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Particle Methods for Bayesian Modeling and
Enhancement of Speech Signals

Jaco Vermaak, Christophe Andrieu, Arnaud Doucet, and Simon John Godsill

Abstract—This paper applies time-varying autoregressive changing, sometimes slowly, sometimes rapidly (e.g., during
(TVAR) models with stochastically evolving parameters to the plosive sounds and speech transitions). To partly reconcile
problem of speech modeling and enhancement. The stochastlcthe time-varying character of the vocal tract with the time

evolution models for the TVAR parameters are Markovian diffu- . . fth del hi I d in short
sion processes. The main aim of the paper is to perform on-line invarance or ine mMoael, Speech IS Normaily processed in snor

estimation of the clean speech and model parameters and to (POSsibly overlapping) segments or frames, during each of
determine the adequacy of the chosen statistical models. Efficient which the signal is assumed to be stationary. However, since
particle methods are developed to solve the optimal filtering and  the framing is definea priori with no relation to the phonetic
fixed-lag smoothing problems. The algorithms combine sequential jntqrmation, nonstationary frames are still likely to occur, even

importance sampling (SIS), a selection step and Markov chain . .
Monte Carlo (MCMC) methods. They employ several variance for very short analysis intervals. In these circumstances nonsta-
reduction strategies to make the best use of the statistical structure tionary models may provide more true-to-life approximations

of the model. It is also shown how model adequacy may be deter- of the behavior of the vocal tract.

mined by gombining the particle filter with frequentist methods. One such model is the time-varying AR (TVAR) process.

The modeling and enhancement performance of the models and \;els within this general class have been applied in the con-

estimation algorithms are evaluated in simulation studies on both - .

synthetic and real speech data sets. text of speech modeling and enhan_cement bef(_)re in, eg., [8],
[15], [16], [23]. The TVAR process is a generalization of the

' standard AR process where the model parameters are allowed
to vary with time. In [30] a TVAR speech production model
with stochastically evolving parameters is adopted and shown

|. INTRODUCTION to outperform standard AR process models in terms of objec-

WIDELY USED and popular model for the speecﬁive speech modeling and enhancement criteria. This model is
A production system is the autoregressive (AR) proce@lsslo ag(())p'[tid here. h sianal is still d f b
[27]. This model exploits the local correlations in a time series n[ b], ne sgeec s;gna Ihstshl procctast§e on a trame—f t>;1
by forming the prediction for the current sample as a Iine!;lrr‘ilme asis and even though the nonstationary nature ol the
combination of the immediately preceding samples. In practigéOdel allows for longer analysis intervals, undesired blocking
clean speech signals are rarely available, the speech b Igactsstillremain and discontinuities at the boundaries cannot
contaminated by some background or épplication—speci gcompletely eliminated. Also, the iterative nature of the batch
noise process. Fortunately, most of these may be adequa?esl jmation algorithms makes them unsuitable for real-time or
modeled as a slowly time-varying white Gaussian or Gaussi%f} r reaIItlmg |mplement.<|’:1t|t())lns. In mci.st"speec; aptpr)]hcatlons,
mixture process that additively combines with the clean spee samples become avaiiable sequentially, making them more
signal. This is the approach taken with success in, e.g [1%1|ted for on-line estimation methods. The development of such
and [22] and is hence also adopted here. strategies is the main focus Of.this Paper. o

The main shortcoming of the AR speech production modeIThe TVAR speech and noise process model facilitates a

is obvious. Associated with the AR coefficients is an articul2{¢-SPace representation. Within a sequential framework

tory configuration that remains fixed throughout the analys%ene,ral FECUrSIVE eXpressions may be de”"e‘? for the filtering
interval. In reality, however, the vocal tract is continuall nd fixed-lag smoothing distributions, from which estimates of

the clean speech signal and model parameters may be obtained.
The integrations necessary to compute these distributions
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numerical integration techniques, on the other hand, are ogsed on the introduction of MCMC steps. Section V presents

feasible in low-dimensional state-spaces. and discusses simulation results on synthetic and real speech
Another approximation strategy is that of sequential Montata sets and some conclusions are reached in Section VI.

Carlo integration, also commonly known as particle method&ppendix A recalls the Kalman filter and backward infor-

These methods were first introduced in automatic control at theation filter equations and finally the proof of an important

end of the 1960s [17], but due to the primitive computers avajiroposition used here is presented in Appendix B.

able at the time, were largely forgotten. In the beginning of

the 1990’s the great increase in computational power allowedll. M ODEL SPECIFICATION AND ESTIMATION OBJECTIVES

a rebirth of this field. The first operational particle filter, theA

so-called bootstrap filter, was proposed in [14]. Following this

seminal paper, particle methods have received a lot of interest il he speech signal at discrete time- 0 is modeled as the

the engineering and statistical communities (see [10] and [28jtPut of ak-th order TVAR process, parameterized by a vector

for an introduction and [9] for a summary of the state of the arfs € @ C R"0, i.e.

. Signal Model

Within the sequential Monte Carlo integration framework the &
distributions of intert_ast are rep_resentec_i by a large number (_)f T, = Z%t @) we_; + 00, (0) ¢, eﬁi‘f/\/(o, ) @
samples, called particles. As will be evident later, these parti- i1
cles and their associated importance weights evolve randomly N _
in time according to a simulation-based rule. This is equivitherea,(6:) = (a1,:(6:), ..., a:(6:)) are the TVAR coeffi-

lent to a dynamic grid approximation of the target distribution§ients o7, (8;) is the variance of the TVAR innovation sequence
where the regions of higher probability are allocated proportiognd A'(0,1) denotes the standard normal distribution. The
ally more grid positions. Using these particles Monte Carlo esignal is assumed to be submerged in additive white Gaussian
timates of the quantities of interest may be obtained, with tf@ise, so that the observed value at tiine 0 becomes

accuracy of these estimates being independent of the dimen- iid

sion of the state-space. This method is easier to implement than Yo =z +0n, (0) 00, 0~ N(0,1) )
classical numerical methods and allows complex nonlinear a\%ere{nt} is a white noise process independentef} and

non-Gaussian estimation problems to be solved efficiently in a . . . .
on-line manner a,,(0:) is the variance of the observation noise.

