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Data centers, data 
centers, for all

• Cisco: traffic flowing through data centers will triple 
between 2014 and 2019 (reaching 10.4 ZB/year) 

• Wide variety of applications being hosted [Benson 
et al. IMC’10, Kanev et al. ISCA’15] 



More capacity + capabilities 
lead to more complex workloads

• Complex workload examples 

➡ Allocate a web-server, cache, database in a 
particular topology and with enough bandwidth 
to satisfy a certain QoS 

➡ Deploy a distributed compute task in which some 
nodes communicate a lot, and others rarely 

➡ Allocate a chain of NFV elements some of which 
require special hardware (GPUs)
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Observation 1:  
get(VM)-style API is inappropriate

Observation 2:  
It is more effective to allocate virtual data 
centers (VDCs), than virtual machines (VMs)



As DCs evolve, so must the programming 
models and allocation mechanisms

• Allocation one VM at a time: get(VM) 

• Sub-optimal for the provider and the customer 

• More info about an allocation: helps the provider plan 
and to effectively pack the data center 

• Customers benefit since they get the properties that they 
ultimately need
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In this talk
• Introduce virtual data center (VDC) allocation 

• Discuss prior work (there is lots of it, mostly in the 
networking community) 

• Describe NetSolver: our approach to solve VDC 
allocation (based on MonoSAT SMT-solver) 

• Show how NetSolver compares to other approaches



What’s the problem?
• Multi-path VDC allocation 

• Input 1: a (directed/undirected) physical DC topology 
(DC) with edge capacities/latencies and per-host 
constraints (disk/memory/CPU/GPU/etc) 

• Input 2: a virtual data center (VDC) that describe 
connectivity graph between VMs, and connectivity/VM 
requirements 

• Output: assignment of VMs to hosts, and virtual edges to 
physical paths (possibly multi-path) s.t. all constraints 
(end-to-end bandw, and VM) are satisfied and respect DC
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Related work dimensions
• Sound: respect end-to-end bandw. guarantees 

• VDC topology: Star/Hose/All 

• DC topology: Tree/All 

• Complete: finds a solution if a solution exists 

• Multi-VM: can map more than one VM to a host 

• Multi-path: supports multi-path allocations
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MonoSAT background

• Switch to other slide-deck



The MonoSAT constraint solver

MonoSAT is an SMT solver for monotonic theories.
MonoSAT supports:

Graph constraints (shortest paths, maximum flows. . . )

Finite state machines & string acceptance

Temporal logic (CTL) synthesis

2D polygonal geometry constraints

Bounded integer & cardinality constraints

Propositional logic (Boolean satisfiability)

Has C++, Python, and Java bindings

August 14, 2016 5 / 27



Finite Monotonic Predicates

A predicate p is positive monotonic i↵:

: p(. . . , x , . . .), x  y =) p(. . . , y , . . .)

A predicate p is negative monotonic i↵:

: ¬p(. . . , x , . . .), x  y =) ¬p(. . . , y , . . .)

Definition (Finite Monotonic Theory)

A theory T with signature ⌃ is finite monotonic i↵:

1 All sorts in ⌃ are finite, totally ordered;

2 all predicates in ⌃ are monotonic; and

3 all functions in ⌃ are monotonic.

August 14, 2016 6 / 27



Monotonic theories

Many useful predicates are monotonic:

Graph Predicates:
I Reachability
I Shortest paths
I Maximum s � t flow
I Minimum Spanning Tree
I Acyclicity

Finite state machine string acceptance

CTL model checking & synthesis

Convex hull intersection & containment

These are all monotonic theories

August 14, 2016 7 / 27



Monotonic predicates

‘Reachability’ is monotonic with respect to edges:
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Graph constraints in MonoSAT

MonoSAT supports constraints over one or more finite
graphs:

Combines arbitrary Boolean constraints with high
performance graph constraints.

Supported graph constraints
I Reachability
I Shortest paths
I Maximum s-t flow
I Minimum spanning tree
I Acyclicity

Graphs can be directed

Edges can have bit vector weights/capacities

Scales to 100,000s of nodes and edges

August 14, 2016 10 / 27



Graph constraints in MonoSAT

s_0

s_1a

s_2

b c s_3

d

e

(¬a _ ¬b) ^ (¬d _ ¬e) ^ reaches(s0, s3) ^ ¬reaches(s1, s3)

Figure : A directed graph with edge inclusion controlled by
Booleans {a, b, c , d , e}, and a formula constraining the graph.

Figure : Satisfying (left) and unsatisfying (right) solutions.
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Weighted graph constraints in MonoSAT
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(x > 1)^(x < y)^(y < 4)^(z = y)^(shortestPath(s0, s2)  3)

Figure : A directed graph with variable edge weights, and a
formula constraining those weights.

