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Particle Methods for Bayesian Modeling and
Enhancement of Speech Signals

Jaco Vermaak, Christophe Andrieu, Arnaud Doucet, and Simon John Godsill

Abstract—This paper applies time-varying autoregressive
(TVAR) models with stochastically evolving parameters to the
problem of speech modeling and enhancement. The stochastic
evolution models for the TVAR parameters are Markovian diffu-
sion processes. The main aim of the paper is to perform on-line
estimation of the clean speech and model parameters and to
determine the adequacy of the chosen statistical models. Efficient
particle methods are developed to solve the optimal filtering and
fixed-lag smoothing problems. The algorithms combine sequential
importance sampling (SIS), a selection step and Markov chain
Monte Carlo (MCMC) methods. They employ several variance
reduction strategies to make the best use of the statistical structure
of the model. It is also shown how model adequacy may be deter-
mined by combining the particle filter with frequentist methods.
The modeling and enhancement performance of the models and
estimation algorithms are evaluated in simulation studies on both
synthetic and real speech data sets.

Index Terms—Particle filters, speech enhancement,
time-varying autoregressive models.

I. INTRODUCTION

A WIDELY USED and popular model for the speech
production system is the autoregressive (AR) process

[27]. This model exploits the local correlations in a time series
by forming the prediction for the current sample as a linear
combination of the immediately preceding samples. In practice
clean speech signals are rarely available, the speech being
contaminated by some background or application-specific
noise process. Fortunately, most of these may be adequately
modeled as a slowly time-varying white Gaussian or Gaussian
mixture process that additively combines with the clean speech
signal. This is the approach taken with success in, e.g., [13]
and [22] and is hence also adopted here.

The main shortcoming of the AR speech production model
is obvious. Associated with the AR coefficients is an articula-
tory configuration that remains fixed throughout the analysis
interval. In reality, however, the vocal tract is continually
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changing, sometimes slowly, sometimes rapidly (e.g., during
plosive sounds and speech transitions). To partly reconcile
the time-varying character of the vocal tract with the time
invariance of the model, speech is normally processed in short
(possibly overlapping) segments or frames, during each of
which the signal is assumed to be stationary. However, since
the framing is defineda priori with no relation to the phonetic
information, nonstationary frames are still likely to occur, even
for very short analysis intervals. In these circumstances nonsta-
tionary models may provide more true-to-life approximations
of the behavior of the vocal tract.

One such model is the time-varying AR (TVAR) process.
Models within this general class have been applied in the con-
text of speech modeling and enhancement before in, e.g., [8],
[15], [16], [23]. The TVAR process is a generalization of the
standard AR process where the model parameters are allowed
to vary with time. In [30] a TVAR speech production model
with stochastically evolving parameters is adopted and shown
to outperform standard AR process models in terms of objec-
tive speech modeling and enhancement criteria. This model is
also adopted here.

In [30], the speech signal is still processed on a frame-by-
frame basis and even though the nonstationary nature of the
model allows for longer analysis intervals, undesired blocking
artifacts still remain and discontinuities at the boundaries cannot
be completely eliminated. Also, the iterative nature of the batch
estimation algorithms makes them unsuitable for real-time or
near real-time implementations. In most speech applications,
the samples become available sequentially, making them more
suited for on-line estimation methods. The development of such
strategies is the main focus of this paper.

The TVAR speech and noise process model facilitates a
state-space representation. Within a sequential framework
general recursive expressions may be derived for the filtering
and fixed-lag smoothing distributions, from which estimates of
the clean speech signal and model parameters may be obtained.
The integrations necessary to compute these distributions
and the subsequent estimates admit closed-form analytical
solutions in only a small number of specialized cases, including
the celebrated Kalman filter for linear Gaussian state-space
models. For general state-space models, of which the one
studied here is an example, approximate methods must be
employed. Classical methods to obtain approximations to the
desired distributions include analytical approximations, such as
the extended Kalman filter [1] and the Gaussian sum filter [2]
and deterministic numerical integration techniques (see, e.g.,
[6]). The extended Kalman filter and Gaussian sum filter are
computationally cheap, but fail in difficult circumstances. The
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numerical integration techniques, on the other hand, are only
feasible in low-dimensional state-spaces.

Another approximation strategy is that of sequential Monte
Carlo integration, also commonly known as particle methods.
These methods were first introduced in automatic control at the
end of the 1960s [17], but due to the primitive computers avail-
able at the time, were largely forgotten. In the beginning of
the 1990’s the great increase in computational power allowed
a rebirth of this field. The first operational particle filter, the
so-called bootstrap filter, was proposed in [14]. Following this
seminal paper, particle methods have received a lot of interest in
the engineering and statistical communities (see [10] and [25]
for an introduction and [9] for a summary of the state of the art).