This paper aoolies particle techniques to obtain filtered Conditionally on{8, } the signal model is linear, facilitating
and fixch)J Igg sn?gothe dp estimates of c:he clean speech Sig?}ﬁ‘ (fonditionally Gaussian state-space (CGSS) representation.
) 8{6 precisely, definingaté(a:t,...,a:t_k“), v =2 (ye),

and model parameters, when modeling speech as the ou (er) andw A(n ) and the system matrices
of a TVAR process with stochastically evolving parameters,” ** A y

observed in slowly time-varying additive white Gaussian noise. al (0
. . . A, (0 A t ( t)

The algorithms developed here are not just a straightforward t(0:) = T On_ix:
application of the basic methods, but are designed to make o0, (0))
efficient use of the structure of the model and incorporate B, (6,) = [Oet ¢ }
various variance reduction strategies based on Kalman filtering o
techniques. Related techniques have been briefly developed and C:(6:) =C=[1 Oixp—1]
sketched in [10, Sec. IV, pp. 202—203]. However, full details of D, (8,)=[0,, (0]

this methodology and its application to a complex state-space

model have not been reported before. Furthermore, the filterifit Signal model of (1) and (2) is readily expressed in the CGSS

strategy developed here is straightforwardly combined with fréarm given by

guentist methods to perform model validation [12]. To the best iid

of the authors’ knowledge, this paper is the first to use particle @ =A¢ (@) a1 + B (0) v, vi~N(0p,x1,Tn,) (3)

filtering techniques to achieve this purpose. At each iteration y, =, (0,) oy + Dy (0,) W, Wti"i\siN(OnwxlaInw) (4)

the algorithms have a computational complexity that is linear

in the number of particles and can easily be implemented winerea; € R" is the system statg;, € R™ is the obser-

parallel computers, thus facilitating near real-time processingation andv, € R* andw; € R™~ are the system distur-

It is also shown how an efficient fixed-lag smoothing algorithrbances at time, respectively and/(u, 32) denotes the Gaussian

may be obtained by combining the filtering algorithm withdistribution with meary and covariance matri. It is fur-

Markov chain Monte Carlo (MCMC) methods (see [28] for ather assumed thdD,(6;)D7(6;) > 0, for all t > 0, ag ~

introduction to MCMC methods). N(m(8y),Po(8)), with P (8) a positive definite matrix and
The remainder of the paper is organized as follows. Thkeatag, v andw, are mutually independent for &lt> 0.

model specification and estimation objectives are stated inThe model orderk is assumed to be fixed and known

Section 1. In Section Il sequential particle methods artroughout. The unknown parameters are then the TVAR

developed to solve the filtering problem and determine tleefficients and the excitation and observation noise variances.

model adequacy. After having shown that a direct extensidtere the TVAR coefficients are represented in their standard

of the filter to fixed-lag smoothing is inefficient, Section IVform, whereas the excitation and observation noise variances

develops an efficient particle fixed-lag smoothing algorithngre parameterized by their corresponding logarithms, i.e.,
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(/)et—logrfft and (/)nt—logrf , SO that the unknown param- speech signal and model parametefsis set to
eter vector at time may be expressed dzs (ay, Pe, s Pn, ), floy,0:) = (an,80,).

ng = k + 2, with corresponding suppo®=4;, x R x R,
where A4y is the region of stability for the coefficients ofih IIl. PARTICLE FILTER

orderstationaryAR process.

Remark 1: a, € A, forallt > 0, is a sufficient, but not nec- This section develops a patrticle filter to obtain filtered esti-

essary, condition for the TVAR process to be stable. Finding tﬁ'teat%s Cg tBhe clean speect:h signal anld moglesl paratrgre(;ersf TTe
true region of stability for the coefficients of a general TVAR andar ayesian importance sampling (BIS) method is firs

process is difficult and hence the simpler condition will be ergescrlbed and then it is shown how variance reduction may be

forced here, as was done for stationary AR processes in, € hieved by integrating out the staks, using the Kalman
[3]. fiftér. A sequential version of BIS for optimal filtering is then

sented and it is shown why it is necessary to introduce a
ction (or resampling) scheme. Finally, a particle filter for
speech signals is proposed and it is shown how this filter may
e combined with frequentist methods to perform model valida-

The unknown parameters are assumed to evolve accordﬂﬁ
to a first-order Markov process, which is fully specified by itsc'e
initial state and state transition distributions, here taken to beb

PR 5 tion. It should be stated that the particle filtering algorithm re-
p (o) P (a0) p (e ) P (Pna) ) mains valid for general CGSS models with Markovian evolving
p(6:10:—1) =p (a | a_1) parameters.
X p (d)et | d)etfl) p (¢nt|¢nt71) ? t > 0 (6)
A. Monte Carlo Simulation for Optimal Estimation
with In what follows the subscriptgt and¢|t 4+ L are suppressed
if there is no danger of ambiguities arising. For afyt will

P (a0) N (a0; Orx1, Aa, s, (20) subsequently be assumed thatf)| < +oc. Suppose that
(a,|a, 1) N (a;av_1, Au)ls, (ay) (7) it is possible to sampleVi.i.d. samples, called particles,
Deo) 2N (30,82 i( al),60) i =1,...,N} according top(ao.8ouly1.1)
(¢€ |¢€ ) YV (¢€ e, ) 8) hen an empirical estimate of this distribution is given by
0) éN(d)ﬂova 630) N
(d)mw)m 1) éN (d)myd)m 19 ) (9) p—N(daO:tadGO:tb’lt é Z(S a( ) 0( )) (dao t,doo t)

=1

wherel 4(+) is the indicator function for the set. The param- _ _
eters of the Markov procesf(, , A, &2, 82, 62, 62), with where 64(-) is the Dirac delta measure concentrated on

& corTer Tl Tn . As a corollary, an estimate af(a,8;|y1.) follows as
2 2 T .
A,,2diag (62 62,,) and A,2diag (62,....,82,), (o B[ 3.1.0)2 /NN léé a0 gy (dox d00).  Using
atf

ay, 0? Tty Yag ,0
are assumed to be fixed and known. In practice, as repor% distributi timat ; be obtained
in Section V, the model proved to be robust over a sensidf§S distribution, an estimate ) for any f may be obtaine

range of these parameters. The equations in (3) to (9) deffti®

a nonlinear non-Gaussian state-space system for which no - A
L . : - e od- In(H)= [ flaw.6,)pn (dow, dO:|yq:)
finite-dimensional solutions exist for the filtering and fixed-lag N t, Y1) PN ty G Y1
smoothing distributions, hence necessitating numerical estima- | X
tion strategies. = df (af), 952)) :

=1

B. Estimation Objectives

. . . L This estimate is unbiased and from the strong law of large num-
Given at timet > 0 the observationg; ., all Bayesian infer- — a.s g 9

. {155
ence for the signal model in Section II-B-A relies on the Jomlgers (SLLN).In(f) N—t:—oo I(f), where "= denotes almost

posterior distributiorp(cg.t, @o.:|y1::) and its marginals. Two sure convergence. kfr —var L 0, floy,8)] < +oo,

| 1t)
optimal estimation problems are of interest here. then a central limit theorem (CLT) nolds i.e.
 Filtering: Compute the filtering  distribution .
p(a,0|y1.), as well as the MMSE estimate of \/N(IN(f)—I(f)) = N(O "f)

N—+oo
f(at,at) with f : R*a@ x ® — R", given by

Li.(f)2E . O]y, LS (@, 0:)]. To obtain the filtered where =" denotes convergence in distribution. The advantage
estimates of the clean speech signal and model paramet#rthe Monte Carlo method is clear. It is easy to estinfdtg)
fissettof(a,0:) = (a,0;). for any f and the rate of convergence of this estimate does not

