the directed graph G shown in
Figure 2a, with variable integer capacities c(u, v), and the
formula in Figure 2b. In this example, MONOSAT finds edge
capacities that satisfy the constraints and also produces a flow
satisfying the maximum flow predicate in Figure 2c.

In the remainder of this section, we will first describe how
we model integer-value multi-commodity flow in terms of the
built-in maximum flow predicates supported by MONOSAT;
then we will show how to use these multi-commodity flow
constraints to express VDC allocation.

4.1 Multi-Commodity Flow in MONOSAT

SMT solvers have not traditionally been applied to large multi-
commodity flow problems; instead, such problems are usu-
ally solved using integer-arithmetic solvers, or are approx-
imated using linear programming. MONOSAT is different
from other SMT solvers in that it has built-in predicates for
(single-commodity) s-t maximum flow. While this does not
directly provide support for multi-commodity flows, we will
show that by expressing multi-commodity flows as a combina-
tion of single-commodity maximum flow predicates, we can
use MONOSAT to solve large multi-commodity flow problems
– a first for SMT solvers.

We consider this formulation of integer-value multi-
commodity flows in terms of maximum flow predicates to
be a key contribution of our work. While there are many obvi-
ous ways to encode multi-commodity flows in SMT solvers,
the one we present here is, to the best of our knowledge, the
only SMT encoding to scale to multi-commodity flow prob-
lems with thousands of nodes. As there are many applications
to which SMT solvers are better suited than ILP solvers (and
vice-versa), this SMT formulation has many potential applica-
tions beyond VDC allocation.

Given a directed graph G = (V,E), an integer capacity
c(u, v) for each edge (u, v) ∈ E, and a set of commod-
ity demands K, where a commodity demand i ∈ K is a
tuple (si, ti, di), representing an integer flow demand of di
between source si ∈ V and target ti ∈ V . The integral multi-
commodity flow problem is to find a feasible flow such that
each demand di is satisfied, while for each edge (u, v) the



total flow of all capacities (summed) is at most c(u, v):

fi(u, v) ≥ 0, ∀(u, v) ∈ E, i ∈ K∑
i∈K

fi(u, v) ≤ c(u, v), ∀(u, v) ∈ E

∑
v∈V

fi(u, v)−
∑
v∈V

fi(v, u) =


0, if u /∈ {si, ti}
d, if u = si
−d, if u = ti

,∀i ∈ K

We instantiate symbolic graphs G1..|K| with the same topol-
ogy as G. We set the capacities of each edge (u, v)i ∈ Gi

to a new integer variable, c(u, v)i, with constraint 0 ≤
c(u, v)i ≤ c(u, v). Next, we assert that the capacities in
each graph sum to no more than the original edge capacity:∑

i c(u, v)i ≤ c(u, v). Together, these constraints partition
the original capacity graph into K separate graphs, one for
each demand. To complete the encoding, for each commodity
demand (si, ti, di), we use MONOSAT’s built-in maximum
flow constraints to assert that the maximum si–ti flow in Gi

is at least di.

4.2 Encoding Multi-path VDC Allocation
The global constraints G (Section 3) can be encoded as
a multi-commodity flow as described above, with up to
|VM|2 commodity demands (one for each bandwidth tuple
(u, v, bandwidth) ∈ R).2 However, we can greatly improve
on this by merging bandwidth constraints that share a com-
mon source into a single commodity demand: Given a set
of bandwidth constraints (u, vi, bandwidthi) ∈ R with the
same source u, we can convert these into a single commod-
ity demand, by adding an extra node w 6∈ VM, along with
edges (vi, w) with capacity bandwidthi. The commodity de-
mands (u, vi, bandwidthi) can then be replaced by a single
commodity demand (u,w,

∑
i bandwidthi). As there are at

most |VM| distinct sources in R, this reduces the number of
demands from |VM|2 in the worst case to |VM| demands.3

In cases where the VDC is undirected, we improve on this
further by swapping sources and sinks in communication re-
quirements so as to maximize the number of requirements with
common sources. This can be done efficiently even for large
networks by finding an approximate minimum-cost vertex
cover of R (e.g., using the 2-opt approximation from [Bar-
Yehuda and Even, 1985].

We first construct an undirected graph of communication
requirements, with an undirected edge of weight (u, v) =
bandwidth for each bandwidth requirement and find an ap-
proximate minimum-cost vertex cover. Necessarily, each edge,
and hence each communication requirement, will have at least
one covering vertex. For each requirement (u, v, bandwidth),

2Note that in our approach, bandwidth values are required to be
integers, as we are restricted to finding integer maximum flows. In
practice, this is not a limitation, as data centers typically only offer a
small number of (integer-valued) bandwidth/CPU choices to clients.

