Inferring and Asserting
Distributed System Invariants

Stewart Grant®, Hendrik Cech’, lvan Beschastnikh?
University of British Columbia®, University of Bamberg®

https://bitbucket.org/bestchai/dinv

Distributed Systems are pervasive

y 5N
Graph processing j
Stream processing & ‘ m

Distributed databases

Failure detectors Serf Sp Qr K
Cluster schedulers lERbED
Version control Sl T ' @
ML frameworks goR g

Blockchains e

HBFISE

KV stores .
Q) git

Distributed Systems are Notoriously Difficult to Build

e Concurrency
e No Centralized Clock

e Partial Failure
e Network Variance

Teme
danmus
300 3.00, 3:05
D 3 D “
3.00, 3100 .25 -10
i o
11 K] 11 T1 ok
326 2:50 3% 250 a0 305
w] fe)
Latencies to Bell Canada (AS577) via Level 3
06 Nov 2017
500
70
g
g
gl
e
g
s
&

Today’s state of the art (building robust dist. sys)

Verification - [(verification) IronFleet SOSP™5, VerdiPLDI"15, Chapar POPL'6,

(modeling), Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

Bug Detection - [MoDIST NSDI'09, Demi NSDI"16,]

Runtime Checkers - [b3s NsDIs,]

Tracing - [PivotTracing SOSP’15, XTrace NSDI'07, Dapper TR’10,]

Log Analysis - [shivizcacm ‘16]

Today’s state of the art (building robust dist. sys)

Verification - [(verification) IronFleet SOSP™5, VerdiPLDI"15, Chapar POPL'6,

(modeling), Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]
B i 06 Domt NSD! “Reqy;i
ug Detection - [MoDIST NSDI'09, Demi NSDI"16,] qure Spe
Cificat:
. d
Runtime Checkers - [b3s NsDI"s8,] tIOnS

Tracing - [PivotTracing SOSP’15, XTrace NSDI'07, Dapper TR’10,]

Log Analysis - [shivizcacm ‘16]

Little work has been done to infer distributed specs

Some notable exceptions None of these can capture stateful properties

like:
e CSight ICSE4

o Communicatin finite state machines @ Partitioned Key Space (Memcached):

e Avenger SRDS11 o Vnodes i,j keys i != keys j
o Requires enormous manual effort e Strong Leadership (raft)

e Udon ICSEM5 o Vfollowers i length(log leader) >=
o Requires shared state length(log follower i)

Design goal: handle real distributed systems

Wanted: distributed state invariants

Make the fewest assumptions about the
system as possible.

4

g Serf

N nodes

Message passing

Lossy, reorderable channels
Joins and failures

Goal: Infer key correctness and safety properties

Mutual exclusion:

Vnodes i,j InCritical i

—=InCritical j
InCritical
Get Lock

@ Ping @

Key Partitioning:

V nodes i, j keys_i = keys_j

Client

Get - 101

Keys[0:49] Keys[50:99] Keys[100:149]

Goal: Infer key correctness and safety properties

Mutual exclusion: Key Partitioning:

Vnodes i,j InCritical 3J V nodes i, jkeys il=keys j

—=InCritical j
InCritical
“Distributed State”

Get Lock

@ Ping @ Keys[0:49] Keys[50:99] Keys[100:149]

Client

Get - 101

10

Goal: Infer key correctness and safety properties

Mutual exclusion: Key Partitioning:

Vnodes i,j InCritical i V nodes i, jkeys il=keys j

“Distributed State”

Get - 101

Keys[0:49] Keys[50:99] Keys[100:149]

"

This talk: distributed invariants and Dinv

e Automatic distributed invariant inference (techniques & challenges)
e Runtime checking: distributed assertions
e FEvaluation: 4 large scale distributed systems

fopart | | Runtime invariant assertions |—— Detected
Go code : l ; : Invariants
Network usage | _ }Ic_acto_r clock : System ‘ ' | Global state | _ GIoba} state | Daikon
detector injection : execution ' | extraction grouping !
|] 1
Instrumentation ; System execution | Mining distributed state ' Detecting invariants