* Fixed-lag smoothing Compute the fixed-lag smoothingdepend ort or the dimension of the state space, but only on the
distributionp(ex, 8:|y1:++1), With L € N*, as well as the number of particlesV and the characteristics of the function
MMSE estimate off (e, 8;), with f : R™ x @ — R™,  f. Unfortunately, it is not possible to sample directly from the
given by Iy, (f)=E 2E o Bely. HL)[f(a,, 6,)]. To distributionp(e.;,00.¢|y1.:) at anyt and alternative strategies
obtain the fixed-lag smoothed estimates of the cleareed to be investigated.
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One solution to estimatg(wg.;,0o.¢[y1.+) and I(f) is the B. Variance Reduction
well-known BIS method [4]. This method assumes the exis-The naive Bayesian importance sampling estimate in

tence of an importance distribution(ao.;, 6o::[y1::) Which IS 11y does not make full use of the statistical structure of
easily simulated from and such theiao., 6o::[y1:1) > 0iM- yhe model. Conditional on the parametdts:, the signal
plies7(ao:r, Bo:t|y1:+) > 0. Using this distributio () may be  qde| reduces to a linear Gaussian state-space system and
expressed as estimates of the clean speeely.; can be obtained analyti-
cally. Thus, it is possible to reduce the problem of estimating
(10) p(ew,b:|y1.) and I(f) to one of sampling fronp(Bo:¢ y1::).
[EW(Olo:moo:flyH) [w (@0:t, 0o:1)] Indeed,p(art, 0o |y1:e) = plo)@o:t,y1:4)p(0o:|y1:e), Where
p(a]6o.:,y1:4) IS @ Gaussian distribution whose parameters
may be computed using the Kalman filter. Thus, given an ap-
proximation ofp(fo.:|y1.+), an approximation op(c,0:|y1.:)
may straightforwardly be obtained. Defining the marginal
importance distribution and associated importance weight as

lETr(a(j:t’oO;“yl:t) [f (at7 0t) w (aO:t7 00:t)]

I(f) =

where the importance weight{ao.;, fo¢) is given by

D (aO:t7 oo:t |y1:t)

w Q. 70 : o '
( 0:t Ot) W(ao:hoo;tb’l:t)

The importance weight can normally only be evaluated up to a .
constant of proportionality, since, following from Bayes'’ rule, 7 (00:|y1:) =/7f (deo:t, Oo:e|y1:e)
_ p(y1lao.s, 0or) p (a0, 0o:) w (0., o2 (B0:¢|y1:)
{0, Boulyne) = p(¥i:t) (Bo-) 7 (Bo:t[y1:t)
p(deag., dfo.+) can typically not be expressed in closed-form. distributed according ta (6. |y1.+) is available, an alternative
If Niid samples {(a{).09)):i=1,....N} can BIS estimate off (f) follows as
be simulated according to the importance distribution ~ N E fla 0N w (69
(a0, 00:¢|y1:¢), @ Monte Carlo estimate df(f) in (10) may a4 ’éz’:l (@100 ,..) [ ( oot ﬂ ( O't)
. N7 A2 N (1)
be obtained as N D W (00:t)
— / @) pi) () pli) N
. 1 Do floeg .07 )w a8y, i i
Izlv(f)éflﬂ(f) 2= (Nt t 21) ((z‘)o — t) - ZwézzEP(a”oMynJ [f (at’ 0, ))} (12)
By(f) s W (aO:t7 00:t) =1
N provided thaIiEp(atloo_t _ [f (ct, 6;)] can be evaluated ana-
:Zw& (aﬁ”,oﬁi)) 11) Iytically. In (12), the normalized marginal importance weights
-1 - are given by
where the normalized importance weights are given by s W (0(()1),) ‘
. . wO:tZ N (J) ’ ? 17 ) N
o wlegha) i (96
W= t=1,...,N.

SN w (aéft),aéft)) ’ Intuitively, to reach a given precisiod (f) will less samples
compared tol%(f), since it only requires samples from the
This method is equivalent to a point mass approximation @wer-dimensional distribution(6o.|y1.:). This is proved in
p(ao:t, 00:|y1:+) of the form the following proposition where it is shown that, if it is possible
~ to integrate analytically over the staieg,, then the variance of
o ) v AN @ L ) ) the resulting estimates is lower than that of the standard BIS es-
P (deo, o[y 1) ; wozté(afﬁz’ow (daxo:r, o) timates. The reduction achieved is specified in the proof of the
proposition in Appendix B.

leading to Proposition 1: For any N the variance of the importance
N weights and the numerators and denominators of the BIS es-
ﬁ(dat,d9tly1:t)é2@85(a<;> 6) (dexy, d8;) timates satisfy
i=1 Var (@,.iy...) [w (0o:)]
as a corollary. The perfect simulation caseg. when <var_, g [w (00:400:¢)] (13)
(@, 00:4[y14) = plaos,bo.|y1+), corresponds to j( 0:000:1y1:4)
wé’z = N~ i = 1, ..., N. In practice, the importance Var (@,.1y...) [A?\,(f)}
distribution will be chosen to be as close as possible to the ~
target distribution in a given sense. For finifé, 11(f) is VAL (.8l ) [AN(f)} (14)

biased, since it involves a ratio of estimates, but asymptotically, var [E%(f)}
according to the SLLN/}(f) A“—i I(f). Under additional 7(@owilyr) [ON

assumptions a CLT also holds (see Section IlI-C2). SVAL (Bl [lev(f)} : (15)
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Furthermore, if Valqa, 0t|y1-t)[f(at’0t)] < 400 and
w(aot,b00) < Ci <_ +oo fO(Aany (ag:t,00) €
(Rra)t+1 x ©'tL, then IL(f) and I (f) satisfy a CLT,
i.e.

VN (I -1(D) = N (0.07)
VN (BN -1(n) = N(0.03)

with o7 > 03, o7 ando3 being given by
24
71 _lEﬂ'(ao:t,aoztb’l:t)

[((F (@, 8) = () w (0. 60))

24
02_[E7T(00;t|)f1;t)

|:((|Ep(at|002t7ylzt) [f (at’ ot)] - I(f)) w (oo:t))2:| .

Given these results, the subsequent discussion will focus on

BIS methods to obtain approximationsyfo..|y1..) and(f)
using an importance distribution of the formi@o.:|y1.¢). The

methods described up to now are batch methods. The next sec-

tion illustrates how a sequential method may be obtained.

C. Sequential Importance Sampling (SIS)
The importance distribution at timtamay be factorized as

t
™ (00:t| y1:t) =7 (00| y1:t) H 7T (0k| 00:k—17Y1:t) .
k=1

177

e Optimal importance distribution. A possible
strategy is to choose at time the importance dis-
tribution that minimizes the variance of the impor-
tance weights giverfy.,_; and yi.;. The importance
distribution that satisfies this condition is given by
7(04|60.4—1,¥1:t) = p(04|00.t—1,¥1:+) [10]. From Bayes’
rule the optimal importance distribution may be expressed
as

p (Yt| 0o, Y1:t—1)p (9t| 0t—1)
P (¥t]60:t—1, Y1:t—1)

p(0:00:4-1,y1:4) =
leading tow, in (17) being

Wy XP (Yt |00:t—1 s Y1:t—1)

— [ pilboryieDp @) G8)
wherep(y:|0o.t,y1:1—1) = N(¥e;¥ej—1(00:t), St(0o:t))

is given by the Kalman filter (see Appendix A). The
optimal importance distribution is not easily simulated
from and the integral in (18) cannot be evaluated ana-
lytically, sincep(y¢|@o:t,y1:+—1) IS @ complex nonlinear
function of 8,. An approximation to the optimal impor-
tance distribution may be obtained by locally linearising
p(0:|60.+—1,y1:t). This is computationally expensive
since it requires a set afy + n7 Kalman filter-like recur-
sions to calculate the gradient and Hessian of the optimal
importance distribution with respect to the parameters
[18]. Instead, a suboptimal method, discussed next, is
employed here.

