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https://bitbucket.org/bestchai/dinv

https://bitbucket.org/bestchai/dinv
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Distributed Systems are pervasive

● Graph processing
● Stream processing
● Distributed databases
● Failure detectors
● Cluster schedulers
● Version control
● ML frameworks
● Blockchains
● KV stores
● ...



Distributed Systems are Notoriously Difficult to Build

● Concurrency
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● No Centralized Clock

● Partial Failure

● Network Variance



Today’s state of the art (building robust dist. sys)

Verification - [ (verification) IronFleet SOSP’15, VerdiPLDI’15, Chapar POPL’16, 

(modeling), Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

Bug Detection - [MODIST NSDI’09, Demi NSDI’16,]

Runtime Checkers - [ D3S NSDI’18, ]
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Tracing - [PivotTracing SOSP’15, XTrace NSDI’07, Dapper TR’10, ]

Log Analysis - [ShiViz CACM ‘16]
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Tracing - [PivotTracing SOSP’15, XTrace NSDI’07, Dapper TR’10, ]
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←Require Specifications 



Little work has been done to infer distributed specs

Some notable exceptions

● CSight ICSE’14
○ Communicatin finite state machines

● Avenger SRDS’11
○ Requires enormous manual effort

● Udon ICSE’15
○ Requires shared state

None of these can capture stateful properties 
like:

● Partitioned  Key Space (Memcached):  
○ ∀nodes i,j keys_i != keys_j

● Strong Leadership (raft) 
○ ∀followers i length(log_leader) >= 

length(log_follower_i)
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Design goal: handle real distributed systems 

Wanted: distributed state invariants

Make the fewest assumptions about the 
system as possible.

● N nodes
● Message passing
● Lossy, reorderable channels
● Joins and failures

8



Goal: Infer key correctness and safety properties

Key Partitioning:

∀nodes i, j keys_i != keys_j

Mutual exclusion:

∀nodes i,j InCritical_i 

→¬InCritical_j 
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“Distributed State”



Goal: Infer key correctness and safety properties

Running Example
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Key Partitioning:

∀nodes i, j keys_i != keys_j

Mutual exclusion:

∀nodes i,j InCritical_i 

→¬InCritical_j 

“Distributed State”



● Automatic distributed invariant inference (techniques & challenges)
● Runtime checking: distributed assertions
● Evaluation: 4 large scale distributed systems

This talk: distributed invariants and Dinv

Static Analysis Dynamic Analysis
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Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection
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Consistent Cuts / Ground States

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection
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Consistent Cuts / Ground States
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● Fast Forward
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● Fast Forward.
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Consistent Cuts / Ground States
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● Fast Forward……..



Consistent Cuts / Ground States
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● Green lines mark consistent cuts
○ No messages are in flight
○ Message sent but not received

● The red line is not a consistent cut 
○ The ping sent by Node 0 happened 

before the pings receipt on node 1.



Consistent Cuts / Ground States
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● Huge number of consistent cuts



Consistent Cuts / Ground States
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● Huge number of consistent cuts
● Require sampling heuristic
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Consistent Cuts / Ground States
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● Huge number of consistent cuts
● Require sampling heuristic
● Ground States: A consistent cut 

with no in flight messages
● Dramatically collapses search 

space

Ground State sampling used 
exclusively in evaluation



Reasoning About Global State: State Bucketing
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Reasoning About Global State: State Bucketing



Node_3_InCritical == True
Node_2_InCritical != Node_3_InCritical
Node_2_InCritical == Node_1_InCritical
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Reasoning About Global State: State Bucketing

...

“Likely” Invariants



Distributed Asserts

● Distributed asserts enforce 
invariants at runtime
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Evaluated Systems

Etcd: Key-Value store running Raft - 120K LOC

Serf: large scale gossiping failure detector - 6.3K LOC

Taipei-Torrent: Torrent engine written in Go - 5.8K 
LOC

Groupcache: Memcached written in Go - 1.7K LOC 56



Etcd ~ 120K Lines of Code
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System and Targeted property Dinv-inferred invariant Description

Raft
Strong Leader principle

∀ follower i, len(leader log) ≥ len(i’s 
log)

All appended log entries must be propagated 
by the leader

Raft
Log matching

∀ nodes i, j if i-log[c] = j-log[c] → ∀(x ≤ 
c), i-log[x] = j-log[x]

If two logs contain an entry with the same index 
and term, then the logs are identical on all previous 
entries.

Raft
Leader agreement

If ∃ node i, s.t i leader, than ∀ j ≠ i, j 
follower

If a leader exists, then all other nodes are 
followers.

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al
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followers.

Injected Bugs for each invariant caught with assertions

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al

See the paper for full system evaluation



Limitations and future work

Future work

● Extend analysis to temporal invariants
● Bug Isolation
● Distributed test case generation
● Mutation testing/analysis based on mined invariants

60

Limitations

● Dinv’s dynamic analysis is incomplete
● Ground state sampling is poor on loosely coupled systems
● Large number of generated invariants



Dinv: Contributions
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Repo: https://bitbucket.org/bestchai/dinv

Demo: https://www.youtube.com/watch?v=n9fH9ABJ6S4

● Automatic distributed state invariant inference
○ Static identification of distributed state
○ Automatic static instrumentation 
○ Post-execution merging of distributed states

● Runtime checking: distributed assertions

Analysis for distributed Go systems

∀nodes InCritical <= 1

https://bitbucket.org/bestchai/dinv
https://www.youtube.com/watch?v=n9fH9ABJ6S4

