
Accelerating software engineering research adoption
with Analysis Bots

Ivan Beschastnikh Mircea F. Lungu Yanyan Zhuang
University of British Columbia University of Groningen University of Colorado, Colorado Springs

Abstract—An important part of software engineering (SE)
research is to develop new analysis techniques and to integrate
these techniques into software development practice. However,
since access to developers is non-trivial and research tool adoption
is slow, new analyses are typically evaluated as follows: a
prototype tool that embeds the analysis is implemented, a set of
projects is identified, their revisions are selected, and the tool is
run in a controlled environment, rarely involving the developers
of the software. As a result, research artifacts are brittle and it
is unclear if an analysis tool would actually be adopted.

In this paper, we envision harnessing the rich interfaces
provided by popular social coding platforms for automated
deployment and evaluation of SE research analysis. We propose
that SE analyses can be deployed as analysis bots. We focus on
two specific benefits of such an approach: (1) analysis bots can
help evaluate analysis techniques in a less controlled, and more
realistic context, and (2) analysis bots provide an interface for
developers to “subscribe” to new research techniques without
needing to trust the implementation, the developer of the new
tool, or to install the analysis tool locally. We outline basic
requirements for an analysis bots platform, and present research
challenges that would need to be resolved for bots to flourish.

I. INTRODUCTION

One important objective of the SE research community
is to develop new analyses to help software practitioners
build more robust, correct, and efficient software systems.
Unfortunately, few researchers are motivated to maintain their
analysis implementations after publication; and fewer still
actively engage practitioners. This slows down adoption of
research ideas, and also hinders scientific replication as other
researchers struggle to build on prior work [14], [16].

On the other hand, social coding platforms like GitHub and
BitBucket are accumulating software projects and developers
at a staggering rate. The influence of these platforms is such
that many developers now list their social coding platform
accounts on their resume to showcase their portfolio [15].

Source code centralization and a powerful set of APIs in
social coding platforms have resulted in numerous tools to
automate or augment SE tasks1. One example, Requires.io2

monitors dependencies of Python projects on GitHub and
alerts developers when one of the project’s dependencies is
outdated, particularly in the case of security updates; Another
example, Reviewable.io3, provides an advanced code review
interface on top of GitHub’s existing stream of commits and
pull requests. In this paper, we consider one way in which we

1https://github.com/integrations
2https://requires.io/
3https://reviewable.io/

can leverage this emerging category of tools to accelerate the
adoption of SE research analysis techniques.

We envision an ecosystem of analysis bots that effectively
extend a single researcher’s ability to impact software practi-
tioners. An analysis bot is an automated software agent that
(1) helps to automate a useful SE task, and (2) interacts with
the software project that it analyzes through a well-defined
interface. For example, a bot may implement a program
repair analysis and submit a pull request that contains a bug
fix [12]. Or, a bot could recommend in the issue comments the
developer who should resolve the bug [7], or post an estimate
of how long the issue would take to be resolved [20]. Bots
could also propose improvements to other project resources
like documentation [19]. In all of these cases, the analysis
bots partly automate an SE task. An analysis bot can analyze
a variety of project artifacts, including the source code, issue
tracker information, wiki pages, pull requests, and more.
Therefore, we use the term analysis broadly and take it to
mean more than just classic software analysis.

The examples above suggest a number of challenges that
must be addressed for analysis bots to become a reality. What
are the appropriate and inappropriate ways in which these bots
can interact with developers? How should analysis bots be
designed to prevent information overload for developers? How
and where should these bots be hosted? We propose, as one
way to realize the vision of analysis bots and to answer these
questions, a platform that mediates the interaction between
project hosting sites, such as GitHub, and analysis bots. The
focus of this paper, therefore, is on sketching out some key
properties of such a platform, which we call Mediam.

We have two objectives for Mediam. First, we want it to help
researchers evaluate their techniques by lowering the barrier to
the adoption of new analysis techniques. Second, we want to
facilitate software developers experimenting with state-of-the-
art analysis techniques without the overhead associated with
finding analysis implementations, or configuring and installing
these locally. We believe that this will create more early
adopters and will accelerate SE innovation adoption.