Static Analysis Dynamic Analysis -

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

recv(n) @ 1 recv(n) 1 recv(n) 1 recv(n)
=1 A Vs 2 =1 2 d=1 3
sum:=0 3 3 |83 sum =0
product := 1 4 product =1 4 =1 4 product =1
fori<=n{ 5 fori<=n{ 5 fori<=n{ |5 fori<=n{
sum :=sum + 1 6 6 6 sum :=sum + 1
product := product * i 7 product := product * i 7 = 7 product := product *
8 i=i+1 8 =i+1 |8 i=i+1
9 g } (9 }
10 [(10 10 send(sum)
11 // @ dump [|11 / @ dump 11 point = {[i,n,product],vclock}
112 send () 12 send (product) 12 Log(point)
13 send (product)
Developer adds dump Backward slice: code Variables appearing in Injected code to log
annotations at key affecting the sent the slice: i, n, -affecting vars

program points variable 3

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

1 recv(n) @ 1 recv(n) 1 recv 1 recv(n) é
2= 2 1= 2 = 2 =1 2
3 sum:=0 3 3 3 sum:=0
4 product ;=1 4 product =1 4 =1 4 product ;=1
5 fori<=n{ 5 fori<=n{ 5 fori<=n{ 5 fori<=n{
6 sum :=sum + 1 6 6 6 sum = sum + 1
7 product := product *i | §| 7 product := product * i 7 = 7 product := product *
8 i=i+1 8 i=i+1 8 =i+1 8 =i+1
9 } 9 } 9 9 }
10 send(sum 10 10 10 send(sum)
* 11 // @ dump 11 point = {[i,n,product],vclock}
12 send (product) 12 send (product) 12 Log(point)

13

send (product)

Developer adds dump Backward slice: code Variables appearing in Injected code to log
annotations at key affecting the sent the slice: i, n, -affecting vars
program points product variable

14

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

1 recv(n) 1 recv(n) 1 recv(n) recv(n)
2 i=1 20 =1 2yl @ =1
3 sum:=0 3 3 sum ;=0
4 product ;=1 4 product =1 4 product =1 product := 1
5 fori<=n{ 5 fori<=n{ 5 fori<=n{ 5 fori<=n{
6 sum :=sum + 1 6 6 sum = sum + 1
7 product := product *i | |7 product := product *i | §7 product := product * i 7 product := product *
8 i=i+1 8 i=i+1 8 i=i+1 8 =i+1
9 9 } 9 } 9 }
10 10 10 send(sum)

10 send(sum
11 // @ dump 11 point = {[i,n,product],vclock}
12 send (product) 12 send (product) 12 send (product) 12 Log(point)

13 send (product)

Developer adds dump Backward slice: code Variables appearing in
annotations at key affecting the sent the slice: i, n, product
program points product variable

Injected code to log
-affecting vars

15

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

1 recv(n) @ 1 recv(n) 1 recv(n) recv(n) @
2 =1 2 i=1 e 2 i=:1 @ =

3 sum:=0 3 3 sum :=0

4 product := 1 4 product =1 4 product :=1 product := 1

5 fori<=n{ 5 fori<=n{ 5 fori<=n{ fori<=n{

6 sum :=sum + 1 6 6 sum :=sum + 1

7 product := product * i 7 product := product * i 7. product := product * i product := product * i

8 =i+ 8 =i+ 8 i=i+1

9 } 9 } 9 }

10 send(sum 10 10
* — 11 // @ dump

12 send (product) 12 send (product) 12 send (product)

Developer adds dump ~ Backward slice: code Variables appearing in Injected code to log

annotations at key affecting the sent the slice: i, n, product product-affecting vars
program points product variable

16

Capturing Distributed State Automatically

1. Interprocedural Program Slicing Node 1 Node 2
2. Logging Code Injection ’

‘ Log Relevant
Variables

Capturing Distributed State Automatically

1. Interprocedural Program Slicing Node 1
2. Logging Code Injection
3. Vector Clock Injection

. Log Relevant
Variables

Send Message

O (Add vector clock) *

Node 2

18

Capturing Distributed State Automatically

1. Interprocedural Program Slicing Node 1 Node 2
2. Logging Code Injection
3. Vector Clock Injection

P;
Ing
. Log Relevant
Variables
O Send Message
(Add vector clock) v

O Receive Message
(Remove vector clock)

Capturing Distributed State Automatically

1. Interprocedural Program Slicing Node 1 Node 2
2. Logging Code Injection
3. Vector Clock Injection

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

20

Consistent Cuts / Ground States %" Node <

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Consistent Cuts / Ground States ~ °%®’ Node 2

e Fast Forward

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Consistent Cuts / Ground States ~ "°%®’ Node 2

e Fast Forward.

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Consistent Cuts / Ground States

e Fast Forward..