3Converting a single-source, multi-destination flow problem into
a single-source, single-destination maximum flow problem is a well-
known transformation, and safely preserves the maximum possible
flow to each destination.

if v is a covering vertex and u is not, we replace the require-
ment with (v, u, bandwidth), swapping u and v. After swap-
ping all uncovered source vertices in this way, we then proceed
to merge requirements with common sources as above. For
cases where the VDC is directed, we skip this vertex-cover op-
timization and only merge together connection requirements
with the same (directed) source in the input description.

Given this set of commodity demands, we construct an
undirected (or directed) graph G consisting of the physi-
cal network (S ∪ N,L), and one node for each virtual ma-
chine in VM. If any VDC communication requirements
(u, vi, bandwidthi) have been merged into combined require-
ments (u,w,

∑
bandwidthi) as above, we add additional,

directed edges (vi, w) with capacity bandwidthi to G.
For each v ∈ VM and each server s ∈ S, we add a di-

rected symbolic edge evs from v to s with unlimited ca-
pacity to G; this edge controls the server to which each
VM is allocated. Next, we assert (using a cardinality con-
straint) that for each VM v, exactly one edge evs is en-
abled, so that the VM is allocated to exactly one server:
∀v ∈ VM :

∑
s evs = 1. Using the multi-commodity flow

encoding described above, we assert that the multi-commodity
flow in G satisfies (u, v, bandwidth) for each commodity re-
quirement.

The above constraints together enforce global constraints G;
to enforce local constraints L, we use pseudo-Boolean con-
straints (as described in [Eén and Sörensson, 2006]) to as-
sert:

∑
v cpu(v) ≤ cpu(s) ∧ ∑

v ram(v) ≤ ram(s) ∧∑
v storage(v) ≤ storage(s). To allow multiple different

VDC topologies to be allocated, the ‘assumption’ mecha-
nism [Eén and Sörensson, 2003] found in many SAT solvers,
including MONOSAT, can be used to dynamically restrict a
generic graph.

Note that these encodings are novel contributions and criti-
cal to NETSOLVER’s performance; however, they are empir-
ically efficient only because MONOSAT (unlike other SMT
solvers) has built-in support for graph constraints. As we show
next, carefully crafted encodings alone, such as the one devel-
oped in [Yuan et al., 2013], will not be competitive. Instead,
fundamental improvements in the constraint solver, such as
the ones we use in MONOSAT, are necessary.

5 Evaluation
We now present results from an extensive empirical eval-
uation demonstrating that our approach offers substantial
advantages compared to state-of-the-art methods for VDC
allocation. Specifically, we compare the performance of
NETSOLVER to that of SecondNet’s VDCAlloc [Guo et
al., 2010] — a seminal, sound VDC allocation algorithm
with end-to-end bandwidth guarantees — and the Z3-based
abstraction-refinement procedure from [Yuan et al., 2013],
which resembles our approach in that it makes use of an SMT
solver. In each experiment, the algorithms repeatedly allo-
cate VDCs to the data center until they are unable to make
further allocations (or until a 1 CPU hour timeout is reached).
This metric was also used in prior work [Guo et al., 2010;
Yuan et al., 2013] and is important in practice, as it captures
data center utilization.
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Figure 3: Total number of consecutive VDCs allocated by different algorithms and time required per allocation on various tree topologies from
[Yuan et al., 2013]. We report the median running time for allocating individual VDCs.

SecondNet’s VDCAlloc algorithm (‘SecondNet’, except
where ambiguous) is an incomplete, heuristic-driven algo-
rithm that can find VDC allocations for physical networks
with hundreds of thousands of servers. As SecondNet is based
on bipartite matching, it fundamentally cannot allocate more
than one VM in each VDC to any given server. Furthermore,
because it performs allocation in an incomplete, greedy fash-
ion, especially in heavily utilized networks, it can fail to find
an existing feasible allocation. As we will demonstrate, under
many realistic circumstances, this happens quite frequently,
leading to substantially lower data center utilization than can
be achieved with a complete method, such as NETSOLVER.

