
Ivan Beschastnikh Research Statement

Billions of people rely on correct and efficient execution of large systems, such as the distributed systems
that power Google and Facebook. Yet these systems are enormously complex and are challenging to build
and understand. My research aims to improve the design, implementation, and operation of large systems
by using techniques from the areas of systems and software engineering. I design, implement, and deploy
a variety of experimental research systems, then leverage these experiences to develop techniques and tools
that help developers of large systems better understand and debug their implementations.

Distributed systems
In building systems, I focus on formulating new designs and organization principles. The following is a
summary of some of the systems that I have contributed to.

1. Scatter: scaling consistency

A distributed hash table (DHT) distributes a set of keys across multiple machines to achieve fault tolerance
and scalability. To access a key’s value in the DHT, a client sends a request to a machine in the system,
which routes the request to the right machine. Traditional proposals for DHTs suffer from data and routing
inconsistencies. These inconsistencies complicate the design of systems that use DHTs as middleware. Scat-
ter [C2]1 is a DHT design achieves serializable consistency semantics for all operations in the system without
sacrificing performance, scalability, and other DHT advantages. Scatter’s key contribution is an abstraction of
coordinating replica sets, which are implemented as groups of machines running the Paxos protocol.

2. Sonora: a platform for continuous mobile-cloud services

Numerous mobile applications stand to benefit from cloud computing and storage. However, mobile de-
vices continuously generate information (e.g., GPS readings), while compute platforms, such as Hadoop,
are designed for batch processing. The Sonora platform [N3] bridges this gap by coherently integrating
a broad range of existing techniques, from streaming databases to mobile networking. Developers use a
high-level event-driven API and a framework based on LINQ to express continuous mobile-cloud services
with a single language. The platform supports disconnected operation, basic synchronization primitives,
and other features essential for robust mobile applications. On the cloud side, Sonora implements advanced
load balancing and failure recovery algorithms to provide scalable, responsive, and fault-tolerant computa-
tion.

3. Seattle2 and SatelliteLab distributed testbeds.

Systems researchers rely on testbeds to evaluate their prototypes in realistic environments. The Seattle
testbed [C4, C5] harnesses resources contributed by volunteer participants from around the world to provide
researchers with a highly realistic peer-to-peer distributed testbed composed of a wide variety of devices.
Seattle’s design solves the unique challenge of executing untrusted code on user machines. Seattle has been
used at over a dozen universities world-wide for teaching courses in networks and distributed systems.
The goal of the SatelliteLab testbed [C6] is to improve heterogeneity of an existing parent testbed, such
as PlanetLab. The key idea is to separate computation from traffic routing: computation resides on over-
provisioned planet nodes, associated with the parent testbed, while light weight satellite nodes route traffic
between planets. By placing satellites in edge networks, the traffic is exposed to more realistic Internet
network conditions, which improves network heterogeneity and testbed realism.

Modeling systems from observations of their behavior
My own experiences in system building motivated me to address the challenges that developers and opera-
tors face in debugging, evaluating, and reasoning about large systems. A key challenge is knowing whether
an implementation does what it was designed to do. My research helps developers make sense of their
systems by leveraging the extensive logs generated by large systems. I have developed techniques to infer

1References can be found in my curriculum vitae.
2https://seattle.cs.washington.edu

Ivan Beschastnikh - Research Statement Page 1 of 3

https://seattle.cs.washington.edu


models from logs of sequential and distributed systems, and I have implemented these techniques as part of
the Synoptic [C3, J1] and Dynoptic [U1, N1] tools. In evaluating these tools, we found that the generated
models helped developers identify new bugs, confirm existing bugs, and increased developers’ confidence
in their implementations. Both tools process the logs most systems already produce and require develop-
ers only to specify a set of regular expressions for parsing the logs. To unify model inference algorithms I
developed InvariMint [C1, N2], a technique to specify model inference algorithms declaratively. I will now
describe each of the three tools in more detail3.

1. Synoptic: inferring models of sequential systems

invalid-coupon

valid-coupon reduce-price

check-out

get-credit-cardcheck-outSynoptic infers a concise and accurate system model in the
form of a finite state machine (FSM) from a set of logged ex-
ecution traces. Developers can use these models to better un-
derstand their systems’ behavior and find bugs. For example,
the shopping cart application model at the right is simple to
inspect and the buggy transition (invalid-coupon to reduce-price) is easy to spot, while the same bug
would be hard to catch in a log. Synoptic models can also aid verification and test-case generation.

Two features distinguish Synoptic from other tools. First, Synoptic’s models preserve key temporal invariants
mined from the log, making them more accurate. Second, Synoptic uses refinement to derive the model,
which is more efficient than traditional coarsening algorithms.

Synoptic’s input is a log of system execution traces, each of which is a totally ordered sequence of events. (1)
Synoptic mines a set of temporal invariants that capture the essential behavior traits of the system, such as
“open is always eventually followed by close” and “rcv always precedes snd”. (2) Synoptic builds an initial FSM
model that accepts all of the logged executions, but also many invalid executions. (3) Synoptic iteratively
identifies invalid paths in the FSM (those that violate the mined invariants) and eliminates them by refining
the model. The final Synoptic-derived model always satisfies all of the mined invariants and is a locally-
minimal model (finding the global minimum is an NP-complete problem).