Prior importance distribution . If the importance distri-
bution at timet is taken to be the prior distribution, i.e.,
7(04|60:4—1,¥1:t) = p(6:|60:—1), thenw, in (17) becomes

The aim is to obtain at any timean estimate of the distribution
p(6o.:|y1:) and to be able to propagate this estimate in time : :
without modifying subsequently the past simulated trajectories ©ON€ Step of the Kalman filter for each particle.
{98‘3 : i = 1,...,N}. This means that(6o.|y..) should  2) Degeneracy of the AlgorithmSince the importance dis-
admitr (6,1 |y1..—1 ) as marginal distribution. This is possiblelfibution is different from the desired posterior distribution and
if the importance distribution is restricted to be of the generHe dimension of both distributions increases over time, it can
form be shown that the discrepancy between these distributions in-
creases (on average) over time. More rigorously, for importance
distributions of the form specified by (16) the unconditional
variance of the importance weightse( with the observations
v1. being interpreted as random variables) can only increase
=7 (0o:t 1| y1:t-1) over time. This is established by a straightforward extension of
1 (84 B0t Y1) (16) the theore_m in [21, p. 285_] to an @mporta_nce distrib_ution of the
SRR form specified by (16). It is thus impossible to avoid a degen-
Such an importance distribution allows a recursive evaluation @@y Phenomenon. Practically, after a few iterations of the al-
the importance weights, i.4(8o.:) = w(6o:1—1 )wy, With gorithm, all but one of the normalized mportance .we|ghts are
very close to zero and a large computational effort is devoted to
updating trajectories whose contribution to the final estimate is
almost zero. For this reason it is of crucial importance to include
a selection step in the algorithm. This is discussed in more detail
in the following section.

wy x p(¥t]@o:t,¥1:4—1). Evaluation of this requires only

t
7 (00| y1:4) =7 (8o) H 7 (0| Oo:k—1,¥1:1)
k=1

A p (Yt| 001, Y1:t—1) D (9t|9t—1)
p (Yt|Y1:t71) ™ (0t|00:t717 Y1:t)
D (Yt|00:ta Y1:t—1)p (0t|0t—1)

x

™ (0t|00:t—17YI:t)

we

. (17)

D. Selection

'é((;)t ¢t = 1,...,N, denoting the particles after

importance sampling step, the resulting weighted
approximation to the posterior distribution is given by

1) Choosing the Importance DistributionThere is an
unlimited number of choices for the importance distribution With
7(0o.+|y1:), the only restriction being that its support includethe
that of p(@.+|y1:+). Two possibilities are considered next.
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pn(dBot|yie) = Zf;l @t(i)%(i)(doo:t). However, due to Algorithm 1: Patrticle Filter
the degeneracy of the algorithofﬁ, many of the particles Wl‘ﬁls SteP (i)
have low importance weights. To make the best use of theFor @ = 1,..., N, Samp"f(i‘;i proposal . 0, ~
computational resources it is necessary to obtain an unweighted 0t|0(()2_17y1:t) and set @,, = (08’3_1,@ )
apProximation of the posterior by associating with each partide For ¢ = 1,..., N, evaluate the importance
5& a number of childrenV;, such that weights up to a normalizing constant
() A0 508
N N 0,. . 0 |0
1 N, ) p (yt| O.tayl.t—l)p( t t—l)
= > 80 (dB0:) =D =6 (dfo:e) w,” o — (19)
0(_2 0:t (i) 0:t t ~(3), = (i)
N % N6, T (0t |00:t—1ay1:t)
N
%Z@t(i)&(i) (dBos). ° Fpr ¢ = 1,...,N, normalize the importance
im1 0t weights
Thus, each particle produces children in proportion to its impor- O wt(i) (20)
tance weight, i.e.N; = N{Et(z), under the constrainty; € N to ZN wd’
N . j=1"t
and)_._, N; = N, so that the computational resources are fo- .
cussed on regions of high probability, while at the same timizelection Step &)
maintaining a good approximation to the posterior distributiom. Multiply/discard particles {0, : ¢ =
Numerous selection strategies are available. Some of the..., N} with respect to high/low nor-
more commonly used methods include sampling importancealized importance weights to_obtain N
resampling (or multinomial sampling) [14], residual resamplingparticles {083 e=1,..., N}.
[25] and stratified sampling [20]. All of these schemes are ]

unbiased, i.e.E[N;] = N{Et(z) and may be implemented in

O(N) operations. However, recent theoretical results (see [7])The computational complexity of this algorithm at each iter-
suggest that it is not necessary for the selection schemes tafign isO(V) and is roughly equivalent t& Kalman filters.
unbiased. With this restriction removed very efficient selectia@oreover, except for the selection step all the computations can
schemes may be designed. straightforwardly be parallelized. At first glance, it could appear

On the downside, it is straightforward to show that aliecessary to keep in memory the paths of all the trajectories
selection schemes lead to an increase in the variance of fhg)

) - . 38, i=1,...,N }, so that the storage requirements would
Monte Carlo estimates. However, as shown in [24] in a dITncreaselinearlywith time. In fact, for both the optimal and prior

Lerent frafmework th?t <t:_oult_j bet_l?dapiﬁd r:? the_ One_tpresenfﬁ%ortance distributionsr (6;00..—1,y1::) and the associated
ere, performing selection is still worthwhile, since it usually, o 1ance weights depend @g,_; only via a set of low-di-

decreases the variance of estimates at future times. Stratillﬁ . . -
o ; nsional sufficient statistics, nam 00.1), Py (000},
sampling is the method that introduces the least extra MOWR ere p(as |0, y1) = A(crs; m le(ﬂg:tl)t(;'lt)(’oot';)( i(;t'zr];e
1 ity .t — 1 tlt it/ t|t 4

Carlo variation and is subsequently adopted here. filtering distribution of the state conditional on the parameters,

Selection poses anot_her problem. During the res_amph_ ich may be computed using the Kalman filter. Thus, only
stage any particular particle with a high importance weight w ese values need to be kept in memory for each particle, so that

be duplicated many times. As a result the cloud of partick—?ﬁe storage requirements are a®GV) and do not increase over
may eventually collapse into a single particle. This degeneraﬁ:%e

leads to poor approximations of the distributions of interest.
Several suboptimal methods have been proposed to overcameodel Validation
this problem and introduce diversity amongst the particles.