Within the sequential Monte Carlo integration framework the
distributions of interest are represented by a large number of
samples, called particles. As will be evident later, these parti-
cles and their associated importance weights evolve randomly
in time according to a simulation-based rule. This is equiva-
lent to a dynamic grid approximation of the target distributions,
where the regions of higher probability are allocated proportion-
ally more grid positions. Using these particles Monte Carlo es-
timates of the quantities of interest may be obtained, with the
accuracy of these estimates being independent of the dimen-
sion of the state-space. This method is easier to implement than
classical numerical methods and allows complex nonlinear and
non-Gaussian estimation problems to be solved efficiently in an
on-line manner.

This paper applies particle techniques to obtain filtered
and fixed-lag smoothed estimates of the clean speech signal
and model parameters, when modeling speech as the output
of a TVAR process with stochastically evolving parameters,
observed in slowly time-varying additive white Gaussian noise.
The algorithms developed here are not just a straightforward
application of the basic methods, but are designed to make
efficient use of the structure of the model and incorporate
various variance reduction strategies based on Kalman filtering
techniques. Related techniques have been briefly developed and
sketched in [10, Sec. IV, pp. 202–203]. However, full details of
this methodology and its application to a complex state-space
model have not been reported before. Furthermore, the filtering
strategy developed here is straightforwardly combined with fre-
quentist methods to perform model validation [12]. To the best
of the authors’ knowledge, this paper is the first to use particle
filtering techniques to achieve this purpose. At each iteration
the algorithms have a computational complexity that is linear
in the number of particles and can easily be implemented on
parallel computers, thus facilitating near real-time processing.
It is also shown how an efficient fixed-lag smoothing algorithm
may be obtained by combining the filtering algorithm with
Markov chain Monte Carlo (MCMC) methods (see [28] for an
introduction to MCMC methods).

The remainder of the paper is organized as follows. The
model specification and estimation objectives are stated in
Section II. In Section III sequential particle methods are
developed to solve the filtering problem and determine the
model adequacy. After having shown that a direct extension
of the filter to fixed-lag smoothing is inefficient, Section IV
develops an efficient particle fixed-lag smoothing algorithm,

based on the introduction of MCMC steps. Section V presents
and discusses simulation results on synthetic and real speech
data sets and some conclusions are reached in Section VI.
Appendix A recalls the Kalman filter and backward infor-
mation filter equations and finally the proof of an important
proposition used here is presented in Appendix B.

II. M ODEL SPECIFICATION AND ESTIMATION OBJECTIVES

A. Signal Model

The speech signal at discrete time is modeled as the
output of a -th order TVAR process, parameterized by a vector

, i.e.

(1)

where are the TVAR coeffi-
cients, is the variance of the TVAR innovation sequence
and denotes the standard normal distribution. The
signal is assumed to be submerged in additive white Gaussian
noise, so that the observed value at time becomes

(2)

where is a white noise process independent of and
is the variance of the observation noise.

Conditionally on the signal model is linear, facilitating
a conditionally Gaussian state-space (CGSS) representation.
More precisely, defining , ,

and and the system matrices

the signal model of (1) and (2) is readily expressed in the CGSS
form given by

(3)

(4)

where is the system state, is the obser-
vation and and are the system distur-
bances at time, respectively and denotes the Gaussian
distribution with mean and covariance matrix . It is fur-
ther assumed that , for all ,

, with a positive definite matrix and
that , and are mutually independent for all .

The model order is assumed to be fixed and known
throughout. The unknown parameters are then the TVAR
coefficients and the excitation and observation noise variances.
Here the TVAR coefficients are represented in their standard
form, whereas the excitation and observation noise variances
are parameterized by their corresponding logarithms, i.e.,
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and , so that the unknown param-
eter vector at time may be expressed as ,

, with corresponding support ,
where is the region of stability for the coefficients of ath
orderstationaryAR process.

Remark 1: , for all , is a sufficient, but not nec-
essary, condition for the TVAR process to be stable. Finding the
true region of stability for the coefficients of a general TVAR
process is difficult and hence the simpler condition will be en-
forced here, as was done for stationary AR processes in, e.g.,
[3].