Structure of the paper. Section II discusses the goals of
the envisioned platform. Section III introduces the workflow
for the platform from the perspective of three different stake-
holders. Section IV discusses design considerations and Sec-
tion V highlights the key challenges that must be addressed
for the vision to succeed. Section VI discusses the broader
implications of the proposed infrastructure and Section VII
discusses related work.

https://requires.io/
https://reviewable.io/

II. DESIGN GOALS

Mediam mediates between those who develop analyses,
such as SE researchers, and software developers. It hosts
analysis bots, which bot creators (e.g., researchers) publish,
and which developers associate with their projects. Mediam
has the following set of design goals:

Low barrier to entry. Analysis bots in Mediam are run in
the cloud and do not need to be installed/hosted/monitored.
It suffices for developers to register their cloud hosted project
with Mediam. At the same time, there must be a low barrier to
entry for those who want to build bots. For this, Mediam must
have a set of well-defined APIs for bots to use when dealing
with project resources, and for Mediam to interact with bots.

Fine-grained bot control. Developers must be able to select
the analysis bots (or the types of analysis) that interest them
and choose the projects to be analyzed. The developers must
also be in control of all of the ways in which Mediam can
interact with their projects — resources available to bots, what
bots can and cannot modify in the project, etc.

Openness. For our vision to become a reality, we believe
that anyone should be able to build an analysis bot. We do
not want to limit this capability because we cannot predict the
bots that would be most useful to developers. One implication
of openness is that we need to help developers find and
select among the available bots. One way to do this is with
a BotStore, where analysis bots register, receive reviews from
SE developers, and have a reputation score.

III. PLATFORM WORKFLOW

There are three types of stake-holders in Mediam: bot
creators, maintainers who monitor Mediam and its repository
of available bots, and software developers who work on
SE projects in social coding platforms. In this section we
describe several scenarios of how we envision analysis bots
can function from the perspective of different stake holders.

Crista, the bot creator is a software engineering researcher
who has written many software analysis tools for Python. To
accompany one of her papers focused on software engineering
education she creates an analysis bot dubbed CodeLikeGuido,
which automatically detects non-idiomatic Python. She sub-
mits the new bot for deployment on Mediam.

Her analysis implementation has two parts: a pattern detec-
tor, which looks for typical beginner mistakes in source code;
and a recommendation generator, which sends a pull request
together with a link to a page describing the reason why the
change is recommended. Her motivation is to help others and
to have her tool be quickly adopted by others by using the
exposure that Mediam provides.

Manfred, the Mediam maintainer is part of a volunteer
team that maintains Mediam. Today he receives a notification
about a new bot called CodeLikeGuido, implemented by
Crista. Manfred and his team run a battery of tests and inspect
some of the bot’s code to make sure that no malicious code
is included. Since Crista has published other highly-used bots
in the past, the bot is accepted.

Manfred publishes CodeLikeGuido in the test pool – a
group of bots whose recommendations are initially shown to
a limited set of users, the first adopters. Their feedback is
closely observed to further vet a new bot.

Dean, the developer is a beginner software developer
who is starting a new NLP project in Python. After hearing
about analysis bots that verify code and provide free code
improvement advice, he decides to register his project with
GitHub and Mediam. He selects the option that allows his
project to be found by the bots (the other option is to search
for relevant bots himself).

Once registered with Mediam, several Python bots including
CodeLikeGuido start monitoring his project. One day, when
Dean pushes his changes to GitHub, he receives a pull request
from Mediam which provides several refactorings that will
make his code more pythonic. Together with the pull request
there is a link that explains the reasoning and advantages
of the new style. He reads the explanation, agrees with it,
and accepts the pull request. Observing that the pull request
has been accepted, Mediam adjusts upwards the reputation
of CodeLikeGuido. It also increases a relevance score for
CodeLikeGuido with respect to Dean.

