Scalable Constraint-based Virtual Data Center Allocation

Sam Bayless Nodir Kodirov Ivan Beschastnikh Holger H. Hoos Alan J. Hu

Computer Science

University of British Columbia

Data centers, data centers, for all

Data centers, data seven lork Eines NETFUX Centers, for all

Flexible abstraction:

Data centers, data seven berk cimes NETFUX Centers, for all

Flexible abstraction:

Data centers, data centers, for all

- Cisco: traffic flowing through data centers will **triple** between 2014 and 2019 (reaching 10.4 ZB/year)
- Wide variety of applications being hosted [Benson et al. IMC'10, Kanev et al. ISCA'15]

More capacity + capabilities lead to more complex workloads

- Complex workload examples
 - Allocate a web-server, cache, database in a particular topology and with enough bandwidth to satisfy a certain QoS
 - Deploy a distributed compute task in which some nodes communicate a lot, and others rarely
 - Allocate a chain of NFV elements some of which require special hardware (GPUs)

Customer

Customer

Customer

VM allocation: multi-tenancy

Observation 1: get(VM)-style API is inappropriate

Observation 1: get(VM)-style API is inappropriate

Observation 2: It is more effective to allocate virtual data centers (VDCs), than virtual machines (VMs)

Customer' Customer Customer'

As DCs evolve, so must the programming models and allocation mechanisms

- Allocation one VM at a time: get(VM)
 - Sub-optimal for the provider <u>and</u> the customer
 - More info about an allocation: helps the provider plan and to effectively pack the data center
 - Customers benefit since they get the properties that they ultimately need

As DCs evolve, so do the programming models and allocation mechanisms

- Allocation one VM at a time
 - Sub-optimal for the provider <u>and</u> the customer
 - More info about an allocation: helps the provider plan and to effectively pack the data center
 - Customers benefit since they get the properties that they ultimately need

AWS Lambda

In this talk

- Introduce virtual data center (VDC) allocation
- Discuss prior work (there is lots of it, mostly in the networking community)
- Describe NetSolver: our approach to solve VDC allocation (based on MonoSAT SMT-solver)
- Show how NetSolver compares to other approaches

- Multi-path VDC allocation
 - Input 1: a (directed/undirected) physical DC topology (DC) with edge capacities/latencies and per-host constraints (disk/memory/CPU/GPU/etc)
 - Input 2: a virtual data center (VDC) that describe connectivity graph between VMs, and connectivity/VM requirements
 - <u>Output</u>: assignment of VMs to hosts, and virtual edges to physical paths (possibly multi-path) s.t. all constraints (end-to-end bandw, and VM) are satisfied and respect DC

Physical DC topology:

Physical DC topology:

Related work dimensions

- Sound: respect end-to-end bandw. guarantees
- VDC topology: Star/Hose/All
- DC topology: Tree/All
- Complete: finds a solution if a solution exists
- Multi-VM: can map more than one VM to a host
- Multi-path: supports multi-path allocations

Algorithm	Sound	VDC Topology	Data Center Topology	Complete	Multi-VM	Multi-path
SecondNet [29]	-					
Importance Sampling [48]						
Oktopus [8]						
VDCPlanner [54]						
HVC-ACE [43]						
GAR-SP/PS [50]						
RW-MM-SP/PS [15]						
D-ViNE [16]						
ASID [36]						
VirtualRack [31]						
Z3-AR [51]						
NETSOLVER (this paper)	-			-	-	-

29: Guo et al. CoNEXT'10	54: Zhani et al. INM'13	15: Cheng et al. CCR'11	31: Huang et al., ICC 2014
48: Tantawi, MASCOTS'12	43: Rost et al. CCR'15	16: Chowdhury et al, INFOCO	09°MC
8: Ballani et al. CCR'11	50: Yu et al. SIGCOMM'08	36: Lischika et al., VISA'09	51: Yuan, FMCAD'13

Algorithm	Sound	VDC Topology	Data Center Topology	Complete	Multi-VM	Multi-path
SecondNet [29]	-					
Importance Sampling [48]						
Oktopus [8]						
VDCPlanner [54]						
HVC-ACE [43]						
GAR-SP/PS [50]						
RW-MM-SP/PS [15]						
D-ViNE [16]						
ASID [36]						
VirtualRack [31]						
Z3-AR [51]						
NETSOLVER (this paper)	\checkmark	All	All	\checkmark	\checkmark	\checkmark