The unknown parameters are assumed to evolve according
to a first-order Markov process, which is fully specified by its
initial state and state transition distributions, here taken to be

(5)

(6)

with

(7)

(8)

(9)

where is the indicator function for the set. The param-
eters of the Markov process ( , , , , , ), with

diag and diag ,
are assumed to be fixed and known. In practice, as reported
in Section V, the model proved to be robust over a sensible
range of these parameters. The equations in (3) to (9) define
a nonlinear non-Gaussian state-space system for which no
finite-dimensional solutions exist for the filtering and fixed-lag
smoothing distributions, hence necessitating numerical estima-
tion strategies.

B. Estimation Objectives

Given at time the observations , all Bayesian infer-
ence for the signal model in Section II-B-A relies on the joint
posterior distribution and its marginals. Two
optimal estimation problems are of interest here.

• Filtering : Compute the filtering distribution
, as well as the MMSE estimate of

, with , given by
. To obtain the filtered

estimates of the clean speech signal and model parameters
is set to .

• Fixed-lag smoothing: Compute the fixed-lag smoothing
distribution , with , as well as the
MMSE estimate of , with ,
given by . To
obtain the fixed-lag smoothed estimates of the clean

speech signal and model parameters is set to
.

III. PARTICLE FILTER

This section develops a particle filter to obtain filtered esti-
mates of the clean speech signal and model parameters. The
standard Bayesian importance sampling (BIS) method is first
described and then it is shown how variance reduction may be
achieved by integrating out the states using the Kalman
filter. A sequential version of BIS for optimal filtering is then
presented and it is shown why it is necessary to introduce a
selection (or resampling) scheme. Finally, a particle filter for
speech signals is proposed and it is shown how this filter may
be combined with frequentist methods to perform model valida-
tion. It should be stated that the particle filtering algorithm re-
mains valid for general CGSS models with Markovian evolving
parameters.

A. Monte Carlo Simulation for Optimal Estimation

In what follows the subscripts and are suppressed
if there is no danger of ambiguities arising. For anyit will
subsequently be assumed that . Suppose that
it is possible to sample samples, called particles,

according to .
Then an empirical estimate of this distribution is given by

where is the Dirac delta measure concentrated on
. As a corollary, an estimate of follows as

. Using

this distribution, an estimate of for any may be obtained
as

This estimate is unbiased and from the strong law of large num-
bers (SLLN), , where “ ” denotes almost

sure convergence. If var ,
then a central limit theorem (CLT) holds, i.e.

where “ ” denotes convergence in distribution. The advantage
of the Monte Carlo method is clear. It is easy to estimate
for any and the rate of convergence of this estimate does not
depend on or the dimension of the state space, but only on the
number of particles and the characteristics of the function

. Unfortunately, it is not possible to sample directly from the
distribution at any and alternative strategies
need to be investigated.
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One solution to estimate and is the
well-known BIS method [4]. This method assumes the exis-
tence of an importance distribution which is
easily simulated from and such that im-
plies . Using this distribution may be
expressed as

(10)

where the importance weight is given by

The importance weight can normally only be evaluated up to a
constant of proportionality, since, following from Bayes’ rule,

where the normalizing constant
can typically not be expressed in closed-form.

If . samples can
be simulated according to the importance distribution

, a Monte Carlo estimate of in (10) may
be obtained as

(11)

where the normalized importance weights are given by

This method is equivalent to a point mass approximation of
of the form

leading to

as a corollary. The perfect simulation case,i.e. when
, corresponds to

, , , . In practice, the importance
distribution will be chosen to be as close as possible to the
target distribution in a given sense. For finite, is
biased, since it involves a ratio of estimates, but asymptotically,
according to the SLLN, . Under additional

assumptions a CLT also holds (see Section III-C2).

B. Variance Reduction

The naive Bayesian importance sampling estimate in
(11) does not make full use of the statistical structure of
the model. Conditional on the parameters , the signal
model reduces to a linear Gaussian state-space system and
estimates of the clean speech can be obtained analyti-
cally. Thus, it is possible to reduce the problem of estimating

and to one of sampling from .
Indeed, , where

is a Gaussian distribution whose parameters
may be computed using the Kalman filter. Thus, given an ap-
proximation of , an approximation of
may straightforwardly be obtained. Defining the marginal
importance distribution and associated importance weight as

and assuming that a set of . samples

distributed according to is available, an alternative
BIS estimate of follows as

(12)

provided that can be evaluated ana-
lytically. In (12), the normalized marginal importance weights
are given by

Intuitively, to reach a given precision, will less samples

compared to , since it only requires samples from the
lower-dimensional distribution . This is proved in
the following proposition where it is shown that, if it is possible
to integrate analytically over the states , then the variance of
the resulting estimates is lower than that of the standard BIS es-
timates. The reduction achieved is specified in the proof of the
proposition in Appendix B.

