
Scalable Constraint-based
Virtual Data Center Allocation

Sam Bayless
Nodir Kodirov

Ivan Beschastnikh
Holger H. Hoos

Alan J. Hu
University of British Columbia

Computer Science

Data centers, data
centers, for all

Data centers, data
centers, for all

…Flexible abstraction: Provider

Data centers, data
centers, for all

…Flexible abstraction: Provider

Customer
get(VM) ip

Data centers, data
centers, for all

• Cisco: traffic flowing through data centers will triple
between 2014 and 2019 (reaching 10.4 ZB/year)

• Wide variety of applications being hosted [Benson
et al. IMC’10, Kanev et al. ISCA’15]

More capacity + capabilities
lead to more complex workloads

• Complex workload examples

➡ Allocate a web-server, cache, database in a
particular topology and with enough bandwidth
to satisfy a certain QoS

➡ Deploy a distributed compute task in which some
nodes communicate a lot, and others rarely

➡ Allocate a chain of NFV elements some of which
require special hardware (GPUs)

VM

Customer

VM allocation

VM

Customer

VM

VM allocation

VM

Customer

VM

VM allocation

ToR

VM

Customer

VM VM

VM allocation

ToR

VM

Customer

VM VM

VM allocation

ToR

Aggregation
Switch

ToR

VM

Customer

VM VM

Customer’ Customer’’

VM

VM

VM

VM

VM allocation: multi-tenancy

VM

Customer

VM VM

Customer’ Customer’’

VM

VM

VM

VM

VM allocation

Observation 1:
get(VM)-style API is inappropriate

VM

Customer

VM VM

Customer’ Customer’’

VM

VM

VM

VM

VM allocation

Observation 1:
get(VM)-style API is inappropriate

Observation 2:
It is more effective to allocate virtual data
centers (VDCs), than virtual machines (VMs)

As DCs evolve, so must the programming
models and allocation mechanisms

• Allocation one VM at a time: get(VM)

• Sub-optimal for the provider and the customer

• More info about an allocation: helps the provider plan
and to effectively pack the data center

• Customers benefit since they get the properties that they
ultimately need

As DCs evolve, so do the programming
models and allocation mechanisms

• Allocation one VM at a time

• Sub-optimal for the provider and the customer

• More info about an allocation: helps the provider plan
and to effectively pack the data center

• Customers benefit since they get the properties that they
ultimately need

AWS Lambda
Amazon EMR

(Hadoop)

In this talk
• Introduce virtual data center (VDC) allocation

• Discuss prior work (there is lots of it, mostly in the
networking community)

• Describe NetSolver: our approach to solve VDC
allocation (based on MonoSAT SMT-solver)

• Show how NetSolver compares to other approaches

What’s the problem?
• Multi-path VDC allocation

• Input 1: a (directed/undirected) physical DC topology
(DC) with edge capacities/latencies and per-host
constraints (disk/memory/CPU/GPU/etc)

• Input 2: a virtual data center (VDC) that describe
connectivity graph between VMs, and connectivity/VM
requirements

• Output: assignment of VMs to hosts, and virtual edges to
physical paths (possibly multi-path) s.t. all constraints
(end-to-end bandw, and VM) are satisfied and respect DC

What’s the problem?
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

What’s the problem?
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

ms1

s2

s3
 1 core
2 GB[] 1 core

2 GB[] 1 core
2 GB[]

 1 core
2 GB[]

2

22

Virtual data
center (VDC):

What’s the problem?
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

ms1

s2

s3
 1 core
2 GB[] 1 core

2 GB[] 1 core
2 GB[]

 1 core
2 GB[]

2

22

Virtual data
center (VDC):

Output: Mapping

Example NetSolver solution
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

ms1

s2

s3
 1 core
2 GB[] 1 core

2 GB[] 1 core
2 GB[]

 1 core
2 GB[]

2

22

Virtual data
center (VDC):

Mapping 1:
VM -> host

ms1

s2

s3
 1 core
2 GB[] 1 core

2 GB[] 1 core
2 GB[]

 1 core
2 GB[]

2

22

Example NetSolver solution
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

Virtual data
center (VDC):

Mapping 1:
VM -> host

Mapping 2: VM-VM
edges -> paths

ms1

s2

s3
 1 core
2 GB[] 1 core

2 GB[] 1 core
2 GB[]

 1 core
2 GB[]

2

22

Example NetSolver solution
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

Virtual data
center (VDC):