Algorithm	Sound	VDC Topology	Data Center Topology	Complete	Multi-VM	Multi-path
SecondNet [29]	\checkmark	All	All			
Importance Sampling [48]	 ✓ 	All	Tree		\checkmark	
Oktopus [8]	 ✓ 	Star	All		\checkmark	
VDCPlanner [54]	 ✓ 	All	All		\checkmark	
HVC-ACE [43]	 ✓ 	Hose	All		\checkmark	\checkmark
GAR-SP/PS [50]	 ✓ 	All	< 200 nodes		\checkmark	\checkmark
RW-MM-SP/PS [15]	 ✓ 	All	< 200 nodes			\checkmark
D-ViNE [16]	\checkmark	All	< 200 nodes			\checkmark
ASID [36]	 ✓ 	All	< 200 nodes			
VirtualRack [31]	 ✓ 	Hose	All	\checkmark		
Z3-AR [51]	\checkmark	All	Tree	\checkmark	\checkmark	
NETSOLVER (this paper)	\checkmark	All	All	\checkmark	~	✓

Algorithm	Sound	VDC Topology	Data Center Topology	Complete	Multi-VM	Multi-path
SecondNet [29]	\checkmark	All	All			
Importance Sampling [48]	\checkmark	All	Tree		\checkmark	
Oktopus [8]	\checkmark	Star	All		\checkmark	
VDCPlanner [54]	\checkmark	All	All		\checkmark	
HVC-ACE [43]	\checkmark	Hose	All		\checkmark	\checkmark
GAR-SP/PS [50]	\checkmark	All	< 200 nodes		\checkmark	\checkmark
RW-MM-SP/PS [15]	\checkmark	All	< 200 nodes			\checkmark
D-ViNE [16]	\checkmark	All	< 200 nodes			\checkmark
ASID [36]	\checkmark	All	< 200 nodes			
VirtualRack [31]	\checkmark	Hose	All	\checkmark		
Z3-AR [51]	\checkmark	All	Tree	\checkmark	\checkmark	
NETSOLVER (this paper)	\checkmark	All	All	\checkmark	✓	✓

Algorithm	Sound	VDC Topology	Data Center Topology	Complete	Multi-VM	Multi-path
SecondNet [29]	\checkmark	All	All			
Importance Sampling [48]	1	All	Tree		\checkmark	
Oktopus [8]	 ✓ 	Star	All		\checkmark	
VDCPlanner [54]	 ✓ 	All	All		\checkmark	
HVC-ACE [43]	 ✓ 	Hose	All		\checkmark	\checkmark
GAR-SP/PS [50]	 ✓ 	All	< 200 nodes		\checkmark	\checkmark
RW-MM-SP/PS [15]	 ✓ 	All	< 200 nodes			\checkmark
D-ViNE [16]	 ✓ 	All	< 200 nodes			\checkmark
ASID [36]	 ✓ 	All	< 200 nodes			
VirtualRack [31]	 ✓ 	Hose	All	\checkmark		
Z3-AR [51]	\checkmark	All	Tree	\checkmark	\checkmark	
NETSOLVER (this paper)	~	All	All	✓	~	\checkmark