IV. ARCHITECTURE

Figure 1 presents a high level view of Mediam design. It
presents two of the main stake-holder groups: bot creators and
developers. Mediam provides a set of APIs that these stake-
holders use to interact with the various resources in the system.

 Versions, Issues, …

Bot Runner

Mediam

Social coding platforms

Project
Development

Bot
Upload

Twitter
Mail

Chat Bots
Dashboard

Pull requests
Issues

Bot creators

Reporter

API

Bot Ranker

Developers

Fig. 1. A high-level view of the Mediam architecture.

Bot creators create bots for different SE tasks and submit
bots to the bot repository. Executing bots are hosted in virtual
machines or Docker containers (Bot Runner in the Figure).
The Mediam maintainers monitor the bot repository and all
executing bots. Submitted bots undergo a review, during which
the bot is tested. Bots that pass the review are published to
developers who can enable them for a project (or they are
recommended the most relevant bots). The bots communicate
with SE projects and developers using Mediam APIs. Bots
may generate a variety of events; these are filtered and aggre-
gated by the Reporter module (which in turn is helped by the
Bot Ranker module) before being passed back to developers.

Bot submission API allows bot creators to submit their bots
for review. The bot creator later receives an email from the
maintainers with the bot review result. If accepted, the creator
will also receive a secret key with which she can access the
rest of the Mediam API. Submitting a follow-on version of a
bot does not require a full review, but each new version must
be signed with the same private key as the initial version.

Bot repository API. Mediam maintainers use the bot
repository API to review and approve bots. Additionally, SE
developers can use this API to review the bot according to
several criteria, such as utility and usability.

Project evolution API. Mediam uses hooks to inform a
bot about events that the bot subscribes to for a particular
project. Events may be new commits to the repository, changes
to the team associated with a project, pull requests, issue
submissions, and other project changes. Mediam provides a
unified view of these events through a single API that hides
the differences among social coding platforms.

Project resources API. Analysis bots use this API to
obtain data about SE projects that they analyze. This API is
constrained by policies that the SE developer sets up ahead
of time to limit bot access to certain resources. For open
source projects, we expect that bots would have access to
all of the project’s data. In some cases, SE developers may
expose additional resources to bots. For example, a developer
may allow the bot to notify the project team through a chat
bot in Slack or Basecamp.

Bot reporting API allows a bot to communicate with
Mediam and to provide feedback to the project that it analyzed.
This API allows a bot to specify a preferred feedback channel
(email, pull request, chat bot, etc). A bot can also annotate
recommendations with an importance level. However, Mediam
will compute its own relevance score based on observations
of developer reactions to past recommendations by this bot.

V. CHALLENGES

Realizing the analysis bots vision will require resolving
several challenges; we discuss the most important ones below.

Trust. Mediam must be able to host and execute, poten-
tially malicious, analysis bot code. Furthermore, the frame-
work must monitor bot activity and suspend bots that attempt
to circumvent bot restrictions. We expect this challenge to be
much less severe on the developer side, since the bots do not
execute on a developer’s machine, and most bot actions will
be reversible and can always be inspected.

Bot discovery. An implication of the openness goal
(Section II) is that there may be a large number of bots that a
developer may select from. Mediam will help developers find
the right bots using one of two alternatives:

• A BotStore can list analysis bots that can be reviewed
and rated. Crowdsourcing bot certification will naturally
identify the bots that are most useful to the community.

• A model of a bot’s reputation and utility can be inferred
using machine learning. This can be done by observing
user-bot interactions. New bots can be gradually recom-
mended to developers to bootstrap this process.

Information overload. We expect that most analysis
bots will generate a variety of reports, issues, pull requests,
notifications on social media channels, or other intermediate
project artifacts that developers would need to review and
act on. To avoid overwhelming developers with output and
false positives [13], [8], it is up to Mediam to decide which
notifications are sent to the developers. This indirection is
critical to avoid information overload. At the same time,
Mediam must ensure fairness towards all bots: established bots
should not prevent new ones from being heard.

Bot debugging. Scaling analyses to real and diverse
software projects is a major challenge for bot creators [8].
Mediam must help creators to identify and quickly fix issues
with their bots, particularly because the reputation of the entire
Mediam ecosystem is on the line.

