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ABSTRACT
Networked systems are often difficult to debug and under-
stand. A common way of gaining insight into system behav-
ior is to inspect execution logs and documentation. Unfortu-
nately, manual log inspection is difficult and documentation
is often incomplete and out of sync with the implementation.

To provide developers with more insight into networked
systems I am working Dynoptic, a tool that infers a concise
and accurate system model, in the form of a communicating
finite state machine [5] from logs. Developers can use the
inferred models to understand behavior, detect anomalies,
verify known bugs, diagnose new bugs, and increase their
confidence in the correctness of their implementation. Un-
like most related work, Dynoptic does not require developer-
written scenarios, specifications, negative execution exam-
ples, or other complex input. Dynoptic processes the logs
most systems already produce and requires developers only
to specify a set of regular expressions for parsing the logs.

Categories and Subject Descriptors: D.2.5 [Testing
and Debugging]: Distributed debugging
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1. INTRODUCTION
Understanding a system’s behavior is a difficult develop-

ment task that is required when a system behaves in an un-
expected manner or when a developer must make changes
to code they did not write. Logging and log analysis of cap-
tured system behavior is one of the most effective tools for
building understanding. Unfortunately, the size and com-
plexity of logs often exceed a developer’s ability to make
sense of the captured data. For example, production systems
at Google log billions of events each day; these are stored
for weeks to help diagnose errant future behaviors [15].

One promising approach to help users make sense of com-
plex executions is model inference. The goal of a model
inference algorithm is to produce a model, typically a finite
state machine, that accurately and concisely represents the
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system that produced the input log of executions. Numer-
ous such algorithms and corresponding tools already exist
to help debug, verify, and validate systems [4, 11, 12, 13].

Unfortunately, it is challenging to apply this rich body of
work to networked systems. This is because a common as-
sumption made in model inference is that the underlying set
of executions is totally ordered — for every pair of events
in an execution, one precedes the other. This is not the
case for logs of networked and distributed systems, where
events at different nodes may occur without any happens-
before relationship [10]. Therefore most model inference al-
gorithms output finite state machine (FSM) models, which
are difficult or impossible to map back to the multi-process
implementation that generated the log.

The goal of my dissertation work is to develop model in-
ference techniques that can be applied to logs of networked
systems, such as protocol message traces. These techniques
are being implemented as part of a tool called Dynoptic.

2. DYNOPTIC OVERVIEW
Dynoptic takes a log of observations as input and outputs

a model that describes the system that generated the ob-
servations. Dynoptic is intended to model communication
protocols and networked systems. I have experimented with
a variety of formalisms (e.g., petri nets). However, an appro-
priate formalisms must be familiar to developers, intuitive,
and simple to learn. The communicating finite state ma-
chines [5] (CFSM) model is similar to the traditional FSM
formalism, and fits these requirements.

In a CFSM model, each process is specified as a finite
state machine (FSM), and processes communicate with one
another by exchanging messages over FIFO queues. Figure 1
shows a CFSM model for the alternating bit protocol.

Dynoptic expects a log of process-local events, as well as
message send/receive events. It also expects each event in
the log to be timestamped with a vector clock value, which
is used to track the partial order of events in the system [10].

(1) First, Dynoptic parses the log and mines a set of tem-
poral invariants that relate the logged events [3]. These in-
variants are temporal. One example is: “e1 is always concur-
rent with e2”, meaning there is never a happens-before [10]
relationship between the two events in any of the traces.
Dynoptic guarantees that the mined invariants will be sat-
isfied by the final model that it outputs to the user.

(2) Next, Dynoptic builds a graph of all possible serial-
izations of events in the log. This graph is used to capture
the possible interleavings of events in the DAG formed by
the partially ordered vector clocks recorded in the log.
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Figure 1: A CFSM model of the alternating bit protocol with (a) sending process model, and (b) receiving
process model. The sender transmits messages to the receiver using queue M, and the receiver sends acknowl-
edgments to the sender using queue A. Event Q!x means enqueue message x into queue Q, and event Q?x means
dequeue message x from the head of the queue Q.

(3) The serialization graph from step (2) is abstracted
into a partition graph. A partition graph is a partitioning of
nodes in a serialization graph that conserves edges.

(4) The abstract serialization graph captures all of the ob-
served executions, although it might be an over-generalization.
At the core of Dynoptic is a counter-example based abstrac-
tion refinement loop [7]. Dynoptic uses the McScM model
checker [9] to check the CFSM corresponding to the abstract
serialization graph against each of the mined invariants. If
an invariant is invalid in the abstract serialization graph,
then the model is refined to satisfy the invariant — a par-
tition is split to create less abstract model. Once all of the
invariants are satisfied, Dynoptic returns the CFSM corre-
sponding to the final abstract serialization graph.

3. RELATED WORK
Prior work on inferring CFSMs from observations is theo-

retical and focused on inferring models with desirable prop-
erties, such as models with no deadlocks and no unspecified
receptions [6]. Such properties are important in theory, but
we have found them to be less essential to our use-case — to
generate models that provide developers with insight into a
networked system implementation.

The most closely related non-CFSM model inference work
to Dynoptic is our previous work on Synoptic [3], which is
a tool for inferring FSM models from a log of sequential
executions. The approach in Dynoptic parallels that of Syn-
optic, which mines temporal invariants, forms a small initial
model, and then progressively refines this model to derive
a final model that satisfies all of the mined invariants. The
Dynoptic process, however, has to account for richer kinds of
invariants [2], deals with a new model type, and is intended
to provide insight into partially ordered logs.

Dynoptic relies on the McScM model checker [9, 8] for
checking the validity of mined invariants in a CFSM model.
McScM is one of the most advanced verification tools for
concurrent systems; building on prior state of the art [1].

Most prior work on model inference assumes that the in-
put log is totally ordered [4, 12, 13, 14]. This constrains the
generated log to either exclude concurrency, or to capture a
particular interleaving of concurrent events. Our position is
that capturing concurrency as a partial order is useful and
often indispensable for understanding a system’s behavior.
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