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Node 1 Node 2
K
D

24

Consistent Cuts / Ground States

e Fast Forward...

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Node 1

Node 2

25

Consistent Cuts / Ground States

e Fast Forward....

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Node 1 Node 2

26

Consistent Cuts / Ground States

e Fast Forward......

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Node 1

0
c

e

Node 2

27

Consistent Cuts / Ground States

e Fast Forward.......

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Node 1

O

C

?

O
(

\/

Pin 9

pCE

Node 2

28

Consistent Cuts / Ground States

e FastForward........

. Log Relevant
Variables

O Send Message
(Add vector clock)

O Receive Message
(Remove vector clock)

Node 1

0
c

e

Node 2

29

Consistent Cuts / Ground States

e Green lines mark consistent cuts
o No messages are in flight
o Message sent but not received

e The red line is not a consistent cut

o The ping sent by Node 0 happened
before the pings receipt on node 1.

Node 1

30

Consistent Cuts / Ground States

e Huge number of consistent cuts

31

Consistent Cuts / Ground States

e Huge number of consistent cuts
e Require sampling heuristic

32

Consistent Cuts / Ground States

e Huge number of consistent cuts

e Require sampling heuristic

e Ground States: A consistent cut
with no in flight messages

33

Consistent Cuts / Ground States

e Huge number of consistent cuts

e Require sampling heuristic

e Ground States: A consistent cut
with no in flight messages

e Dramatically collapses search
space

34

Consistent Cuts / Ground States

e Huge number of consistent cuts

e Require sampling heuristic

e Ground States: A consistent cut
with no in flight messages

e Dramatically collapses search
space

Ground State sampling used
exclusively in evaluation

Node 1

35

Reasoning About Global State: State Bucketing

Execution 1

Node 1

¢&’

Get LOCk
?\

=

Node 2 Node 3

T

Execution 2

Node 1 Node 2

é Ping

e

Get Lock

=

Node 3

37

Reasoning About Global State: State Bucketing

Execution 1 ffh Execution 2 ffj

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
Q Ping Q Ping
\ \3
? Get Lock Get Lock
\

Node.go.Line 55 - InCritical = True

38

Reasoning About Global State: State Bucketing

Execution 1 ffj Execution 2 ffj

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

& Ping
T

.'.'

’ Get LOCk
\

\ K \ !
Node ao |l ine

oline 25 - InCritical = False

Reasoning About Global State: State Bucketing

Execution 1 @l Execution 2 @

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

’ Get LOCk
\

A !

Node.goLine 15 - InCritical = False

Reasoning About Global State: State Bucketing

Execution 1 |2| Execution 2 @

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

‘ Ping

T

P corton

VL / \/

Line 55 - InCritical = True

ne 55 - InCritical = True

41

Reasoning About Global State: State Bucketing

Execution 1 tfh

Node 1 Node 2 Node 3

‘&__

? Get LOCk
\

\ \/ !

Execution 2

Node 1 Node 2

\6

AcK QD
Y

Get LOCk

=

Node 3

42

Reasoning About Global State: State Bucketing

Execution 1

Node 1 Node 2

ﬁ. Ping
*+

Get LOCk

=

Node 3

®

Node 1

Execution 2

Node 2

43

Reasoning About Global State: State Bucketing

Execution 1 @l

Node 1 Node 2 Node 3

‘%

\

\ \ !

Execution 2

Node 1 Node 2

‘ Ping

e

Get LOCk

=

Node 3

44

Reasoning About Global State: State Bucketing

Execution 1 @ Execution 2 [2'

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Pin
\ g
? Get Lock Get Lock
\

O

45

Reasoning About Global State: State Bucketing

Execution 1 @ Execution 2 @I

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3
‘ Ping ‘ Pin
\ g
¢ Get Lock
\

®
| ,; ,» 4

46

Reasoning About Global State: State Bucketing

Execution 1 @ Execution 2 Igl

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

% @ rig

Get LOC k

47

Reasoning About Global State: State Bucketing

Execution 1 @ Execution 2 [2'

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

<&m

48

Reasoning About Global State: State Bucketing

Execution 1 ffh Execution 2 ffh

Node 1 Node 2 Node 3 Node1 Node 2 Node 3

ng

49

Reasoning About Global State: State Bucketing

=

Distributed Asserts Node 1 Node 2 Node 3

Assert
e Distributed asserts enforce - - Vnodes
. . . Y InCritical <=1
Invariants at runtime

