
Inferring and Asserting
Distributed System Invariants

Stewart Grant§, Hendrik Cech¶, Ivan Beschastnikh§

University of British Columbia§, University of Bamberg¶

1

https://bitbucket.org/bestchai/dinv

https://bitbucket.org/bestchai/dinv

2

Distributed Systems are pervasive

● Graph processing
● Stream processing
● Distributed databases
● Failure detectors
● Cluster schedulers
● Version control
● ML frameworks
● Blockchains
● KV stores
● ...

Distributed Systems are Notoriously Difficult to Build

● Concurrency

3

● No Centralized Clock

● Partial Failure

● Network Variance

Today’s state of the art (building robust dist. sys)

Verification - [(verification) IronFleet SOSP’15, VerdiPLDI’15, Chapar POPL’16,

(modeling), Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

Bug Detection - [MODIST NSDI’09, Demi NSDI’16,]

Runtime Checkers - [D3S NSDI’18,]

5

Tracing - [PivotTracing SOSP’15, XTrace NSDI’07, Dapper TR’10,]

Log Analysis - [ShiViz CACM ‘16]

Today’s state of the art (building robust dist. sys)

Verification - [(verification) IronFleet SOSP’15, VerdiPLDI’15, Chapar POPL’16,

(modeling), Lamport et.al SIGOPS’02, Holtzman IEEE TSE’97]

Bug Detection - [MODIST NSDI’09, Demi NSDI’16,]

Runtime Checkers - [D3S NSDI’18,]

6

Tracing - [PivotTracing SOSP’15, XTrace NSDI’07, Dapper TR’10,]

Log Analysis - [ShiViz CACM ‘16]

←Require Specifications

Little work has been done to infer distributed specs

Some notable exceptions

● CSight ICSE’14
○ Communicatin finite state machines

● Avenger SRDS’11
○ Requires enormous manual effort

● Udon ICSE’15
○ Requires shared state

None of these can capture stateful properties
like:

● Partitioned Key Space (Memcached):
○ ∀nodes i,j keys_i != keys_j

● Strong Leadership (raft)
○ ∀followers i length(log_leader) >=

length(log_follower_i)

7

Design goal: handle real distributed systems

Wanted: distributed state invariants

Make the fewest assumptions about the
system as possible.

● N nodes
● Message passing
● Lossy, reorderable channels
● Joins and failures

8

Goal: Infer key correctness and safety properties

Key Partitioning:

∀nodes i, j keys_i != keys_j

Mutual exclusion:

∀nodes i,j InCritical_i

→¬InCritical_j

9

Goal: Infer key correctness and safety properties

Key Partitioning:

∀nodes i, j keys_i != keys_j

Mutual exclusion:

∀nodes i,j InCritical_i

→¬InCritical_j

10

“Distributed State”

Goal: Infer key correctness and safety properties

Running Example
11

Key Partitioning:

∀nodes i, j keys_i != keys_j

Mutual exclusion:

∀nodes i,j InCritical_i

→¬InCritical_j

“Distributed State”

● Automatic distributed invariant inference (techniques & challenges)
● Runtime checking: distributed assertions
● Evaluation: 4 large scale distributed systems

This talk: distributed invariants and Dinv

Static Analysis Dynamic Analysis
12

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

13

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

14

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

15

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

16

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection

17

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

18

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

19

Capturing Distributed State Automatically

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

20

Consistent Cuts / Ground States

1. Interprocedural Program Slicing
2. Logging Code Injection
3. Vector Clock Injection

21

Consistent Cuts / Ground States

22

● Fast Forward

Consistent Cuts / Ground States

23

● Fast Forward.

Consistent Cuts / Ground States

24

● Fast Forward..

Consistent Cuts / Ground States

25

● Fast Forward...

Consistent Cuts / Ground States

26

● Fast Forward….

Consistent Cuts / Ground States

27

● Fast Forward…...

Consistent Cuts / Ground States

28

● Fast Forward…….

Consistent Cuts / Ground States

29

● Fast Forward……..

Consistent Cuts / Ground States

30

● Green lines mark consistent cuts
○ No messages are in flight
○ Message sent but not received

● The red line is not a consistent cut
○ The ping sent by Node 0 happened

before the pings receipt on node 1.

