Perfume Resource-aware model inference

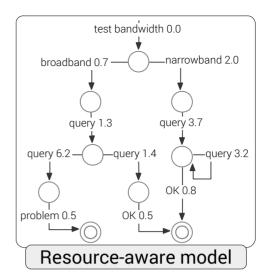
Tony Ohmann

University of Massachusetts, Amherst

Kevin Thai

Facebook Inc.

Ivan Beschastnikh


University of British Columbia

Yuriy Brun

University of Massachusetts, Amherst

```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"
```

Perfume

Console log

Perfume Resource-aware model inference

Tony Ohmann

Kevin Thai

Ivan Beschastnikh

Yuriy Brun

University of Massachusetts, Amherst

Facebook Inc.

University of British Columbia

University of Massachusetts, Amherst

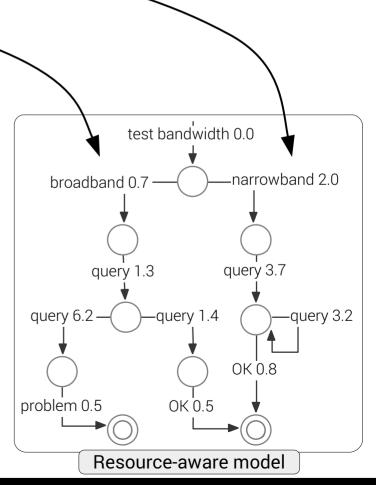
Motivation: system understanding

- A diagnostic system tests network connections
- A developer wants to understand: what causes the system to classify connections as problematic?
- The developer:
 - instruments the application
 - inspects the console log

Console log

- Complex
- Hard to parse
- Relevant information spread out

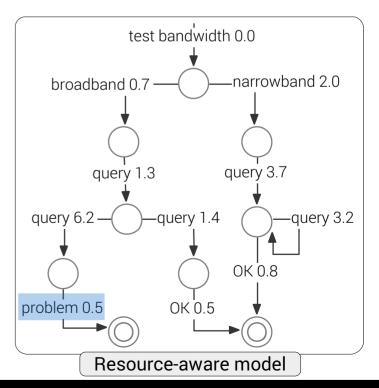
```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"
```


Console log

- Perfume model
 - separates types of behavior
 - broadband (left) and narrowband (right) separated

helps answer questions:

19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth" 210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth" 38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth" 95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth" 210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband" 38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband" 19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband" 210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query" 38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query" 95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband" 38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /guery" 38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK" 19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query" 95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query" 95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK" 210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query" 210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem" 19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query" 19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK" Console log


Perfume

- Perfume model
 - separates types of behavior
 - broadband (left) and narrowband (right) separated
 - visualizes problematic executions
 - helps answer questions:

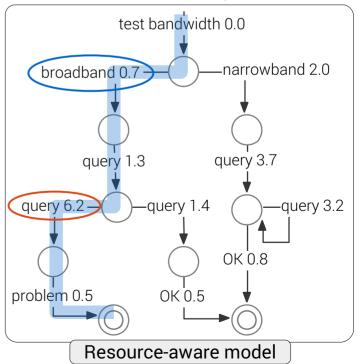
```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"
```




Console log

- Perfume model
 - separates types of behavior
 - broadband (left) and narrowband (right) separated
 - visualizes problematic executions
 - helps answer questions:

```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"
```



- Perfume model
 - separates types of behavior
 - broadband (left) and narrowband (right) separated
 - visualizes problematic executions
 - helps answer questions:
 - problem = broadband clients with slow second query

```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"
```


Perfume motivation

Console logs

- rich, low-level descriptions of system behavior
- massive, difficult to interpret

Our solution: summarize log with a resource-aware model

Previous model-inference work

- Biermann IEEETC1972
- Walkinshaw ASE2008
- Lorenzoli ICSE2008
- Beschastnikh FSE2011
- Fahland ASE2013
- Ghezzi ICSE2014