51

Distributed Asserts

e Distributed asserts enforce
invariants at runtime

e Snapshots are constructed
using approximate synchrony

Node 1

5ms

=)

Node 2 Node 3
Assert
@ - - Vnodes
Y InCritical <=1
2,778
D,

52

Distributed Asserts

e Distributed asserts enforce
invariants at runtime

e Snapshots are constructed
using approximate synchrony

=

Node 1 Node 2
Assert
@ - - Vnodes
Y InCritical <=1
S
c 5M Emes

InCritical =0

JInCritical =0

Node 3

_ InCritical = 1

7

53

=)

Distributed Asserts Node 1 Node 2 Node 3

Assert

e Distributed asserts enforce @- - - Vnodes
Y InCritical <=1

invariants at runtime
e Snapshots are constructed
using approximate synchrony
e Asserter constructs global -—-
state by aggregating
snapshots

5ms

54

=

Distributed Asserts Node 1 Node 2 Node 3

Assert

e Distributed asserts enforce @- - - Vnodes
Y InCritical <=1

invariants at runtime
e Snapshots are constructed
using approximate synchrony
e Asserter constructs global e G G S o S
state by aggregating
snapshots

5ms

Evaluate

?— - = VYnodes
Y InCritical <=1

55

Evaluated Systems

Q Etcd: Key-Value store running Raft - 120K LOC
g Serf Serf. large scale gossiping failure detector - 6.3K LOC

L Taipei-Torrent: Torrent engine written in Go - 5.8K
" LOC

° Groupcache: Memcached written in Go - 1.7K LOC 56

Etcd ¥ 120K Lines of Code

System and Targeted property

Dinv-inferred invariant

Description

Raft
Strong Leader principle

V follower i, len(leader log) 2 len(i’s
log)

All appended log entries must be propagated
by the leader

Raft
Log matching

Vv nodes |, j if i-log[c] = j-log[c] — V(x <
c), i-log[x] = j-log[x]

If two logs contain an entry with the same index
and term, then the logs are identical on all previous
entries.

Raft
Leader agreement

If 3 node i, s.tileader,than V j#i,j
follower

If a leader exists, then all other nodes are
followers.

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al

57

Etcd ™~ 120K Lines of Code

System and Targeted property

Raft
Strong Leader principle

Raft
Log matching

Raft
Leader agreement

Dinv-inferred invariant

V follower i, len(leader log) 2 len(i’s
log)

V nodes i, j if i-log[c] = j-log[c] — V (x <
c), i-log[x] = j-log[x]

If 3 node i, s.tileader,than V j#i,j
follower

Description

All appended log entries must be propagated
by the leader

If two logs contain an entry with the same index
and term, then the logs are identical on all previous
entries.

If a leader exists, then all other nodes are
followers.

Injected Bugs for each invariant caught with assertions

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al

58

Etcd ¥ 120K Lines of Code

System and Targeted property Dinv-inferred invariant Description

Raft V follower i, len(leader log) 2 len(i’s All appended log entries must be propagated

Strong Leader principle log) by the leader

Raft V nodes i, j if i-log[c] = j-log[c] — V(x < | If two logs contain an entry with the same index

Log matching c), I-log[x] = j-log[x] and term, then the logs are identical on all previous
entries.

Raft If 3 node i, s.tileader,than V j#i,j If a leader exists, then all other nodes are

Leader agreement follower followers.

Injected Bugs for each invariant caught with assertions
See the paper for full system evaluation

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al
59

Limitations and future work

Limitations

e Dinv’s dynamic analysis is incomplete
e Ground state sampling is poor on loosely coupled systems
e Large number of generated invariants

Future work

Extend analysis to temporal invariants
Bug Isolation

Distributed test case generation 7
Mutation testing/analysis based on mined invariants

60

Dinv: Contributions @ nortiea!

e Automatic distributed state invariant inference
o Static identification of distributed state @
Ping

o Automatic static instrumentation o
: : L Vnodes InCritical <=1
o Post-execution merging of distributed states
e Runtime checking: distributed assertions

Analysis for distributed Go systems

Get Lock

Repo: https://bitbucket.org/bestchai/dinv

e
W

&

)
-l
7]
),

Demo: https://www.youtube.com/watch?v=n9fH9ABJ6S4

61

https://bitbucket.org/bestchai/dinv
https://www.youtube.com/watch?v=n9fH9ABJ6S4