Consistent Cuts / Ground States

31

● Huge number of consistent cuts

Consistent Cuts / Ground States

32

● Huge number of consistent cuts
● Require sampling heuristic

Consistent Cuts / Ground States

33

● Huge number of consistent cuts
● Require sampling heuristic
● Ground States: A consistent cut

with no in flight messages

Consistent Cuts / Ground States

34

● Huge number of consistent cuts
● Require sampling heuristic
● Ground States: A consistent cut

with no in flight messages
● Dramatically collapses search

space

Consistent Cuts / Ground States

35

● Huge number of consistent cuts
● Require sampling heuristic
● Ground States: A consistent cut

with no in flight messages
● Dramatically collapses search

space

Ground State sampling used
exclusively in evaluation

Reasoning About Global State: State Bucketing

37

38

Reasoning About Global State: State Bucketing

39

Reasoning About Global State: State Bucketing

40

Reasoning About Global State: State Bucketing

41

Reasoning About Global State: State Bucketing

=

42

Reasoning About Global State: State Bucketing

43

Reasoning About Global State: State Bucketing

44

Reasoning About Global State: State Bucketing

45

Reasoning About Global State: State Bucketing

46

Reasoning About Global State: State Bucketing

47

Reasoning About Global State: State Bucketing

48

Reasoning About Global State: State Bucketing

49

Reasoning About Global State: State Bucketing

Node_3_InCritical == True
Node_2_InCritical != Node_3_InCritical
Node_2_InCritical == Node_1_InCritical

50

Reasoning About Global State: State Bucketing

...

“Likely” Invariants

Distributed Asserts

● Distributed asserts enforce
invariants at runtime

51

Distributed Asserts

● Distributed asserts enforce
invariants at runtime

● Snapshots are constructed
using approximate synchrony

52

Distributed Asserts

● Distributed asserts enforce
invariants at runtime

● Snapshots are constructed
using approximate synchrony

53

Distributed Asserts

● Distributed asserts enforce
invariants at runtime

● Snapshots are constructed
using approximate synchrony

● Asserter constructs global
state by aggregating
snapshots

 54

Distributed Asserts

● Distributed asserts enforce
invariants at runtime

● Snapshots are constructed
using approximate synchrony

● Asserter constructs global
state by aggregating
snapshots

 55

Evaluated Systems

Etcd: Key-Value store running Raft - 120K LOC

Serf: large scale gossiping failure detector - 6.3K LOC

Taipei-Torrent: Torrent engine written in Go - 5.8K
LOC

Groupcache: Memcached written in Go - 1.7K LOC 56

Etcd ~ 120K Lines of Code

57

System and Targeted property Dinv-inferred invariant Description

Raft
Strong Leader principle

∀ follower i, len(leader log) ≥ len(i’s
log)

All appended log entries must be propagated
by the leader

Raft
Log matching

∀ nodes i, j if i-log[c] = j-log[c] → ∀(x ≤
c), i-log[x] = j-log[x]

If two logs contain an entry with the same index
and term, then the logs are identical on all previous
entries.

Raft
Leader agreement

If ∃ node i, s.t i leader, than ∀ j ≠ i, j
follower

If a leader exists, then all other nodes are
followers.

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al

Etcd ~ 120K Lines of Code

58

System and Targeted property Dinv-inferred invariant Description

Raft
Strong Leader principle

∀ follower i, len(leader log) ≥ len(i’s
log)

All appended log entries must be propagated
by the leader

Raft
Log matching

∀ nodes i, j if i-log[c] = j-log[c] → ∀(x ≤
c), i-log[x] = j-log[x]

If two logs contain an entry with the same index
and term, then the logs are identical on all previous
entries.

Raft
Leader agreement

If ∃ node i, s.t i leader, than ∀ j ≠ i, j
follower

If a leader exists, then all other nodes are
followers.

Injected Bugs for each invariant caught with assertions

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al

Etcd ~ 120K Lines of Code

59

System and Targeted property Dinv-inferred invariant Description

Raft
Strong Leader principle

∀ follower i, len(leader log) ≥ len(i’s
log)

All appended log entries must be propagated
by the leader

Raft
Log matching

∀ nodes i, j if i-log[c] = j-log[c] → ∀(x ≤
c), i-log[x] = j-log[x]

If two logs contain an entry with the same index
and term, then the logs are identical on all previous
entries.

Raft
Leader agreement

If ∃ node i, s.t i leader, than ∀ j ≠ i, j
follower

If a leader exists, then all other nodes are
followers.

Injected Bugs for each invariant caught with assertions

*Raft: In search of an understandable consensus algorithm, D.Ongaro et. al

See the paper for full system evaluation

Limitations and future work

Future work

● Extend analysis to temporal invariants
● Bug Isolation
● Distributed test case generation
● Mutation testing/analysis based on mined invariants

60

Limitations

● Dinv’s dynamic analysis is incomplete
● Ground state sampling is poor on loosely coupled systems
● Large number of generated invariants

Dinv: Contributions

61

Repo: https://bitbucket.org/bestchai/dinv

Demo: https://www.youtube.com/watch?v=n9fH9ABJ6S4

● Automatic distributed state invariant inference
○ Static identification of distributed state
○ Automatic static instrumentation
○ Post-execution merging of distributed states

● Runtime checking: distributed assertions

Analysis for distributed Go systems

∀nodes InCritical <= 1

https://bitbucket.org/bestchai/dinv
https://www.youtube.com/watch?v=n9fH9ABJ6S4