Proposition 1: For any the variance of the importance
weights and the numerators and denominators of the BIS es-
timates satisfy

var

var (13)

var

var (14)

var

var (15)
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Furthermore, if var and

for any
, then and satisfy a CLT,

i.e.

with , and being given by

Given these results, the subsequent discussion will focus on
BIS methods to obtain approximations of and
using an importance distribution of the form . The
methods described up to now are batch methods. The next sec-
tion illustrates how a sequential method may be obtained.

C. Sequential Importance Sampling (SIS)

The importance distribution at timemay be factorized as

The aim is to obtain at any timean estimate of the distribution
and to be able to propagate this estimate in time

without modifying subsequently the past simulated trajectories
. This means that should

admit as marginal distribution. This is possible
if the importance distribution is restricted to be of the general
form

(16)

Such an importance distribution allows a recursive evaluation of
the importance weights, i.e., , with

(17)

1) Choosing the Importance Distribution:There is an
unlimited number of choices for the importance distribution

, the only restriction being that its support includes
that of . Two possibilities are considered next.

• Optimal importance distribution . A possible
strategy is to choose at time the importance dis-
tribution that minimizes the variance of the impor-
tance weights given and . The importance
distribution that satisfies this condition is given by

[10]. From Bayes’
rule the optimal importance distribution may be expressed
as

leading to in (17) being

(18)

where
is given by the Kalman filter (see Appendix A). The
optimal importance distribution is not easily simulated
from and the integral in (18) cannot be evaluated ana-
lytically, since is a complex nonlinear
function of . An approximation to the optimal impor-
tance distribution may be obtained by locally linearising

. This is computationally expensive
since it requires a set of Kalman filter-like recur-
sions to calculate the gradient and Hessian of the optimal
importance distribution with respect to the parameters
[18]. Instead, a suboptimal method, discussed next, is
employed here.

• Prior importance distribution . If the importance distri-
bution at time is taken to be the prior distribution, i.e.,

, then in (17) becomes
. Evaluation of this requires only

one step of the Kalman filter for each particle.
2) Degeneracy of the Algorithm:Since the importance dis-

tribution is different from the desired posterior distribution and
the dimension of both distributions increases over time, it can
be shown that the discrepancy between these distributions in-
creases (on average) over time. More rigorously, for importance
distributions of the form specified by (16) the unconditional
variance of the importance weights (i.e. with the observations

being interpreted as random variables) can only increase
over time. This is established by a straightforward extension of
the theorem in [21, p. 285] to an importance distribution of the
form specified by (16). It is thus impossible to avoid a degen-
eracy phenomenon. Practically, after a few iterations of the al-
gorithm, all but one of the normalized importance weights are
very close to zero and a large computational effort is devoted to
updating trajectories whose contribution to the final estimate is
almost zero. For this reason it is of crucial importance to include
a selection step in the algorithm. This is discussed in more detail
in the following section.

D. Selection

With , , denoting the particles after
the importance sampling step, the resulting weighted
approximation to the posterior distribution is given by
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. However, due to

the degeneracy of the algorithm, many of the particles will
have low importance weights. To make the best use of the
computational resources it is necessary to obtain an unweighted
approximation of the posterior by associating with each particle

a number of children , such that

Thus, each particle produces children in proportion to its impor-
tance weight, i.e., , under the constraints
and , so that the computational resources are fo-
cussed on regions of high probability, while at the same time
maintaining a good approximation to the posterior distribution.

Numerous selection strategies are available. Some of the
more commonly used methods include sampling importance
resampling (or multinomial sampling) [14], residual resampling
[25] and stratified sampling [20]. All of these schemes are
unbiased, i.e., and may be implemented in

operations. However, recent theoretical results (see [7])
suggest that it is not necessary for the selection schemes to be
unbiased. With this restriction removed very efficient selection
schemes may be designed.

On the downside, it is straightforward to show that all
selection schemes lead to an increase in the variance of the
Monte Carlo estimates. However, as shown in [24] in a dif-
ferent framework that could be adapted to the one presented
here, performing selection is still worthwhile, since it usually
decreases the variance of estimates at future times. Stratified
sampling is the method that introduces the least extra Monte
Carlo variation and is subsequently adopted here.