Perfume motivation

Console logs

- rich, low-level descriptions of system behavior
- massive, difficult to interpret

Our solution: summarize log with a resource-aware model

Previous model-inference work

- Biermann IEEETC1972
- Walkinshaw ASE2008
- Lorenzoli ICSE2008
- Beschastnikh FSE2011
- Fahland ASE2013
- Ghezzi ICSE2014

Our contribution:

Improve inference precision and utility with resource information

Key insight

Observations

- 1) behavior depends on resource usage

- caching
 timeouts
 network protocols
- 2) most runtime logs already contain resource usage data
- time
 bytes transferred
 power/memory/CPU usage

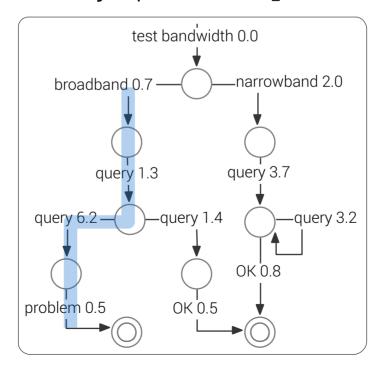
Key insight: Resource-aware inference ⇒ better models

Key challenges: model precision, conciseness, usability

Addressing inference challenges

1) Precise models

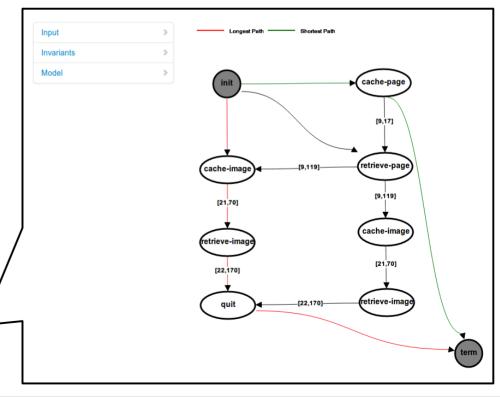
2) Concise models


3) Usable models

Addressing inference challenges

- 1) Precise models
 - model must satisfy observed resource-based properties
- 2) Concise models
 - start with minimal model
 - expand model only to satisfy observed properties
 - minimize resulting model
- 3) Usable models
 - interactive and query-able models
 - an easy-to-use, cloud-based web interface

Resource-based properties


- To ensure model precision:
 - 1) mine observed properties from logged executions
 - approximate system's true properties
 - 2) ensure no model path can violate observed properties
 - e.g., broadband always precedes problem in ≥ 8.7s

Evaluation summary

- 1) RQ1: Do resource-aware models increase system understanding?
 - user study: Perfume users 4-12% more correct, 5-12% faster
- 2) RQ2: Can Perfume model real network protocol behavior?
 - TCP case study: model revealed real TCP behavior
- 3) RQ3: Can **Perfume** model large-scale website behavior?
 - real estate website case study

Perfume model usability: http://bestchai.bitbucket.org/perfume

Small-scale user study

RQ1: Do resource-aware models increase system understanding?

• 13 users

- asked questions about 3 systems
- measured:
 - response correctness
 - response speed

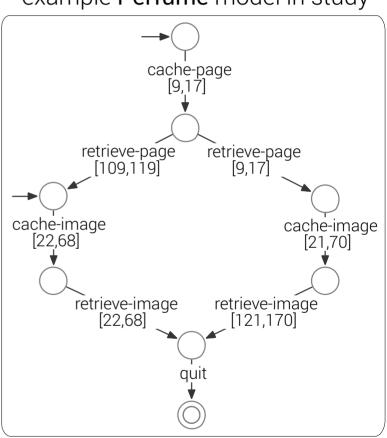
Compare Perfume to previous approaches

Small-scale user study

RQ1: Do resource-aware models increase system understanding?