29: Guo et al. CoNEXT'10 48: Tantawi, MASCOTS'12 8: Ballani et al. CCR'11

54: Zhani et al. INM'1343: Rost et al. CCR'1550: Yu et al. SIGCOMM'08

15: Cheng et al. CCR'11 31: Huang et al., ICC 2014

16: Chowdhury et al, INFOCOM'09

36: Lischika et al., VISA'09

51: Yuan, FMCAD'13

Algorithm	Sound	VDC Topology	Data Center Topology	Complete	Multi-VM	Multi-path
SecondNet [29]	\checkmark	All	All			
Importance Sampling [48]	✓	All	Tree		\checkmark	
Oktopus [8]	 ✓ 	Star	All		\checkmark	
VDCPlanner [54]	 ✓ 	All	All		\checkmark	
HVC-ACE [43]	✓	Hose	All		\checkmark	\checkmark
GAR-SP/PS [50]	 ✓ 	All	< 200 nodes		\checkmark	\checkmark
RW-MM-SP/PS [15]	 ✓ 	All	< 200 nodes			\checkmark
D-ViNE [16]	 ✓ 	All	< 200 nodes			\checkmark
ASID [36]	 ✓ 	All	< 200 nodes			
VirtualRack [31]	\checkmark	Hose	All	\checkmark		
Z3-AR [51]	\checkmark	All	Tree	\checkmark	\checkmark	
NETSOLVER (this paper)	\checkmark	All	All	\checkmark	\checkmark	\checkmark

MonoSAT background

• Switch to other slide-deck

The MONOSAT constraint solver

MONOSAT is an SMT solver for monotonic theories. MONOSAT supports:

- Graph constraints (shortest paths, maximum flows...)
- Finite state machines & string acceptance
- Temporal logic (CTL) synthesis
- 2D polygonal geometry constraints
- Bounded integer & cardinality constraints
- Propositional logic (Boolean satisfiability)
- Has C++, Python, and Java bindings

Finite Monotonic Predicates

A predicate p is positive monotonic iff:

• :
$$p(\ldots, x, \ldots), x \leq y \implies p(\ldots, y, \ldots)$$

A predicate p is negative monotonic iff:

• :
$$\neg p(\ldots, x, \ldots), x \leq y \implies \neg p(\ldots, y, \ldots)$$

Monotonic theories

Many useful predicates are monotonic:

- Graph Predicates:
 - Reachability
 - Shortest paths
 - ► Maximum s − t flow
 - Minimum Spanning Tree
 - Acyclicity

Graph constraints in MONOSAT

MONOSAT supports constraints over one or more finite graphs:

- Combines arbitrary Boolean constraints with high performance graph constraints.
- Supported graph constraints
 - Reachability
 - Shortest paths
 - Maximum s-t flow
 - Minimum spanning tree
 - Acyclicity
- Graphs can be directed
- Edges can have bit vector weights/capacities
- Scales to 100,000s of nodes and edges

Graph constraints in MONOSAT

$$(\neg a \lor \neg b) \land (\neg d \lor \neg e) \land reaches(s_0, s_3) \land \neg reaches(s_1, s_3)$$

Figure : A directed graph with edge inclusion controlled by Booleans $\{a, b, c, d, e\}$, and a formula constraining the graph.

Graph constraints in MONOSAT

$$(\neg a \lor \neg b) \land (\neg d \lor \neg e) \land reaches(s_0, s_3) \land \neg reaches(s_1, s_3)$$

Figure : A directed graph with edge inclusion controlled by Booleans $\{a, b, c, d, e\}$, and a formula constraining the graph.

Figure : Satisfying (left) and unsatisfying (right) solutions.

Weighted graph constraints in MONOSAT

$$(x > 1) \land (x < y) \land (y < 4) \land (z = y) \land (shortestPath(s_0, s_2) \le 3)$$

Figure : A directed graph with variable edge weights, and a formula constraining those weights.

Weighted graph constraints in MONOSAT

$$(x > 1) \land (x < y) \land (y < 4) \land (z = y) \land (shortestPath(s_0, s_2) \le 3)$$

Figure : A directed graph with variable edge weights, and a formula constraining those weights.

Figure : Satisfying (left) and unsatisfying (right) solutions.

Maximum-flow graph constraints in MONOSAT

 $(x \le z \le 2) \land (x > y) \land (z > v) \land (2 \le maximumFlow(s_0, s_2) \le 3)$

Figure : A directed graph with variable edge weights, and a formula constraining those weights.

Maximum-flow graph constraints in MONOSAT

 $(x \le z \le 2) \land (x > y) \land (z > v) \land (2 \le maximumFlow(s_0, s_2) \le 3)$

Figure : A directed graph with variable edge weights, and a formula constraining those weights.

Figure : Two satisfying solutions.

Combined graph constraints in MONOSAT

 \neg reaches $(s_0, s_2) \land$ shortestPath $(s_2, s_3) = maximumFlow(s_0, s_3)$

Figure : A graph with edge inclusion controlled by Booleans $\{a, b, c, d, e\}$, and edge weights $\{v, w, x, y, z\}$.