Selection poses another problem. During the resampling
stage any particular particle with a high importance weight will
be duplicated many times. As a result the cloud of particles
may eventually collapse into a single particle. This degeneracy
leads to poor approximations of the distributions of interest.
Several suboptimal methods have been proposed to overcome
this problem and introduce diversity amongst the particles.
Most of these are based on kernel density methods [9], which
approximate the probability distribution using a kernel density
estimate based on the current set of particles and sample a
new set of distinct particles from it. However, the choice and
configuration of a specific kernel are not always straightfor-
ward. Moreover, these methods introduce additional Monte
Carlo variation. In Section IV it is shown how MCMC methods
may be combined with SIS to introduce diversity amongst the
samples without increasing the Monte Carlo variation.

E. Implementation Issues

Given at time , particles
distributed approximately according

to , the particle filter proceeds as follows at
time .

Algorithm 1: Particle Filter
SIS Step

For , sample a proposal

and set .

For , evaluate the importance
weights up to a normalizing constant

(19)

For , normalize the importance
weights

(20)

Selection Step

Multiply/discard particles
with respect to high/low nor-

malized importance weights to obtain
particles .

The computational complexity of this algorithm at each iter-
ation is and is roughly equivalent to Kalman filters.
Moreover, except for the selection step all the computations can
straightforwardly be parallelized. At first glance, it could appear
necessary to keep in memory the paths of all the trajectories

, so that the storage requirements would
increase linearly with time. In fact, for both the optimal and prior
importance distributions, and the associated
importance weights depend on only via a set of low-di-
mensional sufficient statistics, namely ,
where is the
filtering distribution of the state conditional on the parameters,
which may be computed using the Kalman filter. Thus, only
these values need to be kept in memory for each particle, so that
the storage requirements are also and do not increase over
time.

F. Model Validation

Model validation is the process of determining how well a
given model fits the data. Within a Bayesian framework models
can be compared using posterior model probabilities, but this
strategy only provides relative performance indicators and does
not tell whether any particular model fits the data well. In this
section it is shown how SIS and frequentist methods may be
combined to determine the goodness of fit for any model of the
data.

In what follows let denote the random variable associated
with the scalar observation . Under the null hypothesis that the
model is correct it is straightforward to show (see [29]) that the
sequence , with ,
is a realization of . random variables uniformly distributed
on [0,1]. This result holds true for any time series model and
may be used in statistical tests to determine the adequacy of the
model.
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Computing the requires integration over the model param-
eters, an operation which is analytically intractable in general.
It is shown here how Monte Carlo integration may be used to
overcome this problem. A similar strategy is developed in [12]
using batch MCMC methods and importance sampling. Using
the one-step ahead prediction distribution, an expression for
follows straightforwardly as

From the factorization
, a Monte Carlo approximation

of the one-step ahead prediction distribution can easily be
obtained as ,

where , with a sample from the

filtering distribution at time and
generated from the Markov process prior. With this
approximation a Monte Carlo estimator for follows
straightforwardly as

(21)

For the model presented here the quantities
required for the estimator in (21) can

be calculated analytically. More specifically, denoting
for scalar observations the one-step ahead prediction
distribution for the observations, obtained from the
Kalman filter, as ,

may be calculated as

erfc

The estimates in (21) obtained for themay be used instead of
the true values in statistical tests to determine the adequacy of
the model. Most of these tests are based on transforming the
sequence to the sequence

, where , with the standard Gaussian
cumulative distribution function. Thus, under the null hypoth-
esis that the model is correct the are . distributed ac-
cording to . The statistical tests employed here are de-
signed to test for the normality and whiteness of theand are
briefly described below. Similar tests were used before in the
context of model validation for time series models in, e.g., [12]
and [19].

• Bowman-Shenton [5]. This test checks for normality
using the statistic , where and
are standardized normal equivalents of the skewness

and kurtosis , with the -th
central moment of the random variable associated with

around its mean . These values are approximated by
their sample averages. Under the null hypothesis that the

data is normal is asymptotically distributed according
to a chi-square distribution with two degrees of freedom,
i.e., .

• Ljung-Box [26]. This test gives an indication of
the goodness of fit of a time series model by
checking for the whiteness of the using the
statistic , where

is the -th sample
autocorrelation of the . Under the null hypothesis
is asymptotically distributed according to a chi-square
distribution with degrees of freedom, i.e., .

IV. PARTICLE FIXED-LAG SMOOTHER

The estimates of the clean speech signal and model parame-
ters may be improved by performing fixed-lag smoothing with
a delay of, say, . In this section it is shown that a direct
application of the methodology discussed in Section III is not
satisfactory if is large and an alternative method is then pro-
posed.