- 13 users were shown:
 - 1) a console log,
 - 2) a console log + Synoptic¹ model, or
 - 3) a console log + Perfume model
- asked questions about 3 systems
- measured:
 - response correctness
 - response speed

Compare Perfume to previous approaches


¹ Beschastnikh FSE2011

Small-scale user study

RQ1: Do resource-aware models increase system understanding?

- 13 users were shown:
 - 1) a console log,
 - 2) a console log + Synoptic¹ model, or
 - 3) a console log + Perfume model
- asked questions about 3 systems
- measured:
 - response correctness
 - response speed

example Perfume model in study

Compare Perfume to previous approaches

¹ Beschastnikh FSE2011

User study results

- Participants using **Perfume**:
 - on average, answered more questions correctly

Questions answered correctly

	Log	Log+Synoptic	Log+Perfume
RADIUS ¹ protocol	62.5%	70.8%	81.7%
Caching web browser	77.8%	80.6%	60.0%
Connection tester	78.3%	83.3%	97.2%
Average	72.4%	78.0%	81.4%

¹ Rigney, RFC 2865, 2000

User study results

- Participants using Perfume:
 - on average, answered more questions correctly
 - on average, answered faster

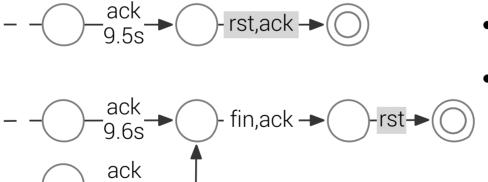
Questions answered correctly

	LUG	Logioynoptic	Log i citalic
RADIUS ¹ protocol	62.5%	70.8%	81.7%
Caching web browser	77.8%	80.6%	60.0%
Connection tester	78.3%	83.3%	97.2%
Average	72.4%	78.0%	81.4%

Log+Synontic Log+Perfume

Time to answer questions for one system (minutes)

	Log	Log+Synoptic	Log+Perfume
RADIUS protocol	11.5	13.0	9.1
Caching web browser	21.5	8.7	10.5
Connection tester	7.3	13.5	16.6
Average	13.0	11.9	11.4


¹ Rigney, RFC 2865, 2000

On average, Perfume models supported 4% more correct, 5% faster comprehension

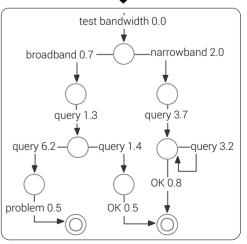
Case study: TCP

RQ2: Can Perfume model real network protocol behavior?

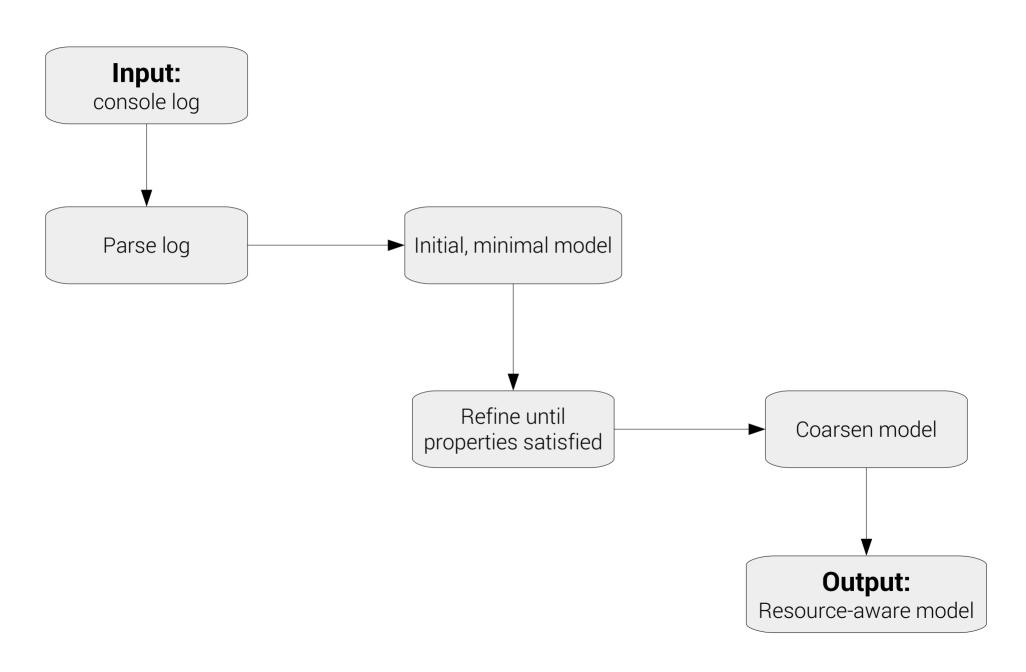
- Perfume-inferred model of web browser TCP traffic illustrated:
 - 1) Timeouts
 - 2) Buffer pushes (psh packets)
 - 3) Connection resets (rst packets)