[Yuan et al., 2013] introduced two approaches for perform-
ing single-path VDC allocation with bandwidth guarantees
that use the general-purpose SMT solver Z3 [De Moura and
Bjørner, 2008]. Unlike the MONOSAT solver at the core
of NETSOLVER, Z3 has no built-in support for graph predi-
cates. Therefore, in order to use Z3 for VDC allocation, the
global bandwidth and connectivity constraints have to be ex-
pressed using a lower-level logical formulation. The first such
encoding presented by [Yuan et al., 2013] (which we call
Z3-generic) can handle any data center topology but scales
extremely poorly [Yuan et al., 2013]. The second approach
(which we call Z3-AR) makes use of an optimized abstraction-
refinement technique; while substantially more scalable than
the generic encoding, it is restricted to data centers with tree
topologies. In preliminary experiments (not reported here),
we confirmed that Z3-generic performed poorly, often fail-
ing to find any allocations within a 1-hour timeout on the
benchmarks used in our experiments.

Comparison on Trees from [Yuan et al., 2013] Our first
experiment reproduces and extends an experiment from [Yuan
et al., 2013], in which a series of identical VDCs is allocated
one-by-one to tree-structured data centers, until the solver is
unable to make further allocations (or a timeout of 1 CPU hour
is reached). We obtained the original implementation of Z3-
AR from the authors for this experiment, along with a version
of SecondNet they implemented with support for the tree-
structured data centers considered here. In this experiment,
the VDCs always have identical structure; this is a limitation
introduced here for compatibility with the solvers from [Yuan
et al., 2013]. In our subsequent experiments, below, we lift
this constraint. Except where noted, all experiments were run

on a machine with a 2.66GHz (12MB L3 cache) Intel x5650
processor, running Ubuntu 12.04 and limited to 16GB RAM.

Figure 3 summarizes our results, showing the total number
of consecutive VDCs allocated within 1 CPU hour. On the
left, we used the 200-server/4-cores-per-server physical data
center from [Yuan et al., 2013]. On the right, we considered
a larger data center with 2000 16-core servers. We note that,
although all three solvers perform similarly on the small tree-
structured data centers (with SecondNet, being heuristic and
incomplete, faster than NETSOLVER, and NETSOLVER faster
than Z3-AR), on the larger data center, NETSOLVER greatly
outperforms SecondNet and Z3-AR, often allocating two or
even three times as many VDCs on the same infrastructure.
Importantly, we see that NETSOLVER scales to thousands of
servers, with median per-instance allocation times of a few
seconds or less per VDC.

Comparison on BCube and FatTree from [Guo et al.,
2010] The second experiment we conducted is a direct com-
parison against the original SecondNet implementation (which
we also used for all comparisons reported later). Note that
the implementation of Z3-generic, and both the theory and
implementation of Z3-AR, are restricted to tree topologies, so
they could not be included in these experiments.

The SecondNet benchmark instances are extremely large —
in one case exceeding 100 000 servers — but also extremely
easy to allocate: the available bandwidth per link is typically
≥ 50× the requested communication bandwidths in the VDC,
so with only 16 cores per server, the bandwidth constraints
are mostly irrelevant. For such easy allocations, the fast, in-
complete approach that SecondNet uses is the better solution.
Accordingly, we scaled the SecondNet instances down to 432–
1024 servers, a realistic size for many real-world data cen-
ters. For these experiments, we generated sets of 10 VDCs
each of several sizes (6, 9, 12 and 15 VMs), following the
methodology described in [Yuan et al., 2013]. These VDCs
have proportionally greater bandwidth requirements than those
originally considered by SecondNet, requiring 5–10% of the
smallest link-level capacities. The resulting VDC instances
are large enough to be representative of many real-world use
cases, while also exhibiting non-trivial bandwidth constraints.
For each of these sets of VDCs, we then repeatedly allocated
instances (in random order) until the data center is saturated.

Figure 4a shows allocations made by SecondNet and NET-
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Figure 4: Total number of consecutive VDCs allocated by different algorithms and time required per allocation on two real sets of benchmarks:
(a) FatTree and BCube topologies from [Guo et al., 2010], and (b) commercial Data Center topologies. We report median running times for
allocating individual VDCs.

SOLVER on two data centers, one with a FatTree topology
with 432 servers (top), and one with a BCube topology with
512 servers (bottom). As in our previous experiment, Sec-
ondNet was much faster than NETSOLVER, but NETSOLVER
ran fast enough to be practical for data centers with hundreds
of servers, with typical allocation times of a few seconds
per VDC (however, in a minority of cases, NETSOLVER did
require tens or even hundreds of seconds for individual alloca-
tions). In many cases, NETSOLVER was able to allocate more
than twice as many VDCs as SecondNet on these data centers
— a substantial improvement in data center utilization.