A. Some Strategies for Fixed-Lag Smoothing

1) Direct Methods: In theory, the particle filter of Sec-
tion III can easily be extended to fixed-lag smoothing. At
time the Monte Carlo approximation of the dis-
tribution is

, so that a Monte Carlo approxima-

tion of the marginal distribution follows as
. However, from

time to the trajectories have been resampled
times, so that very few distinct trajectories remain at time .
This is the classical problem of depletion of samples.

Fixed-lag smoothing of can also be performed by using an
importance distribution of the form

to simulate from the fixed-lag smoothing distribu-
tion . The same developments as in
Section III-C-C may then be done. In this case the
optimal importance distribution at time becomes

, with the as-
sociated importance weight given by

(22)

Direct sampling from the optimal importance distribution is dif-
ficult and evaluating the importance weight is analytically in-
tractable. A similar problem holds for the evaluation of the im-
portance weight associated with the prior importance distribu-
tion, which is of similar form as (22).

2) MCMC Methods:An alternative approach to fixed-lag
smoothing consists of adding a MCMC step to the particle filter
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(see [28] for an introduction to MCMC methods). This intro-
duces diversity amongst the samples and thus drastically re-
duces the problem of depletion of samples.

Assume that, at time , the particles
are marginally distributed

according to . If a Markov transition
kernel with invariant distribution

is applied to each of the particles, then the
new particles are still distributed
according to the distribution of interest. Any of the standard
MCMC methods, such as the Metropolis-Hastings (MH)
algorithm or Gibbs sampler, may be used. However, contrary
to classical MCMC methods, the transition kernel does not
need to be ergodic. Not only does this method introduce no
additional Monte Carlo variation, but it improves the estimates
in the sense that it can only reduce the total variation norm
[28] of the current distribution of the particles with respect to
the target distribution.

B. Implementation Issues

1) Algorithm: Given at time , parti-
cles distributed approximately
according to , the particle fixed-lag
smoother proceeds as follows at time .

Algorithm 2: Particle Fixed-Lag Smoother
SIS Step

For , sample a proposal

and set .
For compute the normalized im-

portance weights using (19) and (20)
Selection Step

Multiply/discard particles
with respect to high/low normal-

ized importance weights to obtain par-
ticles .
MCMC Step

For , apply to a Markov

transition kernel with in-
variant distribution to ob-

tain particles .

At each iteration the computational complexity of the particle
fixed-lag smoother is and it is necessary to keep
in memory the paths of all the trajectories from timeto ,
i.e. , as well as the sufficient statistics

.
2) Implementation of the MCMC Steps:There is an un-

limited number of choices for the MCMC transition kernel.
Here a one-at-a-time MH algorithm is adopted that up-
dates at time the values of the Markov process from
time to . More specifically, , ,

, is sampled according to ,

with . It
is straightforward to verify that this algorithm admits

as invariant distribution. Sampling from

can be done efficiently via a backward-for-

ward algorithm of complexity. This algorithm has
been developed in a batch framework in [30], so the proofs are
omitted here. At time it proceeds as summarized below
for the -th particle.

Algorithm 3: Backward-Forward Algorithm
Backward step

For , compute
and

by running the information
filter defined in (32) to (39) of
Appendix A .
Forward step

For ,

—sample a proposal , Using
the proposal distribution in (24) .
—Perform one step of the Kalman in filter

in (26) to (31) of Appendix A for the cur-
rent value and the proposed value
and calculate their posterior probablities
using (23) .
—if (see (25) ), set

, otherwise set .

In the above denotes the uniform distribution on
the set . The target posterior distribution for each of the
MH steps is shown in (23) at the bottom of the next page
with , where

is the diagonal matrix containing
the nonzero singular values of and

is the matrix containing the columns of
corresponding to the nonzero singular values, where

is the singular value
decomposition of . The matrix is given
by

To sample from the distribution in (23) using a MH step, the
proposal distribution is here taken to be

(24)

If the current and proposed new values for the state of the
Markov chain are given by and , respectively, the MH
acceptance probability follows as

(25)
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Fig. 1. Clean (top) and noise-corrupted (bottom) synthetic third-order TVAR
data.

with the acceptance ratio given by

V. EXPERIMENTS AND RESULTS

A. Synthetic Data

Fig. 1 shows 200 samples generated by a third-order TVAR
process, together with a noise-corrupted version of the signal
for which the input SNR is 4.64 dB. The corresponding TVAR
parameters are depicted in Fig. 2 and follow a Markov process
with fixed parameters

The particle filter was run on the data in Fig. 1 for various
values of . For the fixed parameters of the Markov process on
the TVAR parameters the corresponding true values were used,
but the results were found to be relatively insensitive to the spe-
cific values chosen for these quantities. Stratified sampling was

Fig. 2. TVAR parameters for the data in Fig. 1.

used as the selection procedure and the importance distribution
was taken to be the prior distribution. Estimates for the clean
speech were obtained using the Monte Carlo estimator in (12).