VI. DISCUSSION

Implications for SE research. We believe that analysis bots
will benefit the SE research community in two ways: (1) they
will help evaluate analysis techniques in a less controlled, and
more realistic context. The usage-based evaluation that anal-
ysis bots provide could allow a researcher to argue that their
analysis is useful because of, for example, the number of pull
requests that have been accepted by actual developers from
the corresponding analysis bot. More generally we envision
Mediam collecting a variety of telemetry information to help
bot creators understand bot usage. And, (2) they will lower
the bar for developers trying new, state-of-the-art software
analysis techniques since analysis bots provide an interface for
developers to “subscribe” to research tools without needing to
trust the tool or tool developers, or to install the tool locally.

Motivations for building bots. We imagine that analysis
bots would be primarily implemented by SE researchers
who are usually eager to share their ideas with the world.
However, the Mediam framework may encourage others to
contribute new analysis as well. Several notable projects, such
as Wikipedia and StackOverflow, have relied on volunteer
contributors. Although analysis bots require more expertise
than either of these efforts, we believe that there are many
software engineers who would be interested in contributing to
analysis bots if their value and impact is clearly articulated.
Another motive for bot authors is the reputation that they
would build for themselves through their bot creations.

Hosting analysis bots. The Mediam platform can initially
host bots. However, a more sustainable approach is to let bot
creators run the bots themselves and then report the results
of analysis to Mediam. Another model for hosting bots is
the approach used by volunteer computing platforms like
Folding@Home and Seti@Home [6]. These platforms use
spare cycles from volunteer machines around the world for
their computation. Mediam could likewise farm out analysis
bot computations to volunteer computers around the world.

Beyond social coding sites. Integrating with social coding
sites, like GitHub, will help to bootstrap the platform. How-
ever, by building on distributed version control systems like

git, Mediam can pull directly from any code server and can
be eventually used by non-open-source projects, as well.

Is this SE research? Many of the challenges of creating and
running Mediam are engineering concerns. However, there are
fundamental SE research questions that (building and running)
the platform could help answer: how can SE practitioners be
induced to evolve their practices, and in particular to try new
tools? What makes an analysis valuable/useful, and how does
the answer change between projects and developers? How can
we design and assess the efficacy of a reputation mechanism
for different analyses?

VII. RELATED WORK

Bots that interact with software projects are not a new idea.
For example, the Code Drones vision has some similarities
with analysis bots, though drones are clearly much more
capable [5]. A more concrete example is the Imageoptimiser
bot4, which automatically generates a pull request with more
optimized images. The Hubot5 project provides a set of APIs
for developing interactive chat bots. A number of Hubot-based
bots exist for automating SE tasks. In a recent paper, Storey
and Zagalsky proposed a framework for evaluating how bots
are used in software development [18].

Bots have also been used extensively in online communities,
such as Wikipedia [10] and Reddit [1]. On these sites, bots
automate repetitive and simple tasks, like the ClueBot NG6,
which detects and reverts vandalism edits on Wikipedia.

The Imageoptimiser bot noted above was rebuked by
GitHub, which has indicated that such bot activity is unwel-
come [2]. We believe that a platform like Mediam is necessary
to protect developers from spam and to help to develop a
coherent set of policies around automated agents on GitHub.

Several platforms have been previously proposed that are
similar to our vision in that they propose to automate and
scale software analysis across a large number of applications.
For example, Testing-as-a-service [9] was proposed by Candea
et al. to provide an automated software testing platform for
use by developers and users. Another example is AppInspec-
tor [11], which is a tool for automated mobile app analysis
and security validation, with the goal of analyzing all apps
in existing centralized app markets. Both platforms focus on
a specific type of analysis, interact only minimally with the
analyzed software project or app, and are not intended for
extensions and contributions from third parties.

Google’s internal version control system receives the ma-
jority of commits from automated bots [3] and the type of
contributions these bots perform varies broadly.