Most of these are based on kernel density methods [9], wh|chM0Olel vahdatlon Is the process of de_termmmg how well a
. T . .given model fits the data. Within a Bayesian framework models
approximate the probability distribution using a kernel densi : . - .
X . an be compared using posterior model probabilities, but this
estimate based on the current set of particles and samplé, a . : -
e . . : Strategy only provides relative performance indicators and does
new set of distinct particles from it. However, the choice an . ) )
) . o . not tell whether any particular model fits the data well. In this
configuration of a specific kernel are not always straightfor-~" '~ " " .
) . ection it is shown how SIS and frequentist methods may be
ward. Moreover, these methods introduce additional Monc%mbined to determine the goodness of fit for any model of the
Carlo variation. In Section IV it is shown how MCMC methodsdata 9 y

may be combined with SIS to introduce diversity amongst the : .
samples without increasing the Monte Carlo variation. .In what follows letY}, Qenote the random variable gssomated
with the scalar observatian.. Under the null hypothesis that the
model is correct it is straightforward to show (see [29]) that the
. _ . sequencduy : k = 1,...,t}, with up2p(Ya < valy1e—1),
Given at tme ¢t — 1, N € N particles g, realization of.i.d. random variables uniformly distributed
{982_1 =1, ,N} distributed approximately accordingon [0,1]. This result holds true for any time series model and
to p(@o:+—1]y1:+—1), the particle filter proceeds as follows atmay be used in statistical tests to determine the adequacy of the
time¢. model.

E. Implementation Issues
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Computing they, requires integration over the model param- data is norma4®S is asymptotically distributed according
eters, an operation which is analytically intractable in general.  to a chi-square distribution with two degrees of freedom,
It is shown here how Monte Carlo integration may be used to  i.e., ¢®% ~ x3.
overcome this problem. A similar strategy is developed in [12] ¢ Ljung-Box [26]. This test gives an indication of
using batch MCMC methods and importance sampling. Using the goodness of fit of a time series model by

the one-step ahead prediction distribution, an expressiom.for checking for the whiteness of they using the

follows straightforwardly as statistic OgBEN(N + 2) SR 72/(N —4i), where

. T2 i1 vkvi—i)/(Cney v3) is the i-th sample

g = / p (Y < un]O0i, yia—1) p (8o |yria—1) - autocorrelation of they,. Under the null hypothesig:?
- e is asymptotically distributed according to a chi-square

distribution with &’ degrees of freedom, i.eLB ~ y2..
From the  factorization  p(8o.x|y1:8—1) = 9 8~ Xk

p(0x]60x—1)p(00.x—1|y1.2—1), @ Monte Carlo approximation
of the one-step ahead prediction distribution can easily be
obtained as py(dfo.x|yin—1)=N ! Zi\;l 8- (dBox), The estimates of the clean speech signal and model parame-
D)o [ a(0) (1) ) 0k ters may be improved by performing fixed-lag smoothing with
whered,,'= (oo:k—hok ) with 8y, _, @ sample from the 5 gelay of, sayf, € N*. In this section it is shown that a direct
filtering distribution at timek — 1 and 92(0 ~p 9k|9§le application of the methodology discussed in Section Ill is not
with ~ thisatisfactory ifL is large and an alternative method is then pro-
posed.

IV. PARTICLE FIXED-LAG SMOOTHER

generated from the Markov process prior.
approximation a Monte Carlo estimator fat; follows

straightforwardly as A. Some Strategies for Fixed-Lag Smoothing

a1 N (@) _ 1) Direct Methods:ln theory, the particle filter of.Sec—

= Zp (Yk < k|0 ,y1;k_1). (21) tion 1l can easily be extended to flqu—lag smoothmg.'At

i=1 time ¢t + L the Monte Carlo approximation of the dis-
tribution  p(@o.t4L|y1:442) IS ﬁ(d00:t+L|y1:t+L)éN—1

For the model presented here the quantitigd), < Eﬁ\;l 59(0 (d80.441), S0 that a Monte Carlo approxima-
0:t4 L

yk|@o:,¥1:6—1) required for the estimator in (21) can’ . R
be calculated analyticall. More specifically, denoting©" Of the margmalldls]t\tlbutlorp(00:t|y1:t+L) follows as
for scalar observations the one-step ahead predictiBH<d00:t|Y1:t+L)=N T2 6ogi1(d00:t)' However, from
distribution for the observations, obtained from thémet + 1to¢ + L the trajectories have been resampled
Kalman filter, asp(ya|@ox,¥14-1) = N(Yni Unja—1,55)s times, so that very few distinct trajectories remain at ttrmel_.
p(Yi < yrl6o:x,y1:—1) May be calculated as This is the classical problem of depletion of samples.
Fixed-lag smoothing of; can also be performed by using an

Yk importance distribution of the form
P (Vi < y|Ook, y1n—1) :/ P (dys|0o:s, y1:0—1)

ade o)

t
1 Uk — Ykjk—1 7 (Bo:t|y1e4r) =7 (60]y1z) HW (0x|0o—1, Y 1:04L)
=1 - Zerfc| — =2 ), P

«/23%

The estimates n (21) (_)b'Famed for the may b_e used instead Ofto simulate from the fixed-lag smoothing distribu-
the true values in statistical tests to determine the adequac .8f .
the model. Most of these tests are based on transformin P(Bo:r[y1+rs). The same developments as i
sequencdus - k — 1 ) 1o the sequenc L l 9 8&tion 1l-C-C may then be done. In this case the

quencelug : k = RV 3 quencéuy, : k = optimal importance distribution at timet becomes
1,...,t}, wherev, =¥~ (u;), with ¥ the standard Gaussian . .

L , 7(0¢|00.t—1,¥1:042) = p(0¢|00:t—1,¥1:04L), With the as-
cumulative distribution function. Thus, under the null hypmhéociated importance weight given b
esis that the model is correct the arei.i.d. distributed ac- y
cording toA(0, 1). The statistical tests employed here are de-
signed to test for the normality and whiteness ofthend are
briefly described below. Similar tests were used before in the I/p (Yesr|Oo:sr, Yiarr—1) P (d0risr]0i—1) -
context of model validation for time series models in, e.g., [12]

(22)
and [19].

* Bowman-Shenton[5]. This test checks for normality Direct sampling from the optimal importance distribution is dif-
using the statistigy®> £ 7? 4+ 7%, where¥, and¥, ficult and evaluating the importance weight is analytically in-
are standardized normal equivalents of the skewnesactable. A similar problem holds for the evaluation of the im-
Y1 éug/ug’/Q and kurtosiSygéu4/u§ — 3, with u1; thei-th  portance weight associated with the prior importance distribu-
central moment of the random variable associated witlon, which is of similar form as (22).
vy, around its meam.. These values are approximated by 2) MCMC Methods: An alternative approach to fixed-lag
their sample averages. Under the null hypothesis that theoothing consists of adding a MCMC step to the patrticle filter

=m (Bo:t—1|y1:e40-1) 7 (04]00:2—1,¥1:041)

wy xp (Yitr|00:t—1, Y1:t42-1)
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(see [28] for an introduction to MCMC methods). This introwith %) 2 (/) 6, . .,ogil,oﬁfgl, . ,02(&) It
duces diversity amongst the samples and thus drastically ge- straightforward to verify that this algorithm admits
duces the problem of depletion of samples. _ p(0o:04L|y1ner) as invariant distribution. Sampling from
{aﬁxis)sume ;hat; alt tmj]\fe}tar: mzj;r, in;rI]Ie dip')s?rrigilteesd p 0k|0@c,y1:t+L can be done efficiently via a backward-for-
ac(c)::(t)?éin 0 p(B. ’|"'.’ VI a l\/gl!arkoz transition ward algorithm o_fO(L +1) complexit)_/. This algorithm has