Combined graph constraints in MONOSAT

 \neg reaches $(s_0, s_2) \land$ shortestPath $(s_2, s_3) = maximumFlow(s_0, s_3)$

Figure : A graph with edge inclusion controlled by Booleans $\{a, b, c, d, e\}$, and edge weights $\{v, w, x, y, z\}$.

Figure : A satisfying solution.

NetSolver design

- Basic idea: encode VDC allocation as a MonoSAT query. Either outputs a solution or one does not exist
 - Global constraints: connectivity and bandwidth
 - Local constraints: VMs respect host resources
- <u>Challenge</u>: efficiency (e.g., each VM-VM path can be modeled as a max-flow constraint, these are expensive)

Global constraints

- **Assume**: that we know the VM-host assignments
- Given:
 - Directed graph G = (V, E) and integer constraints c(u, v) on each edge $(u, v) \in E$
 - K commodity demands, $i \in K, i = (s_i, t_i, d_i)$ representing demand d_i between $s_i \in V$ and $t_i \in V$

Global constraints

- **Assume:** that we know the VM to host assignment
- Given:
 - Directed graph G = (V, E) and integer constraints c(u, v) on each edge $(u, v) \in E$
 - K commodity demands, $i \in K, i = (s_i, t_i, d_i)$ representing demand d_i between $s_i \in V$ and $t_i \in V$
- Integral multi-commodity flow problem:
 - Find feasible flow such that each d_i satisfied
 - For each edge (u, v) total flow of all capacities is $\leq c(u, v)$

Commodity flow encoding

- Create graphs $G_{1 \ldots \, |K|}$: one per demand with same topology as G
- For each edge $(u,v)_i \in G_i\,$ create a new symbolic capacity $c(u,v)_i \leq c(u,v)$
- Assert: that $\sum_{i} c(u, v)_i \leq c(u, v)$
- Assert: for each demand $i = (s_i, t_i, d_i)$, max-flow $(s_i, t_i) \ge d$
- Solver's task: find partitioning of capacities $\operatorname{across} K$ graphs while satisfying lower-bounds $\operatorname{across} all demands$

Modeling local constraints

- Construct a graph $G\,$ that is the VDC and one node for each VM
- For each VM v and each server $s \in G$, create directed symbolic edge e_{vs} with unlimited capacity; e_{vs} controls allocation of v to servers
- Assert: for each VM v , exactly on e_{vs} enabled
- **Assert**: for each server *s*, set of VMs assigned to *s* obey server's local resources
- Assert: G satisfies flow (s_i, t_i, d_i) for each commodity constraint

Further technical innovations

- Naive encoding slow: $|V|^2$ max-flow constraints in worst case. Optimize by merging demands from same source
- So far assumed that VDC topology constant: only works for allocating sequence of identical VDCs
 - To allocate diverse VDCs, encode superset of VDCs and use MonoSAT's assumption mechanism to disable parts of this superset during allocation

NetSolver Evaluation

- Key questions:
 - Can a sound+complete scale to realistic topologies?
 - Are there any practical benefits to being complete?
 - How does NetSolver compare to related work?
 - SecondNet (CoNEXT'10)
 - Z3-based abstraction refinement technique (FMCAD'13)

Identical VDC packing and median alloc runtime (Tree)

2000 servers, 16 cores; varying VDC sizes; Tree DC topologies

Identical VDC packing and median alloc runtime (BCube/FatTree)

512 servers, 16 cores; varying VDC sizes; BCube DC topologies

432 servers, 16 cores; varying VDC sizes; FatTree DC topologies

NFV chain allocation

NFV chain allocation

bandwidth constraint

Extensibility

• NetSolver supports a variety of additional constraints

Affinity

No hotspots

Minimize utilized severs

Contributions

- Developed NetSolver, a new VDC allocator
 - NetSolver encodes problem into MonoSAT. Can be reused for other problems: NFV placement, data migration, task distribution, etc
 - Improves DC capacity utilization by 300% over prior work (but slower than incomplete approaches)
 - Constraints-based approach flexibly extends to other kinds of constraints, such as (anti-)affinity