Recently, Tricorder, Google’s software analysis platform
has been detailed by Sadowski et al. [17]. This platform
has been open sourced as ShipShape7. Both Tricorder and
ShipShape include many features that are important to the
Mediam platform in the longer term. Technically, the key

4https://github.com/imageoptimiser
5https://hubot.github.com/
6http://en.wikipedia.org/wiki/User:ClueBot NG
7https://github.com/google/shipshape

difference is that these systems are designed to be used in-
house while we envision Mediam to be more distributed.

VIII. CONCLUSION

SE researchers often struggle with evaluating their research
proposals since accessing real developers can be nontrivial.
Many SE researchers have turned to using online open source
resources available through hosting sites like GitHub. But,
even when evaluated against real code, the value of an analysis
technique to an actual developer is often unclear.

We described Mediam, a platform for hosting analysis bots,
which are automated analysis agents that perform useful SE
tasks. These bots can be implemented by anyone, but are
especially useful to researchers who can use analysis bots to
more easily evaluate their proposals. We believe that analysis
bots have the potential to accelerating SE research adoption by
practitioners. We are currently prototyping Mediam and plan
to evaluate the resulting platform in our future work.

REFERENCES

[1] faq - botwatch. http://www.reddit.com/r/botwatch/wiki/faq. Accessed
October 11, 2016.

[2] GitHub Says No Thanks to Bots Even if Theyre Nice. http://www.
wired.com/2012/12/github-bots/. Accessed October 11, 2016.

[3] Google Is 2 Billion Lines of Code — And It’s All in One Place. http:
//www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/.
Accessed October 5, 2016.

[4] Wikipedia:Bots - Wikipedia, the free encyclopedia. http://en.wikipedia.
org/wiki/Wikipedia:Bots. Accessed October 11, 2016.

[5] M. P. Acharya, C. Parnin, N. A. Kraft, A. Dagnino, and X. Qu. Code
Drones. In ICSE, 2016.

[6] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@Home: An Experiment in Public-resource Computing. CACM,
2002.

[7] J. Anvik, L. Hiew, and G. C. Murphy. Who Should Fix This Bug? In
ICSE, 2006.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World.
CACM, 2010.

[9] G. Candea, S. Bucur, and C. Zamfir. Automated Software Testing As a
Service. In SoCC, 2010.

[10] R. S. Geiger. The Lives of Bots. Wikipedia: A Critical Point of View.
Amsterdam: Institute of Network Cultures, 2001.

[11] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung. Vision: Automated
Security Validation of Mobile Apps at App Markets. MCS, 2011.

[12] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A Generic
Method for Automatic Software Repair. TSE, 38(1):54–72, 2012.

[13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why Don’t
Software Developers Use Static Analysis Tools to Find Bugs? In ICSE,
2013.

[14] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary Guidelines for
Empirical Research in Software Engineering. TSE, 28(8):721–734, Aug.
2002.

[15] J. Marlow and L. Dabbish. Activity Traces and Signals in Software
Developer Recruitment and Hiring. In CSCW, 2013.

[16] M. Runeson, Perand Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131, 2008.

[17] C. Sadowski, J. van Gogh, C. Jaspan, E. Soederberg, and C. Winter.
Tricorder: Building a Program Analysis Ecosystem. In ICSE, 2015.

[18] M.-A. Storey and A. Zagalsky. Disrupting Developer Productivity One
Bot at a Time. In FSE, 2016.

[19] C. Treude and M. P. Robillard. Augmenting API Documentation with
Insights from Stack Overflow. In ICSE, 2016.

[20] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How Long Will
It Take to Fix This Bug? In MSR, 2007.

https://github.com/imageoptimiser
https://hubot.github.com/
http://en.wikipedia.org/wiki/User:ClueBot_NG
https://github.com/google/shipshape
http://www.reddit.com/r/botwatch/wiki/faq
http://www.wired.com/2012/12/github-bots/
http://www.wired.com/2012/12/github-bots/
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://en.wikipedia.org/wiki/Wikipedia:Bots
http://en.wikipedia.org/wiki/Wikipedia:Bots