9 P04 L1Y1:t4+L)- been developed in a batch framework in [30], so the proofs are

i . : , L
k((aornel |K (dao:)tﬁsﬂg&wlrié()j tomgglch (')r;vg]réan;rtiggn?ﬁggnthomitted here. At time& + L it proceeds as summarized below
pPo:t+L|yY144+L) IS PP P ' or thei-th particle.

new particles{aéﬁZJrL i 4 = 1,...,N} are still distributed
according to the distribution of interest. Any of the standard
MCMC methods, such as the Metropolis-Hastings (MHAlgorithm 3:
algorithm or Gibbs sampler, may be used. However, contraBackward step
to classical MCMC methods, the transition kernel does net For &k = t  +
need to be ergodic. Not only does this method introduce mﬁiﬂ(0521;t+L)m2|k+1(agil:tu) and
iarl]d(t'jrlltéogzlngeor:rt]ZtCi?r(I:(;I}]/a;ﬁtlon, but it improves the_z gstlmatqszk];+l(ogjgl:t+L) by running the information
y reduce the total variation notitar defined ' in (32) to (39) of
[28] of the current distribution of the particles with respect tQ\ppendix A

the target distribution.

Backward-Forward Algorithm

L,...,t, compute

Forward step
e For k=t¢t,...,t+ 1L,

B. Implementation Issues _sample a proposal 6, ~ q(9k|0%), Using

1) Algorithm: Given at timet + L — 1, N € N* parti- the proposal distribution in (24) .
cles{6,,,_, : i = 1,...,N} distributed approximately —Perform one step of the Kalman in filter
according t0 p(fo..+r_1]y1:e4r—1), the particle fixed-lag in (26) to (1/3(1? of Appendix A for the cur-
smoother proceeds as follows at time- L. rent value 4, and the proposed value 0r

and calculate their posterior probablities
using (23) . ‘
gl/%m‘ig;m 2: Particle Fixed-Lag Smoother —if (UNU[o,u) < a(ﬂkIG;fZ)) (see (25) ), set
ep (@) _ ; (D _ g@®
o For i — L,...,N, sample a proposal 0" =0, otherwise set 6" =6, . .
0, NW(otwg:z—lvyl:t) and set 6, :(0((3—170{ )-
e For +=1,...,N compute the normalized im-
portance weights wt(;L using (19) and (20) In the abovel{s denotes the uniform distribution on

Selection Step ‘

e Multiply/discard particles {98% Cod =
1,..., N} with respect to high/low normal-
ized importance weights to obtain

ticles og<;>+L;i:1,...,N}.

MCMC Step ‘

e For i = 1,...,N, apply to ogﬂ?ﬂ a Markov
transition kernel K(d6S), 10,7, ) with in-
variant distribution Pp(00:t4+1.| Y144 1) tO Ob-
tain N particles {8, :i=1,....,N}.

N par-

At each iteration the computational complexity of the particle

the setA. The target posterior distribution for each of the
MH steps is shown in (23) at the bottom of the next page
with Pk|k(00k)~ I~ Rk(ook)Hk(ook)R’{(ook), where
ﬁk(o():k) € Rra*"a js the diagonal matrix containing
the na < nq nonzero singular values dPy;(6o.1) and
f{k(e&k) € R*a**a js the matrix containing the columns of
R (60.1) corresponding to the nonzero singular values, where
P (0o:x) = Ri(0os ) 11x (004 )R (00.1) is the singular value
decomposition oP ;. (6o.x). The matrix@k(00:t+L) is given

by

Qu (00:04+1) 2Ri (00.) (1L (Bo) + RE (01
'Pﬁ;ﬂ (Or+1:041) Ry (Bo:x)) _1ﬁ£ (Bo:x) -

fixed-lag smoother i©)((L + 1)N) and it is necessary to keep o .
in memory the paths of all the trajectories from titte t + £, 10 Sample from the distribution in (23) using a MH step, the

e {0§f2+L 14 =1,...,N}, as well as the sufficient statisticsPTOP0sal distribution is here taken to be

{mm (983),Pt|t o)) :i=1,... N\

2) Implementation of the MCMC itep?{:here is an un-

q(Ok|0_x) < p(Okt1|01) p(Or]Or—1). (24)

limited number of choices for the MCMC transition kernelIf the current and proposed new values for the state of the

Here a one-at-a-time MH algorithm is adopted that URAarkov chain are given by, andé,

., respectively, the MH

dates at timet + L the values of the Markov process fromacceptance probability follows as

time ¢ to ¢t + L. More specifically,a,(f), E=¢t....t+ L,

i = 1,...,N, is sampled according tp (0k|0%,y1:t+h),

o (0] 6x) =min {1,7 (6] 0:)} (25)
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CLEAN TVAR SIGNAL TVAR COEFFICIENTS
5 T T T T T T T T T 2 T T T T T T T T T
ok
-5 L 1 L L 1 L 1 L
NOISY TVAR SIGNAL
5 T T T T T T T T T
o .
o 2 20 % 8% w0 20 w0 160 180 200 % 2 W % o e 2 w0 160 1 20
Fig. 1. Clean (top) and noise-corrupted (bottom) synthetic third-order TVAR Fig. 2. TVAR parameters for the data in Fig. 1.
data.
used as the selection procedure and the importance distribution
with the acceptance ratio given by was taken to be the prior distribution. Estimates for the clean
T 0.10 speech were obtained using the Monte Carlo estimator in (12).
r (6, 6) = P (O] 0 yuesr) af /’“| —’“). The SNR improvement results are summarized in the first
P00, y1:441) (0k| 9—k) row of Table | and were obtained by averaging over 50 inde-

pendent runs of the algorithm for each valuefdf There is a
steady increase in the SNR improvemenfagcreases up to
100, with no significant further improvement with a further in-
A. Synthetic Data crease inV. Thus,N = 100 particles seem to yield a suffi-

Fig. 1 shows 200 samples generated by a third-order TvAgently accurate representation of the filtering distribution for
process, together with a noise-corrupted version of the sighis realization. As intuitively expected, the standard deviation
for which the input SNR is 4.64 dB. The corresponding TVvARf the Monte Carlo estimate exhibits a decreasing trend with
parameters are depicted in Fig. 2 and follow a Markov proce®8 increase in the number of particles. A nonoptimized imple-

V. EXPERIMENTS AND RESULTS

with fixed parameters mentation of the filter ifviatlab ran at approximately 0.5 s per
iteration for¥ = 10, increasing linearly to approximatelys s
(Any, A, 62,862,682 ,67) per iteration forN = 100, on a standard 750 MHz PC.
= (0.513,5 x 107313,0.5,0.5 x 1072,0.5,0.5 x 107%).. The particle fixed-lag smoother was also run on the data in