The SNR improvement results are summarized in the first
row of Table I and were obtained by averaging over 50 inde-
pendent runs of the algorithm for each value of. There is a
steady increase in the SNR improvement asincreases up to
100, with no significant further improvement with a further in-
crease in . Thus, particles seem to yield a suffi-
ciently accurate representation of the filtering distribution for
this realization. As intuitively expected, the standard deviation
of the Monte Carlo estimate exhibits a decreasing trend with
an increase in the number of particles. A nonoptimized imple-
mentation of the filter inMatlab ran at approximately 0.5 s per
iteration for , increasing linearly to approximately s
per iteration for , on a standard 750 MHz PC.

The particle fixed-lag smoother was also run on the data in
Fig. 1. This time was fixed to 100 and was varied between
10 and 40. The SNR improvement results, again obtained by av-
eraging over 50 independent runs of the algorithm for each value
of , are summarized in the first row of Table II. For
there is a significant improvement in the reconstruction perfor-
mance over the particle filter with , with no significant

(23)
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TABLE I
SNR IMPROVEMENT RESULTS IN DB VS. THE NUMBER OF PARTICLES. THESE

RESULTSWERE OBTAINED BY AVERAGING OVER 50 INDEPENDENTRUNS OF

THE ALGORITHM. THE NUMBERS IN BRACKETS GIVE THE STANDARD

DEVIATION OF THE MONTE CARLO ESTIMATE OF THESNR IMPROVEMENT

Fig. 3. Clean (top) and noisy (bottom) speech frames depicting the transitions
between /sh/ and /uw/ in “should” (left) and /s/ and /er/ in “service” (right).

further improvement with a further increase in. The standard
deviation of the Monte Carlo estimate remains approximately
equal to that of the filter with , showing that this quan-
tity is strongly dependent only on the number of particles. The
computational complexity of the fixed-lag smoother is much
higher than that of the filter. A nonoptimized implementation
in Matlab with ran at approximately 2 s per iteration
for , increasing linearly to approximately 10 s per itera-
tion for , on a standard 750 MHz PC.

B. Speech Data

Fig. 3 shows two frames of speech and their corresponding
noise-corrupted versions, with input SNR’s of0.61 dB and
6.10 dB, respectively. These sections of speech were chosen to
be representative of the kind of nonstationarities that are tradi-
tionally not well modeled by the standard fixed-parameter AR
model [30]. The first shows the rather gradual transition be-
tween the fricative /sh/ and the vowel /uw/ in the word “should”,
whereas the second depicts the much sharper transition between
the fricative /s/ and the vowel /er/ in the word “service.” In the
subsequent discussion the first frame will be referred to as F1
and the second, as F2.

TABLE II
SNR IMPROVEMENT RESULTS IN DB VS. THE LAG FOR THEFIXED-LAG

SMOOTHER, WITH N FIXED TO 100. THESERESULTSWERE OBTAINED BY

AVERAGING OVER 50 INDEPENDENTRUNS OF THEALGORITHM. THE

NUMBERS IN BRACKETS GIVE THE STANDARD DEVIATION OF THE MONTE

CARLO ESTIMATE OF THE SNR IMPROVEMENT

The particle filter and the fixed-lag smoother were run on F1
and F2 in experiments similar to those for the synthetic data. The
model order was fixed to . No significant further improve-
ments in the results were observed with an increase inabove 4.
This useful result is due to the fact that the nonstationary char-
acter of the TVAR model allows for much more modeling flex-
ibility than, say, a standard fixed-parameter AR model of the
same order. The fixed parameters of the Markov process on the
TVAR parameters were set to values similar to those used for the
experiments on the synthetic data. Yet again the results proved
to be relatively insensitive to the specific values chosen for these
quantities.

The SNR improvement results are summarized in the second
and third rows of Tables I and II. The filtering performance for
F2 steadily improves with an increase in the number of parti-
cles up to , whereas good filtering performance is
achieved for F1 with as few as particles. This discrep-
ancy is due to the relatively low input SNR of F1 compared
to that of F2. For both F1 and F2 the benefit of the fixed-lag
smoother is clear. The extra information carried in the future
samples leads to better estimates for lags of up to 20, whereafter
the gain is negligible. The results compare favorably with those
of a batch MCMC algorithm (see [30]), which yielded SNR im-
provements of 3.46 dB and 2.32 dB for F1 and F2, respectively,
using the same values for the fixed parameters of the Markov
process on the model parameters.