Mapping 1:
VM -> host

Mapping 2: VM-VM
edges -> paths

ms1

s2

s3
 1 core
2 GB[] 1 core

2 GB[] 1 core
2 GB[]

 1 core
2 GB[]

2

22

Example NetSolver solution
2

ToR1 ToR2

AggSw2AggSw1

 2 core
4 GB[] 2 core

4 GB[] 2 core
4 GB[]

1 1 33

4 4 4

Physical DC
topology:

Virtual data
center (VDC):

Mapping 1:
VM -> host

Mapping 2: VM-VM
edges -> paths

Related work dimensions
• Sound: respect end-to-end bandw. guarantees

• VDC topology: Star/Hose/All

• DC topology: Tree/All

• Complete: finds a solution if a solution exists

• Multi-VM: can map more than one VM to a host

• Multi-path: supports multi-path allocations

Related work break-down

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11

54: Zhani et al. INM’13
43: Rost et al. CCR’15
50: Yu et al. SIGCOMM’08

15: Cheng et al. CCR’11
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09

31: Huang et al., ICC 2014

51: Yuan, FMCAD’13

Related work break-down

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11

54: Zhani et al. INM’13
43: Rost et al. CCR’15
50: Yu et al. SIGCOMM’08

15: Cheng et al. CCR’11
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09

31: Huang et al., ICC 2014

51: Yuan, FMCAD’13

Related work break-down

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11

54: Zhani et al. INM’13
43: Rost et al. CCR’15
50: Yu et al. SIGCOMM’08

15: Cheng et al. CCR’11
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09

31: Huang et al., ICC 2014

51: Yuan, FMCAD’13

Related work break-down

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11

54: Zhani et al. INM’13
43: Rost et al. CCR’15
50: Yu et al. SIGCOMM’08

15: Cheng et al. CCR’11
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09

31: Huang et al., ICC 2014

51: Yuan, FMCAD’13

Related work break-down

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11

54: Zhani et al. INM’13
43: Rost et al. CCR’15
50: Yu et al. SIGCOMM’08

15: Cheng et al. CCR’11
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09

31: Huang et al., ICC 2014

51: Yuan, FMCAD’13

Related work break-down

29: Guo et al. CoNEXT’10
48: Tantawi, MASCOTS’12
8: Ballani et al. CCR’11

54: Zhani et al. INM’13
43: Rost et al. CCR’15
50: Yu et al. SIGCOMM’08

15: Cheng et al. CCR’11
16: Chowdhury et al, INFOCOM’09
36: Lischika et al., VISA’09

31: Huang et al., ICC 2014

51: Yuan, FMCAD’13

MonoSAT background

• Switch to other slide-deck

The MonoSAT constraint solver

MonoSAT is an SMT solver for monotonic theories.
MonoSAT supports:

Graph constraints (shortest paths, maximum flows. . .)

Finite state machines & string acceptance

Temporal logic (CTL) synthesis

2D polygonal geometry constraints

Bounded integer & cardinality constraints

Propositional logic (Boolean satisfiability)

Has C++, Python, and Java bindings

August 14, 2016 5 / 27

Finite Monotonic Predicates

A predicate p is positive monotonic i↵:

: p(. . . , x , . . .), x  y =) p(. . . , y , . . .)

A predicate p is negative monotonic i↵:

: ¬p(. . . , x , . . .), x  y =) ¬p(. . . , y , . . .)

Definition (Finite Monotonic Theory)

A theory T with signature ⌃ is finite monotonic i↵:

1 All sorts in ⌃ are finite, totally ordered;

2 all predicates in ⌃ are monotonic; and

3 all functions in ⌃ are monotonic.

August 14, 2016 6 / 27

Monotonic theories

Many useful predicates are monotonic:

Graph Predicates:
I Reachability
I Shortest paths
I Maximum s � t flow
I Minimum Spanning Tree
I Acyclicity

Finite state machine string acceptance

CTL model checking & synthesis

Convex hull intersection & containment

These are all monotonic theories

August 14, 2016 7 / 27

Monotonic predicates

‘Reachability’ is monotonic with respect to edges:

1
2

3

4

August 14, 2016 9 / 27

Monotonic predicates

‘Reachability’ is monotonic with respect to edges:

1
2

3

4

August 14, 2016 9 / 27

Monotonic predicates

‘Reachability’ is monotonic with respect to edges:

1
2

3

4

August 14, 2016 9 / 27

Monotonic predicates

‘Reachability’ is monotonic with respect to edges:

1
2

3

4

August 14, 2016 9 / 27

Graph constraints in MonoSAT

MonoSAT supports constraints over one or more finite
graphs:

Combines arbitrary Boolean constraints with high
performance graph constraints.