Fig. 1. This timeN was fixed to 100 and. was varied between
The particle filter was run on the data in Fig. 1 for varioug0 and 40. The SNR improvement results, again obtained by av-
values ofN. For the fixed parameters of the Markov process ograging over 50 independent runs of the algorithm for each value
the TVAR parameters the corresponding true values were usefl., are summarized in the first row of Table Il. For= 10
but the results were found to be relatively insensitive to the splere is a significant improvement in the reconstruction perfor-
cific values chosen for these quantities. Stratified sampling wamnce over the particle filter withh = 100, with no significant

P(Ok0 &, y1:041) X (Ory1|0h) p (Ok10k 1) N (Y Yijp—1 (Bok) , Sk (Bo:x))
y ‘I}Ia + I (60) RY (00:k)P’m1+1 (Bryr:e4) Ry (0o:k)‘_1/2
X exp <_% (mﬂk (B0:1) Py Orcprieer) mign (B
— 2miy;, (Bou) Pieyr Onrrerr) My (Orrtisr)

T -
- (m;€|k+1 (Ort1:041) — My, (00:k)) Pﬁ,jﬂ (Ort1:04+1) Qr (B0:14-1.)

X Pty Ourers) (Wi Gssirr) — miags (Boa) ) ) ) (23)
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TABLE | TABLE I
SNR IMPROVEMENT RESULTS IN DB VS THE NUMBER OF PARTICLES. THESE SNR IMPROVEMENT RESULTS IN DB VS THE LAG FOR THE FIXED-LAG
RESULTSWERE OBTAINED BY AVERAGING OVER 50 INDEPENDENTRUNS OF SMOOTHER, WITH N FIXED TO 100. THESE RESULTS WERE OBTAINED BY
THE ALGORITHM. THE NUMBERS IN BRACKETS GIVE THE STANDARD AVERAGING OVER 50 INDEPENDENTRUNS OF THEALGORITHM. THE
DEVIATION OF THE MONTE CARLO ESTIMATE OF THE SNR IMPROVEMENT NUMBERS IN BRACKETS GIVE THE STANDARD DEVIATION OF THE MONTE

CARLO ESTIMATE OF THE SNR IMPROVEMENT

N 10 | 50 | 100 | 250 | 500 | 1000 || SNRy,
synthetic | 0.97 | 1.53 | 1.76 | 1.74 | 1.79 | 1.76 | 4.64
(1.67) | (0.51) | (0.19) | (0.20) | (0.12) | (0.11)

L 0 10 20 | 30 40
synthetic | 1.76 | 2.53 | 251 | 2.45 | 2.39
(0.19) | (0.20) | (0.24) | (0.13) | (0.26)

F1 2.79 | 2.95 | 2.81 | 2.81 | 2.83 | 2.85 | -0.61
053 | 020 | ©39) | 026 | 0.19) | 013 F1 2.81 | 310 | 340 | 3.30 | 3.23
' ' ' ' ' ' (0.39) | (0.35) | (0.59) | (0.16) | (0.35)

F2 017 | 136 | 169 | 1.86 | 1.90 | 1.94 | 6.10
F2 1.69 | 203 | 214 | 1.90 | 1.98

(0.74) | (0.28) | (0.32) | (0.16) | (0.09) | (0.12)

(0.34) | (0.60) | (0.28) | (0.42) | (0.64)

F1 - CLEAN SIGNAL F2 — CLEAN SIGNAL

* ° The particle filter and the fixed-lag smoother were run on F1

2 3 and F2 in experiments similar to those for the synthetic data. The
model order was fixed th = 4. No significant further improve-

° 0 ments in the results were observed with an increasalove 4.

» R This useful result is due to the fact that the nonstationary char-
acter of the TVAR model allows for much more modeling flex-

4 -6 ibility than, say, a standard fixed-parameter AR model of the
same order. The fixed parameters of the Markov process on the

ki NOISY SIGNAL o 2 NOISY SIGNAL TVAR parameters were set to values similar to those used for the
experiments on the synthetic data. Yet again the results proved

2 3 to be relatively insensitive to the specific values chosen for these

T bl quantities.
oy I 1 1 i 0 The SNR improvement results are summarized in the second
= ‘ » S and third rows of Tables | and Il. The filtering performance for
! F2 steadily improves with an increase in the number of parti-
A e a0 S0 e mo a0 Cles up tolN = 1000, whereas good filtering performance is

achieved for F1 with as few a¥ = 10 particles. This discrep-
Ei%\-N 3. Cllfsm (tén;) a/n_d QOLSV (Iggt(tlorfg) Spstléclh fr«'an;l97 depicting t]j‘(?_tfﬁgSitifaﬁcy is due to the relatively low input SNR of F1 compared
etween shiand uwrin -should™ (IeT) and /st and feffin 'Sevice™(NghY)- + that of F2. For both F1 and F2 the benefit of the fixed-lag
smoother is clear. The extra information carried in the future
further improvement with a further increaselinThe standard samples leads to better estimates for lags of up to 20, whereafter
deviation of the Monte Carlo estimate remains approximatefife gain is negligible. The results compare favorably with those
equal to that of the filter withlV = 100, showing that this quan- of a batch MCMC algorithm (see [30]), which yielded SNR im-
tity is strongly dependent only on the number of particles. Thtovements of 3.46 dB and 2.32 dB for F1 and F2, respectively,
computational complexity of the fixed-lag smoother is mucfising the same values for the fixed parameters of the Markov
higher than that of the filter. A nonoptimized implementatioprocess on the model parameters.
in Matlabwith N = 100 ran at approximately 2 s per iteration g getermine the adequacy of the model the statistical tests in
for L = 10, increasing linearly to approximately 10 s per iteragection 111-C-F were applied to F1 and F2, usifig= 5. The
tion for L = 40, on a standard 750 MHz PC. results were obtained by averaging over 50 independent runs of
the algorithm and are presented in Table Ill, together with the
B. Speech Data 5% critical values for the statistics. The results of the Bowman-
Fig. 3 shows two frames of speech and their correspondiBfenton test show that the residuals are indeed standard normal
noise-corrupted versions, with input SNR’s 60.61 dB and distributed for both F1 and F2. The results of the Ljung-Box test,
6.10 dB, respectively. These sections of speech were chosehdwever, indicate that there are still significant autocorrelations
be representative of the kind of nonstationarities that are tragresent in the residuals. A possible explanation for this may
tionally not well modeled by the standard fixed-parameter ABe the presence of longer-term dependencies due to the glottal
model [30]. The first shows the rather gradual transition bexcitation in voiced speech signals. These dependencies cannot
tween the fricative /sh/ and the vowel /uw/ in the word “should’adequately be accounted for by models conditioning only on the
whereas the second depicts the much sharper transition betwesent past. Future work will focus on extending the basic TVAR
the fricative /s/ and the vowel /er/ in the word “service.” In thenodel to overcome this problem.
subsequent discussion the first frame will be referred to as FIWith these results in mind the filter and fixed-lag smoother
and the second, as F2. with L = 10 were both run withV = 100 particles on an
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TABLE Il Sk (80:1) =Cy (1) Prjp—1 (Bo:x) Ci, (6x)
MODEL VALIDATION RESULTS FOR THESPEECHDATA IN FIG. 3 T
+ Dy (01.) Dy, (61) (29)
Frame | N Bowman-Shenton Ljung-Box
¢B% | 5% crit. val. B 5% crit. val. myg|x (Bo:r) =My|p—1 (@o:r) + Pk|k—1 (@o:x) C{ (0r)
F1 | 100 | 2.1930 59915 | 20.4634 | 11.0705 -8, (B0) (Ve — Yupp—1 Box))  (30)
F2 {250 | 4.2357 5.9915 25.7460 11.0705