- server events shaded
- slow $ack \Rightarrow$ server rst

Actual TCP properties visible without prior TCP knowledge

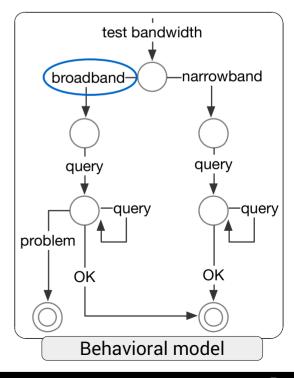

Contributions

- Defined resource-based system properties
- Developed a resource-aware inference algorithm
- Developed cloud-based user interface
- Evaluated Perfume in a small user study
 - 12% more correct, 12% faster than logs
 - 4% more correct, 5% faster than Synoptic
- Evaluated Perfume in two case studies
 - Revealed real TCP behavior
 - Revealed website navigation bug


http://cs.umass.edu/~ohmann/perfume

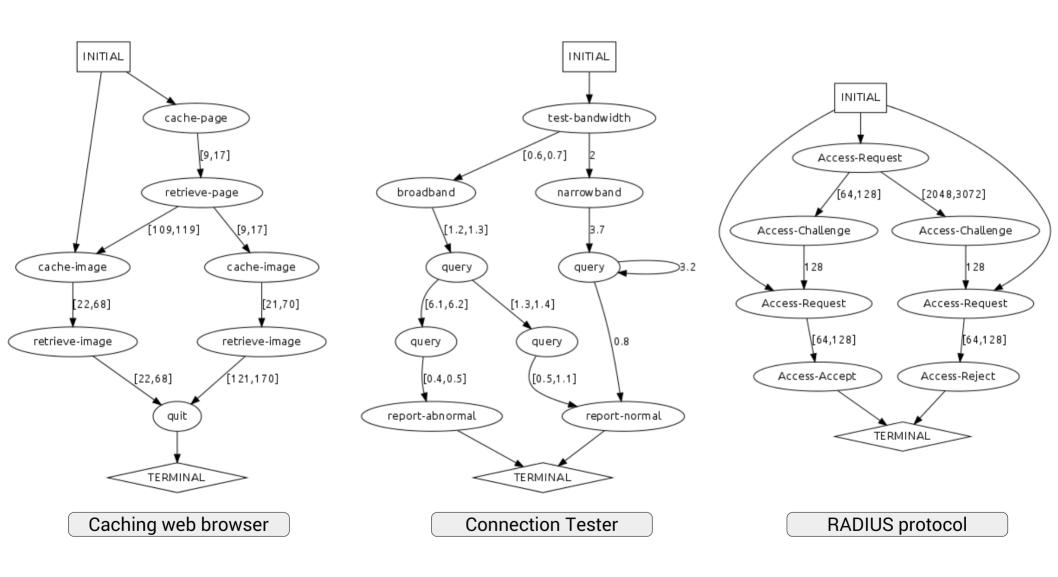
```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query'
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK
```