Supported graph constraints
I Reachability
I Shortest paths
I Maximum s-t flow
I Minimum spanning tree
I Acyclicity

Graphs can be directed

Edges can have bit vector weights/capacities

Scales to 100,000s of nodes and edges

August 14, 2016 10 / 27

Graph constraints in MonoSAT

s_0

s_1a

s_2

b c s_3

d

e

(¬a _ ¬b) ^ (¬d _ ¬e) ^ reaches(s0, s3) ^ ¬reaches(s1, s3)

Figure : A directed graph with edge inclusion controlled by
Booleans {a, b, c , d , e}, and a formula constraining the graph.

Figure : Satisfying (left) and unsatisfying (right) solutions.

August 14, 2016 11 / 27

Graph constraints in MonoSAT

s_0

s_1a

s_2

b c s_3

d

e

(¬a _ ¬b) ^ (¬d _ ¬e) ^ reaches(s0, s3) ^ ¬reaches(s1, s3)

Figure : A directed graph with edge inclusion controlled by
Booleans {a, b, c , d , e}, and a formula constraining the graph.

s_0

s_1

s_2

b
s_3

e
s_0

s_1a

s_2

c s_3
e

Figure : Satisfying (left) and unsatisfying (right) solutions.

August 14, 2016 11 / 27

Weighted graph constraints in MonoSAT

s_1

s_2

y

s_0

x

z

(x > 1)^(x < y)^(y < 4)^(z = y)^(shortestPath(s0, s2)  3)

Figure : A directed graph with variable edge weights, and a
formula constraining those weights.

Figure : Satisfying (left) and unsatisfying (right) solutions.

August 14, 2016 12 / 27

Weighted graph constraints in MonoSAT

s_1

s_2

y

s_0

x

z

(x > 1)^(x < y)^(y < 4)^(z = y)^(shortestPath(s0, s2)  3)

Figure : A directed graph with variable edge weights, and a
formula constraining those weights.

s_1

s_2

3

s_0

2

3 s_0

s_11

s_22

2

Figure : Satisfying (left) and unsatisfying (right) solutions.

August 14, 2016 12 / 27

Maximum-flow graph constraints in MonoSAT

s_0

s_1x

s_2

y w s_3

v

z

(x  z  2)^(x > y)^(z > v)^(2  maximumFlow(s0, s2)  3)

Figure : A directed graph with variable edge weights, and a
formula constraining those weights.

Figure : Two satisfying solutions.

August 14, 2016 13 / 27

Maximum-flow graph constraints in MonoSAT

s_0

s_1x

s_2

y w s_3

v

z

(x  z  2)^(x > y)^(z > v)^(2  maximumFlow(s0, s2)  3)

Figure : A directed graph with variable edge weights, and a
formula constraining those weights.

s_0

s_12

s_2

0 2 s_3

0

2
s_0

s_12

s_2

1 2 s_3

1

2

Figure : Two satisfying solutions.

August 14, 2016 13 / 27

Combined graph constraints in MonoSAT

s_0

s_1a,x

s_2

b,y c,w s_3

d,v

e,z

¬reaches(s0, s2) ^ shortestPath(s2, s3) = maximumFlow(s0, s3)

Figure : A graph with edge inclusion controlled by Booleans
{a, b, c , d , e}, and edge weights {v ,w , x , y , z}.

Figure : A satisfying solution.

August 14, 2016 14 / 27

Combined graph constraints in MonoSAT

s_0

s_1a,x

s_2

b,y c,w s_3

d,v

e,z

¬reaches(s0, s2) ^ shortestPath(s2, s3) = maximumFlow(s0, s3)

Figure : A graph with edge inclusion controlled by Booleans
{a, b, c , d , e}, and edge weights {v ,w , x , y , z}.

s_0

s_1a,1

s_2

s_3

d,1

e,1

Figure : A satisfying solution.