Comparison on commercial networks The above compar-
isons consider how NETSOLVER compares to existing VDC
allocation tools on several artificial (but representative) net-
work topologies from the VDC literature. To address whether
there are real-world VDC applications where NETSOLVER
performs not only better than existing tools, but is also fast
enough to be used in practice, we also considered a deploy-
ment of a standard Hadoop virtual cluster, on a set of actual
data center topologies. We collaborated with the private cloud
provider ZeroStack Inc. to devise an optimal virtual Hadoop
cluster to run Terasort4. Each Hadoop virtual network consists
of a single master VM connected to 3–11 slave VMs.5 We con-
sidered 5 different VM sizes, ranging from 1 CPU and 1GB
RAM, to 8 CPUs and 16GB of RAM; for our experiments,
the slave VMs were selected at random from this set, with the
master VM also randomized but always at least as large as the
largest slave VM. The Hadoop master has tree connectivity

4The Sort Benchmark Committee: http://sortbenchmark.org/
5Many industrial VDCs have fewer than 15 VMs; e.g., [Bodı́k et

al., 2012] states that 80% of Bing services use fewer than 10 VMs.
NETSOLVER performs well with up to 30 VMs.

with all slaves, with either 1 or 2 Gbps links connecting the
master to each slave (like the VDC in Figure 1).

The physical data center topology was provided by another
company, which requested to remain anonymous. This com-
pany uses a private cloud deployed across four data centers
in two geographic availability zones (AZs): us-west and us-
middle. Each data center contains between 280 and 1200
servers, spread across 1 to 4 clusters with 14 and 40 racks.
Each server has 16 cores, 32 GB RAM, 20 Gbps network
bandwidth (via two 10 Gbps links). The network in each data
center has a leaf-spine topology, where all ToR switches con-
nect to two distinct aggregation switches over 40 Gbps links
each (a total of 2 links with 80 Gbps; one on each aggregation
switch) and aggregation switches are interconnected with four
40 Gbps links each. For each cluster, there is a gateway switch
with a 240 Gbps link connected to each aggregation switch.
All data centers use equal-cost multi-path (ECMP) to take
advantage of multiple paths.

A VDC is allocated inside one AZ: VMs in one VDC can
be split across two clusters in an AZ, but not across two AZs.
Figure 4b shows VDC allocation results per AZ.6 More gen-
erally, executing NETSOLVER on distinct physical network
units, such as an AZ, improves its scalability. This also works
well in practice, as modern data centers are modular by design.
For example, one of the largest data center operators in the
world, Facebook, designed its Altoona data center with over
100 000 servers using pods, with each pod containing fewer
than 1000 servers [Andreyev, 2014].

We applied SecondNet and NETSOLVER in this setting,
consecutively allocating Hadoop master-slave VDCs of several
sizes, ranging from 4 to 12 VMs, until no further allocations

6NETSOLVER is not limited to allocating to a single AZ and can
support multi-AZ allocation, assuming it is aware of the capacity of
each AZ, including inter-AZ network bandwidth.



could be made. Note that, in addition to using a realistic
physical topology, the CPU/memory, bandwidth values, and
the VDCs being allocated are all real-world VDCs derived
from real Hadoop jobs. By contrast, previous experiments
used artificial VDCs from the Z3-AR paper [Yuan et al., 2013].
Again, we could not run Z3-AR in this setting, as it is restricted
to tree-topology data centers.

In Figure 4b, we show the results for the largest of these
data centers (results for the smaller data centers were simi-
lar). As observed in our previous experiments, although Sec-
ondNet was much faster than NETSOLVER, NETSOLVER’s
per-instance allocation time was typically just a few seconds,
which is reasonable for long-running applications, such as
the Hadoop jobs considered here. Again, NETSOLVER was
able to allocate many more VDCs than SecondNet (here, 1.5–
2 times as many), across a range of data center and VDC
sizes, including a commercial data center with more than 1000
servers. Moreover, with increasing virtual network size, NET-
SOLVER was able to allocate many more virtual machines,
while respecting end-to-end bandwidth constraints. Often
NETSOLVER allocated several times as many VDCs as Sec-
ondNet, and in extreme cases, it found hundreds of allocations,
while SecondNet was unable to make any allocations (not
shown for brevity). Similarly, keeping the virtual network the
same size, but doubling the bandwidth requirements of each
virtual machine greatly decreased the number of allocations
made by SecondNet, while NETSOLVER showed considerably
more robust performance in these more congested settings.