Figure : Satisfying (left) and unsatisfying (right) solutions.
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Maximum-flow graph constraints in MonoSAT

s_0

s_1x

s_2

y w s_3

v

z

(x  z  2)^(x > y)^(z > v)^(2  maximumFlow(s0, s2)  3)

Figure : A directed graph with variable edge weights, and a
formula constraining those weights.

Figure : Two satisfying solutions.
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Combined graph constraints in MonoSAT

s_0

s_1a,x

s_2

b,y c,w s_3

d,v

e,z

¬reaches(s0, s2) ^ shortestPath(s2, s3) = maximumFlow(s0, s3)

Figure : A graph with edge inclusion controlled by Booleans
{a, b, c , d , e}, and edge weights {v ,w , x , y , z}.

Figure : A satisfying solution.
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NetSolver design
• Basic idea: encode VDC allocation as a MonoSAT 

query. Either outputs a solution or one does not exist 

• Global constraints: connectivity and bandwidth 

• Local constraints: VMs respect host resources 

• Challenge: efficiency (e.g., each VM-VM path can be 
modeled as a max-flow constraint, these are 
expensive)



• Assume: that we know the VM-host assignments 

• Given: 

• Directed graph                      and integer constraints         
on each edge  

•      commodity demands,                                   
representing demand      between              and

Global constraints

G = (V,E) c(u, v)
(u, v) 2 E

K i 2 K, i = (si, ti, di)
di si 2 V ti 2 V

Demands (VDC):

Graph (DC):

ms1

s2

s3

2

1 1 33

4 4 4

2

22



• Integral multi-commodity flow problem: 

• Find feasible flow such that each     satisfied 

• For each edge           total flow of all capacities is

• Assume: that we know the VM to host assignment 

• Given: 

• Directed graph                      and integer constraints         
on each edge  

•      commodity demands,                                   
representing demand      between              and

Global constraints

G = (V,E) c(u, v)
(u, v) 2 E

K i 2 K, i = (si, ti, di)
di si 2 V ti 2 V

di

(u, v)  c(u, v)



Commodity flow encoding
• Create graphs                : one per demand with same 

topology as 

• For each edge                       create a new symbolic 
capacity  

• Assert: that 

• Assert: for each demand                        ,                        

• Solver’s task: find partitioning of capacities across     graphs 
while satisfying lower-bounds across all demands

G1. . . |K|
G

(u, v)i 2 Gi
c(u, v)i  c(u, v)

X

i

c(u, v)i  c(u, v)

i = (si, ti, di) max-flow(si, ti) � d

K



Modeling local constraints
• Construct a graph       that is the VDC and one node for each VM 

• For each VM    and each server            , create directed 
symbolic edge         with unlimited capacity;        controls 
allocation of     to servers 

• Assert: for each VM     , exactly on        enabled 

• Assert: for each server    , set of VMs assigned to    obey 
server’s local resources 

• Assert:     satisfies flow                   for each commodity 
constraint

G

v s 2 G
evs evs

v

evsv

s s

G (si, ti, di)



Further technical innovations
• Naive encoding slow:         max-flow constraints in 

worst case. Optimize by merging demands from 
same source 

• So far assumed that VDC topology constant: only 
works for allocating sequence of identical VDCs 

• To allocate diverse VDCs, encode superset of 
VDCs and use MonoSAT’s assumption 
mechanism to disable parts of this superset 
during allocation

|V |2



NetSolver Evaluation
• Key questions: 

• Can a sound+complete scale to realistic topologies? 

• Are there any practical benefits to being complete? 

• How does NetSolver compare to related work? 

• SecondNet (CoNEXT’10) 

• Z3-based abstraction refinement technique (FMCAD’13)



Identical VDC packing and 
median alloc runtime (Tree)

2000 servers, 16 cores; varying VDC sizes; Tree DC topologies



Identical VDC packing and median 
alloc runtime (BCube/FatTree)

512 servers, 16 
cores; varying 
VDC sizes; 
BCube DC 
topologies

432 servers, 16 
cores; varying 
VDC sizes; 
FatTree DC 
topologies



NFV chain allocation
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1200 servers; commercial DC 
topology; increasing chain 
bandwidth constraint



Extensibility
• NetSolver supports a variety of additional constraints

VDC
Affinity

Affinity

0/40/40/4

A B C

Affinity No hotspots

3/6 1/6 0/6

No-hotspot:

A B C

VDCB, C
C, C
C, B

Possible allocations

3/6 1/6 0/6

Minimize
utilized servers:

VDC
A, B
B, A
A, A
B, B

Possible allocations

Minimize utilized severs
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Virtual
Data Center

Contributions
• Developed NetSolver, a new VDC allocator 

• NetSolver encodes problem into MonoSAT. Can be 
reused for other problems: NFV placement, data 
migration, task distribution, etc 

• Improves DC capacity utilization by 300% over prior 
work (but slower than incomplete approaches) 

• Constraints-based approach flexibly extends to 
other kinds of constraints, such as (anti-)affinity