August 14, 2016 14 / 27

NetSolver design
• Basic idea: encode VDC allocation as a MonoSAT

query. Either outputs a solution or one does not exist

• Global constraints: connectivity and bandwidth

• Local constraints: VMs respect host resources

• Challenge: efficiency (e.g., each VM-VM path can be
modeled as a max-flow constraint, these are
expensive)

• Assume: that we know the VM-host assignments

• Given:

• Directed graph and integer constraints
on each edge

• commodity demands,
representing demand between and

Global constraints

G = (V,E) c(u, v)
(u, v) 2 E

K i 2 K, i = (si, ti, di)
di si 2 V ti 2 V

Demands (VDC):

Graph (DC):

ms1

s2

s3

2

1 1 33

4 4 4

2

22

• Integral multi-commodity flow problem:

• Find feasible flow such that each satisfied

• For each edge total flow of all capacities is

• Assume: that we know the VM to host assignment

• Given:

• Directed graph and integer constraints
on each edge

• commodity demands,
representing demand between and

Global constraints

G = (V,E) c(u, v)
(u, v) 2 E

K i 2 K, i = (si, ti, di)
di si 2 V ti 2 V

di

(u, v)  c(u, v)

Commodity flow encoding
• Create graphs : one per demand with same

topology as

• For each edge create a new symbolic
capacity

• Assert: that

• Assert: for each demand ,

• Solver’s task: find partitioning of capacities across graphs
while satisfying lower-bounds across all demands

G1. . . |K|
G

(u, v)i 2 Gi
c(u, v)i  c(u, v)

X

i

c(u, v)i  c(u, v)

i = (si, ti, di) max-flow(si, ti) � d

K

Modeling local constraints
• Construct a graph that is the VDC and one node for each VM

• For each VM and each server , create directed
symbolic edge with unlimited capacity; controls
allocation of to servers

• Assert: for each VM , exactly on enabled

• Assert: for each server , set of VMs assigned to obey
server’s local resources

• Assert: satisfies flow for each commodity
constraint

G

v s 2 G
evs evs

v

evsv

s s

G (si, ti, di)

Further technical innovations
• Naive encoding slow: max-flow constraints in

worst case. Optimize by merging demands from
same source

• So far assumed that VDC topology constant: only
works for allocating sequence of identical VDCs

• To allocate diverse VDCs, encode superset of
VDCs and use MonoSAT’s assumption
mechanism to disable parts of this superset
during allocation

|V |2

NetSolver Evaluation
• Key questions:

• Can a sound+complete scale to realistic topologies?

• Are there any practical benefits to being complete?

• How does NetSolver compare to related work?

• SecondNet (CoNEXT’10)

• Z3-based abstraction refinement technique (FMCAD’13)

Identical VDC packing and
median alloc runtime (Tree)

2000 servers, 16 cores; varying VDC sizes; Tree DC topologies

Identical VDC packing and median
alloc runtime (BCube/FatTree)

512 servers, 16
cores; varying
VDC sizes;
BCube DC
topologies

432 servers, 16
cores; varying
VDC sizes;
FatTree DC
topologies

NFV chain allocation
4 CPU core
0 GPU core
8 GB RAM
0 TB SSD

Intrusion
Prevention

System
Video

OptimizerFirewall Cache Parental
Control

2 CPU core
4 GPU core
8 GB RAM
0 TB SSD

 2 CPU core
 0 GPU core
 4 GB RAM
10 TB SSD

2 2 2 2

4 CPU core
0 GPU core
8 GB RAM
0 TB SSD

4 CPU core
0 GPU core
8 GB RAM
0 TB SSD

NFV chain allocation
4 CPU core
0 GPU core
8 GB RAM
0 TB SSD

Intrusion
Prevention

System
Video

OptimizerFirewall Cache Parental
Control

2 CPU core
4 GPU core
8 GB RAM
0 TB SSD

 2 CPU core
 0 GPU core
 4 GB RAM
10 TB SSD

2 2 2 2

4 CPU core
0 GPU core
8 GB RAM
0 TB SSD

4 CPU core
0 GPU core
8 GB RAM
0 TB SSD

1200 servers; commercial DC
topology; increasing chain
bandwidth constraint

Extensibility
• NetSolver supports a variety of additional constraints

VDC
Affinity

Affinity

0/40/40/4

A B C

Affinity No hotspots

3/6 1/6 0/6

No-hotspot:

A B C

VDCB, C
C, C
C, B

Possible allocations

3/6 1/6 0/6

Minimize
utilized servers:

VDC
A, B
B, A
A, A
B, B

Possible allocations

Minimize utilized severs

VMVM

VM

VM

Physical
Data Center ToR1 ToR2

AggSw2AggSw1

Virtual
Data Center

Contributions
• Developed NetSolver, a new VDC allocator

• NetSolver encodes problem into MonoSAT. Can be
reused for other problems: NFV placement, data
migration, task distribution, etc

• Improves DC capacity utilization by 300% over prior
work (but slower than incomplete approaches)

• Constraints-based approach flexibly extends to
other kinds of constraints, such as (anti-)affinity