Synoptic was applied to logs generated by the Reverse Traceroute system, which is deployed at a large
Internet company. In the first five minutes of inspecting the model a developer identified a previously
unknown bug, and confirmed an existing bug and better understood its scope. In a distributed systems
class, students found protocol bugs with Synoptic-generated models and reported that the tool increased
their confidence in their implementations.

2. Dynoptic: inferring models of networked systems

0 11 0tx m

rx ack

rx m

tx ack

Process 1 Process 2Synoptic works on totally ordered logs, like those generated by
a sequential program. By contrast, Dynoptic infers a commu-
nicating finite state machine (CFSM) from a partially ordered
log generated by a distributed or concurrent system. A CFSM
model describes each process as an FSM extended with com-
munication events; processes communicate by sending and receiving messages over reliable FIFO queues.
The model to the right is an example CFSM for a two-process system that describes a simple stop-and-wait
protocol: process 1 transmits a message (tx m) to process 2, which receives it (rx m) and responds with an
ack. CFSMs are intuitive and simpler to comprehend than alternative formalisms (e.g., a Petri net). For
example, a single process FSM in a CFSM can be inspected and understood without needing to understand
the other process FSMs. Yet, CFSMs are powerful enough to model protocols and distributed systems.

Dynoptic is the first tool to automatically infer CFSM models from observations. Prior tools that infer CF-
SMs require significant manual user input, or are theoretical proposals that have not been experimentally
validated. We evaluated Dynoptic by using it to reconstruct the models of the TCP opening and closing hand-
shakes, as well as the replication strategy in Voldemort, a data storage system deployed at LinkedIn.

3. InvariMint: model inference as combination of model properties

Many model inference algorithms have been proposed in the research literature. These proposals vary in
how they describe the algorithms, which makes it difficult to compare, combine, and understand these

3All tools are open source: http://synoptic.googlecode.com

Ivan Beschastnikh - Research Statement Page 2 of 3

http://synoptic.googlecode.com


algorithms. In coming up with new model inference algorithms, I realized that many algorithms can be
expressed as combinations of ordering constraints mined from the input executions. That is, the models
these algorithms infer always satisfy particular properties of the observed executions.

1 2
close

open

{open}⌃\ {close}⌃\
\ 1

3

snd

rcv 2

{rcv, snd}⌃\

⌃

⌃

open always followed by close rcv always precedes sndFor example, the two FSMs on the right capture
two example invariants that an invocation of Syn-
optic might preserve. Further, because intersection
of FSMs can be done efficiently, the InvariMint-
specified model can be derived faster than with Syn-
optic.

The above example illustrates the InvariMint approach to model inference, which uses a set of formalisms to
express model inference algorithms declaratively. By specifying Synoptic and kTails (one of the most widely
used model inference algorithms) with InvariMint, we showed that InvariMint leads to new insights and
better understanding of existing algorithms. As well, InvariMint simplifies the creation of new algorithms,
including hybrids that extend existing algorithms by including new property types. InvariMint also makes
it easy to compare and contrast different approaches and is over 100 times faster than equivalent procedural
implementations.

Software systems are necessarily social—the people involved and their practices (e.g., code review habits)
shape the software artifact as much as the tools and technical specifications. My research in computer
supported collaborative work focused on the practices of editors in the Wikipedia community [C7, C8, C9].
This work deepened our understanding of editor work practices, the site’s policy and governance structure,
and the influence of rhetoric and editor power on article content. This work received a best paper award at
ICWSM 2008 and a best paper nomination at CSCW 2008.

Future research directions
I plan to continue bridging the areas of systems and software engineering by empowering systems developers
with tools that help them understand and debug their implementations.

Near future: new approaches to model inference

In practice, model inference tools are unwieldy, as they only capture those behaviors that have been observed,
and take a long time to run. In large systems, the set of observed behaviors is never complete, and it is
expensive to re-compute the model whenever the system changes or new behaviors are observed. I will
design techniques to update the inferred models to accommodate new behavior and remove old behaviors
(e.g., if some behaviors are no longer valid because of a bug fix).

Current model inference algorithms focus on events, and reason only implicitly about state (e.g., as sequences
of events). However, logs often contain explicit state information, or this information can be captured by
instrumenting the system. I plan to develop techniques to explicitly integrate state into the model inference
process to infer more accurate and richer models. The resulting models, with user-defined state labels, will
be more comprehensive and can be used for new kinds of model-based analysis (e.g., test generation guided
by abstract state coverage).

Longer term: testing large systems and energy debugging

One challenging aspect of building large systems that interests me is testing—large systems are difficult
to test because they have many possible behaviors. Most systems developers, therefore, concentrate on
testing a small set of carefully selected code paths. I want to understanding how developers determine
which behaviors are most important to test, and will develop techniques to automatically generate tests for
large systems. For this, I plan to leverage symbolic execution, repository mining techniques, and formal
methods.

I plan to expand my focus towards important new problem domains, such as energy debugging on mobile
devices. Energy bugs are a serious issue for mobile application developers. However, there are few tools
that can help developers understand the energy profile of their code. I plan to develop dynamic and static
analysis techniques that can guide developers to energy hot-spots in their code.

Ivan Beschastnikh - Research Statement Page 3 of 3