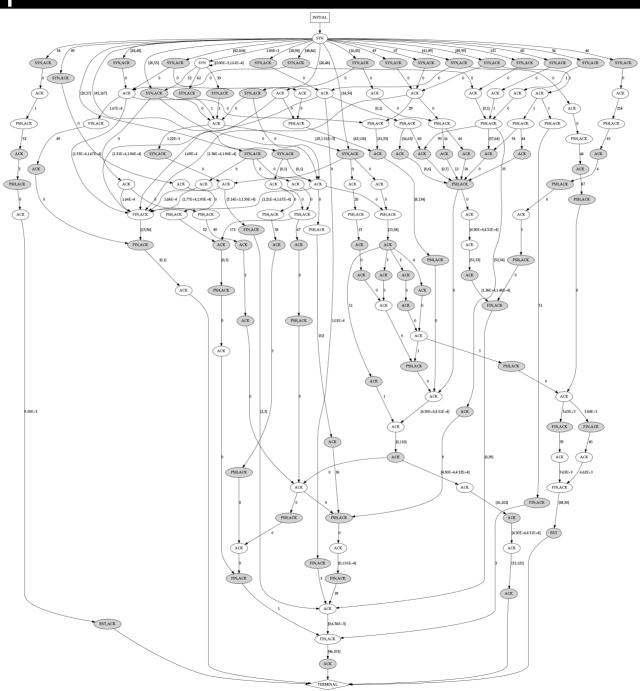

Backup: Approach



Backup: behavioral model

- "What type of clients experience problems?"
- Behavioral model
 - problems only in broadband clients


```
19.38.218.11 [31/May/2014:31200.0] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.1] "GET HTTP/1.1 /test bandwidth"
  38.151.1.182 [31/May/2014:31200.2] "GET HTTP/1.1 /test bandwidth"
   95.39.21.28 [31/May/2014:31200.3] "GET HTTP/1.1 /test bandwidth"
210.82.199.247 [31/May/2014:31200.8] "GET HTTP/1.1 /broadband"
  38.151.1.182 [31/May/2014:31200.9] "GET HTTP/1.1 /broadband"
  19.38.218.11 [31/May/2014:31202.0] "GET HTTP/1.1 /narrowband"
210.82.199.247 [31/May/2014:31202.1] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31202.2] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31202.3] "GET HTTP/1.1 /narrowband"
  38.151.1.182 [31/May/2014:31203.6] "GET HTTP/1.1 /query"
  38.151.1.182 [31/May/2014:31204.1] "GET HTTP/1.1 /OK"
  19.38.218.11 [31/May/2014:31205.7] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.0] "GET HTTP/1.1 /query"
   95.39.21.28 [31/May/2014:31206.8] "GET HTTP/1.1 /OK"
210.82.199.247 [31/May/2014:31208.3] "GET HTTP/1.1 /query"
210.82.199.247 [31/May/2014:31208.8] "GET HTTP/1.1 /problem"
  19.38.218.11 [31/May/2014:31208.9] "GET HTTP/1.1 /query"
  19.38.218.11 [31/May/2014:31209.7] "GET HTTP/1.1 /OK"
```

Console log

Backup: user study models

Backup: TCP model

Problem

Debugging

- consumes 50% of programmers' time¹
- costs \$300 billion annually¹
- bugs often caused by misunderstanding system behavior

Console logs

- rich but low-level description of system behavior
- massive, difficult to interpret
- our solution: summarize with a model

¹ T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Reversible Debugging Software. Technical report, University of Cambridge, Judge Business School, 2013.

Goals

- 1) Predictive models
 - predict unobserved executions
- 2) Precise models
 - predicted executions are likely to be possible
- 3) Concise models
 - human-readable
 - generalizing

Addressing goals

- 1) Predictive models
 - allow observed executions to form unobserved paths
- 2) Precise models
 - resourced-based properties
- 3) Concise models
 - combine model states unless property is violated