Overall, NETSOLVER was not only able to find many more
allocations than SecondNet in this realistic setting, but NET-
SOLVER’s median allocation time, 1–30 CPU seconds, shows
that it can be practically useful in a real, commercial setting,
for data centers and VDCs of this size. This provides strong
evidence that NETSOLVER can find practical use in realistic
settings where large or bandwidth-hungry VDCs need to be al-
located. It also demonstrates the practical advantage of a (fast)
complete algorithm like NETSOLVER over a much faster but
incomplete algorithm like SecondNet: for bandwidth-heavy
VDCs, even with arbitrary running time, SecondNet’s VDCAl-
loc was unable to find the majority of the feasible allocations.

This generally reinforces our observations from our earlier
experiments with artificial topologies: NETSOLVER improves
greatly on state-of-the-art VDC allocation, for bandwidth-
constrained data centers with as many as 1000 servers.

Allocation Robustness In the above experiments, we
showed that across many conditions, NETSOLVER was able to
make many (often hundreds) more allocations than SecondNet
or Z3-AR. One may wonder whether these additional alloca-
tions are the result of NETSOLVER having a better ability to
solve challenging allocations quickly, or if NETSOLVER is
somehow making good allocation decisions early on that leave
more space for later VDC instances.

In the experiments where Z3-AR makes many fewer allo-
cations (Figure 3b), Z3-AR’s problem is excessively slow run
times, allocating only a handful of VDCs in data centers with
room for hundreds or thousands. In those cases, both NET-
SOLVER and SecondNet can both make hundreds of further

Figure 5: Additional VDC allocations made by NETSOLVER (red),
after SecondNet (blue) has allocated its maximum number of VDCs.
These experiments used the same VDCs and physical topologies as
in Figure 4a. In many cases, NETSOLVER allocated hundreds of
additional VDCs after SecondNet could not make further allocations.

allocations starting from where Z3-AR was cut off.
The robustness question is more apropos versus SecondNet.

We found conclusive evidence that good early allocations can-
not be entirely responsible for NETSOLVER’s performance, by
observing that NETSOLVER can continue to allocate VDCs in
cases where SecondNet can no longer make any further allo-
cations. We repeated the experiments from Figure 4a by first
using SecondNet to allocate as many VDCs as it can into the
data center. Then, starting from that already partially utilized
data center, we used NETSOLVER to allocate further VDCs.
The results of this experiment are shown in Figure 5. Simi-
larly to the earlier experiment, NETSOLVER can still allocate
hundreds of additional VDCs starting from SecondNet’s final
allocation.

6 Conclusions and Future Work
We introduced a new, SMT-based VDC allocation method,
NETSOLVER, for multi-path VDC allocation with end-to-end
bandwidth guarantees. NETSOLVER scales well to data centers
with 1000 or more servers, while substantially improving data
center utilization as compared to current methods. Notably,
we have demonstrated that in several realistic settings, NET-
SOLVER allocates 3 times as many virtual data centers as
previous approaches, with a runtime that is fast enough for
practical use.

NETSOLVER overcomes major limitations of current state-
of-the-art approaches for VDC allocation with hard bandwidth
guarantees: Unlike SecondNet, our approach is complete and,
as a result, is able to continue making allocations in bandwidth-
constrained networks; unlike the abstraction-refinement tech-
niques from [Yuan et al., 2013], NETSOLVER supports arbi-
trary data center topologies (as well as being much faster). Our
constraint-based approach represents the first complete VDC
allocation algorithm supporting multi-path bandwidth alloca-
tion for arbitrary network topologies – an important capability
in modern data centers.

Because NETSOLVER is built on-top of MONOSAT– a gen-
eral purpose SMT-solver with high-performance support for
graph constraints – it is easily extensible. For example, it can
handle additional VDC allocation constraints not supported by
other approaches, yet relevant in real-world scenarios, such as



maximization of data locality (VM affinity), minimization of
the total number of utilized servers and load balancing (hotspot
avoidance). While these constraints make VDC allocation sub-
stantially more challenging, preliminary results indicate that
our approach can still efficiently allocate VDCs with up to
10 VMs on real-world data centers (typical running times per
allocation are less than 1 CPU sec).

In future work, we will explore extensions to NETSOLVER
with these and other constraints. We will also apply NET-
SOLVER to the related problems of virtual network embedding
(VNE) [Belbekkouche et al., 2012; Fischer et al., 2013] and
network function virtualization (NFV) [Palkar et al., 2015;
Heorhiadi et al., 2016].

More broadly, we believe that the combination of network
flow constraints with state-of-the-art SMT solvers underlying
NETSOLVER is a promising approach for a variety of prob-
lem types. This combination may enable fast and flexible
algorithms that can benefit a broad range of applications.
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