To determine the adequacy of the model the statistical tests in
Section III-C-F were applied to F1 and F2, using . The
results were obtained by averaging over 50 independent runs of
the algorithm and are presented in Table III, together with the
5% critical values for the statistics. The results of the Bowman-
Shenton test show that the residuals are indeed standard normal
distributed for both F1 and F2. The results of the Ljung-Box test,
however, indicate that there are still significant autocorrelations
present in the residuals. A possible explanation for this may
be the presence of longer-term dependencies due to the glottal
excitation in voiced speech signals. These dependencies cannot
adequately be accounted for by models conditioning only on the
recent past. Future work will focus on extending the basic TVAR
model to overcome this problem.

With these results in mind the filter and fixed-lag smoother
with were both run with particles on an
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TABLE III
MODEL VALIDATION RESULTS FOR THESPEECHDATA IN FIG. 3

utterance of the sentence“Good service should be rewarded
by big tips.” by a male American speaker. The clean signal
was acoustically combined with a slowly time-varying additive
white Gaussian noise process so that the input SNR over the
whole utterance was 0.16 dB. The filter and fixed-lag smoother
achieved SNR improvements of 5.44 dB and 5.85 dB, respec-
tively. This utterance was also processed using a 10-th order
fixed-parameter AR model according to the strategy described
in [11]. Although a superior SNR improvement of 8.5 dB was
achieved, the resulting enhanced utterance contained disturbing
intermittent musical noise artifacts, which were not present
in the result obtained by the TVAR model. In fact, the noise
residual for the TVAR model was found to be approximately
white, but time-varying.

VI. CONCLUSIONS

This paper applied TVAR models with stochastically
evolving parameters to the problem of speech modeling and
enhancement. Sequential particle methods were developed to
compute the filtering and the fixed-lag smoothing distributions,
from which Monte Carlo estimates of the clean speech signal
and model parameters may be obtained. The algorithms make
use of several variance reduction strategies to fully exploit the
statistical structure of the model and allow model validation
to be performed. Although the algorithms are computationally
expensive, they can straightforwardly be implemented on
parallel computers, thus facilitating near real-time processing.
The estimation results indicate that adequate representations of
the clean speech signal may be obtained with a TVAR model
order of as low as four and as few as 100 particles. However,
the TVAR model is still unable to fully capture the longer-term
dependencies due to the glottal excitation in voiced speech
signals. Future work will focus on overcoming this difficulty.

APPENDIX A
THE KALMAN FILTER AND BACKWARD INFORMATION FILTER

The exposition is given for the CGSS system in (3) and (4).
The parameters being here assumed known, the Kalman
filter equations are as follows. Initialize
and , then for , compute

(26)

(27)

(28)

(29)

(30)

(31)

In this equation,
is the

one-step ahead prediction distribution and
, the

Kalman filtering distribution for the state , respectively and
is the

one-step ahead prediction distribution for the observation.
The backward information filter proceeds as follows for

. At time , initialize

(32)

(33)

then for , compute (see (34)–(39) shown at
the top of the next page).

APPENDIX B
PROOF OFPROPOSITION1

To avoid cumbersome notation in the calculations that follow
all dependencies are dropped from distributions and variables
when there is no danger of ambiguities arising. Unless stated
otherwise, joint distributions and functions of the states and pa-
rameters are denoted in the usual way,e.g. and are equiv-
alent to and , whereas marginal
distributions and functions of the parameters are distinguished
by a bar over the original variable, e.g.,and are equivalent to

and . Distributions of the states conditional
on the parameters are distinguished by a tilde over the original
variable,e.g. is equivalent to .

To prove the variance reduction, use is made of the variance
decomposition theorem. For the importance weights this result
yields

var var var

But , so that

var var var

The result in (13) follows. The proofs for (14) and (15) follow
in a similar manner.
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(34)

(35)

(36)

(37)

(38)

(39)

The existence of a CLT for and is now proved. Since

and are sums of random variables, the delta
method yields

var var

var var

cov

But and , so that

var var var

cov

var

But , so that

var

Using similar arguments an expression for var follows as

var

The expressions for and follow. The variance decompo-
sition result yields

var var

var

But , so that

var var

var

from which it is evident that .
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