Pk (60:) =Prjx—1 (0o:x) — Pryjp—1 (80:6) Ct (%)

utterance of the senten¢&ood service should be rewarded - S5t (B0) Ck (0k) Prjp—i (Bo) . (31)
by big tips.” by a male American speaker. The clean signal

was acoustically combined with a slowly time-varying additivd? ~ this  equation,  p(ax|6o:x, y1:k-1) =

white Gaussian noise process so that the input SNR over Méak?mklk—l(o&k)vPklk—l(o():{“)), .is_ ) the
whole utterance was 0.16 dB. The filter and fixed-lag smooth@f€-Step ahead prediction distribution and
achieved SNR improvements of 5.44 dB and 5.85 dB, respé’é-ak|00:kv3’1:k) = Masmyp(Bo:), Prj(for)), the

tively. This utterance was also processed using a 10-th ordfé@!man filtering distribution for the staiey,, respectively and
fixed-parameter AR model according to the strategy describlx[0o:x: ¥1:—1) = N(kayklk—%(oo:k)v Si(fo:x)) is .the
in [11]. Although a superior SNR improvement of 8.5 dB waSN€-Step ahead prediction distribution for the observation
achieved, the resulting enhanced utterance contained disturbing € Packward information filter proceeds as follows for
intermittent musical noise artifacts, which were not preseht L - -» - Attime ¢ + L, initialize

in the result obtained by the TVAR model. In fact, the noise _, ,
residual for the TVAR model was found to be approximately Piiri+r (0etr) My L+ L (0:r2)
white, but time-varying. =C{, (6i+1)

-1
: (Dt+L (9t+L) Df+L (9t+L)) Yt+L (32)

1
P;+L|t+L (at—I—L)

—1

VI. CONCLUSIONS

This paper applied TVAR models with stochastically
evolving parameters to the problem of speech modeling and =C{ ; (0i11) (Dyyr (0+1) D)y (0i41))
enhancement. Sequential particle methods were developed to -Cyyr (0141) (33)
compute the filtering and the fixed-lag smoothing distributions,
from which Monte Carlo estimates of the clean speech signgkn fork = t+ L —1,.. ., ¢, compute (see (34)—(39) shown at
and model parameters may be obtained. The algorithms make top of the next page).
use of several variance reduction strategies to fully exploit the
statistical structure of the model and allow model validation APPENDIX B
to be performed. Although the algorithms are computationally PROOF OFPROPOSITIONL

expensive, they can straightforwardly be implemented on ) o )
parallel computers, thus facilitating near real-time processinq To avoid cumbersome notation in the calculations that follow

The estimation results indicate that adequate representation@bfiéPendencies are dropped from distributions and variables
the clean speech signal may be obtained with a TVAR mod&pen there is no danger of ambiguities arising. Unless stated
order of as low as four and as few as 100 particles. Howengherwise, joint distributions and functions of the states and pa-
the TVAR model is still unable to fully capture the longer-terniameters are denoted in the usual wayg = andw are equiv-

dependencies due to the glottal excitation in voiced spee@fNt t0m(@o:,00.1|y1+) andw(ao.,bo:), whereas marginal
signals. Future work will focus on overcoming this difficulty. distributions and functions of the parameters are distinguished

by a bar over the original variable, e g.andw are equivalent to
7(0o:+|y1:+) andw(@o.). Distributions of the states conditional
on the parameters are distinguished by a tilde over the original
variable,e.g 7 is equivalent tar (o |00, ¥1:¢)-

The exposition is given for the CGSS system in (3) and (4). To prove the variance reduction, use is made of the variance
The parameterd.; being here assumed known, the Kalmagecomposition theorem. For the importance weights this result
filter equations are as follows. Initializ@g|o(6o) = mo(6o) yields
andPgo(6o) = Po(6o), then fork =1,..., ¢, compute

my 1 (0o:) =Ax (Or) my 151 (Bo:x—1) (26)

-1

APPENDIX A
THE KALMAN FILTER AND BACKWARD INFORMATION FILTER

var, [w] = varz [Ex[w]] + Ex [var-[w]] .

ButE-[w] = Ex[p/n] = [E;[w] = w, so that
Prji—1 (6o:) =As (01) Pr_1p—1 (Bou—1) AL (61) _
+ By (61) BT (6,) 27) var, [w] = varz [w] + Ex [var-[w]] .

The result in (13) follows. The proofs for (14) and (15) follow
Vik—1 (Bo:x) =Ch (Or) my—1 (Bo:x) (28) in a similar manner.
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_ —1
Api1 Oryrie4r) = (Inv + Bij (Or41) P;e-|—11|k+1 (Ort1:0+1) Bry1 (9k+1))

—1

—1
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-1
werr O e n) Mgy Orgresr) =A% (Or41) Ragt On v L) Py s Orraienr)

P Ortar) My, Onierr) =Py Orgraerr) Mgy (Orgrieer)

(34)

Rit1 Orsritrs) =hogy = Phpjirs Orgriesn) Brot (Bng) Arps Bryriesr) BEyy (Or1)  (35)

Xy eyt (Oretrietr) (36)

b1 Onrrern) =AiL Ok41) Prpy g Onprrn) Ragt Orgror ) Arr (Orra) (37)
-1

+ Ci (6x) (D (0,) D} (1)) wx (38)

(39)

P Orrr) =Pt Orgriorr) + CF (61) (Dy. (6:) DY (61)) " C (61)

The existence of a CLT fofg, andf?:, is now proved. Since
A}, and B}, are sums ofV <.i.d. random variables, the delta

method yields

— AL
var, [Iﬂ =var, | =2

E2 [AA}\} var, [B}\;} var, [Aﬂ
e[B] e

E- [Zg} CoV; [:4?,73?}
-2

E2 [} o (V7).

BUtE.[AL] = NE,[f] = NI andE,[BL] = N, so that
var, [ 1| =N 2 (Pvar, [BY ] + var. [ 4} ]
—2Icov, [A}, BY] ) + 0 (N=%/2)
=N~Yvar, [(f - Duw] + O (N—3/ 2) .
BUtE.[(f — I)w] = 0, so that
var, [f;;] N7EL [((f - Dw)?] + O (N—3/2) .

Using similar arguments an expression forN#g;] follows as

var, [] = e (01— 1) w) | +0 (w-72).

The expressions for? ando3 follow. The variance decompo-

sition result yields

var, [(f — w] = vars [Ex [(f — Dw]]
+E= [var- [(f — Dw]] .

But Ex[(f — Iw] = (E;[f] — I)w, so that
var, [(f — Dw] = varg [([E;[f] - I) E}
+E= [var- [(f — Dw]]

from which it is evident that? > 3.
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