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Abstract

State-space models are a very general class of time series capable of modeling-dependent
observations in a natural and interpretable way. We consider here the case where the latent
process is modeled by a Markov chain taking its values in a continuous space and the
observation at each point admits a distribution dependent of both the current state of the
Markov chain and the past observation. In this context, under given regularity assumptions,
we establish that (1) the filter, and its derivatives with respect to some parameters in the model,
have exponential forgetting properties and (2) the extended Markov chain, whose components
are the latent process, the observation sequence, the filter and its derivatives is geometrically
ergodic. The regularity assumptions are typically satisfied when the latent process takes values
in a compact space.
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1. Introduction

State-space models are widely used in many scientific fields. We consider here the
case where the latent process is modeled by a Markov chain taking its values in a
continuous space and the observation at each point admits a distribution dependent
of both the current state of the Markov chain and the past observation. In this
context, under given regularity assumptions, we establish that (1) the filter, and its
derivatives with respect to some parameters in the model, have exponential
forgetting properties and (2) the extended Markov chain, whose components are
the latent process, the observation sequence, the filter and its derivatives is
geometrically ergodic. The regularity assumptions are typically satisfied when the
latent process takes values in a compact space. This extends the results of LeGland
and Mevel [8] and Douc and Matias [5].

Related problems have already been recently addressed in the literature (see the
references) as these results have direct applications for misspecified models,
identification, etc. Exponential forgetting properties of the filter have been
established in [1,2,4,9]. Using the Hilbert metric approach pioneered in [2,9], we
establish here exponential forgetting properties for the filter and its derivatives for a
class of models more general than those presented in the literature. We also establish
geometric ergodicity of the extended chain. In the case of finite Hidden Markov
models, this has been initiated by LeGland and Mevel [8] and generalized to a larger
class of continuous state-space models in [5]. Simplifying the techniques introduced
in [8], we obtain results for a class of continuous state-space models which
encompasses the one addressed in [5]; in particular strong differentiability
assumptions for the Markov transition kernel and the likelihood are lifted and the
likelihood does not have to be compactly supported.

The paper is organized as follows. In Section 2, the state-space model analyzed in
this paper is defined. The optimal filter and its derivatives are also defined in this
section. In Section 3, the results on the exponential forgetting of the filter and its
derivatives are presented. The results on the geometric ergodicity of the extended
Markov chain whose components are the latent process, the observation sequence,
the filter and its derivatives are given in Section 4. The differentiability of the optimal
filter is the subject of Section 5. Proofs of the results presented in Sections 3—5 are
provided in Sections 6 and 7. In [12], the obtained general results are applied to the
stability analysis of the optimal filter for non-linear AR processes with Markov
switching and its derivatives.

2. System and the optimal filter

Let © be an open subset of R, while (€2, ) is a measurable space. Let {X,},>( and
{Y,},=0 be R’ and R9-valued stochastic processes defined on (2, %), while A(:) is a
non-negative measure on (RY,#4%). For each 0 € @, there exist a probability
Py F — [0,1], a transition probability kernel Py : R’ x #” — [0, 1] and a Borel-
measurable function ¢, : R’ x R? x R? — [0, 00) such that [ ¢y(x,»,y)A(dy’) = 1 for
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allx e R, y € RY, and {X,},~0, { Yu},>0 admit the following relations on (2, #, Zy)
for all B, € #°, B, € #, n=0:

<QQ(A/IH% [S BX|X”5 Yn) = P@(Xnan) W~P-1> (1)
%WWG%WWJW=/qwanwW®WpL @
B,

where X" = (Xy,...,X,) and Y" = (Y,,..., Y,), n=0.

Throughout the paper the following notation is used. M?, M? and M” are the
families of probability measures, finite non-negative measures and finite signed
measures (respectively) defined on the Borel measurable space (R”, 4”). || - || denotes
the total variation norm of a signed measure, while .4, .4” and " are the families
of measurable sets from M}, M? and M (respectively) induced by the total variation
norm. J, is the Dirac measure on (R?,#”) located at x € R”, Ip is the indicator
function of the set B € #” and I = Ig. For i € M”, a kernel R: M — M” and a
bounded Borel-measurable function f : R” — R, iR denotes the measure which R
maps Jt into, while ZRf is the integral of f with respect to the measure iR. For a
sequence {Vi}rso, let y" = (»g,...,y,) for n=0, and »! = (y;,...,y,) for 0<i<n.

For 0 € O, let {Ry(»,)')},vcre be a family of kernels defined as

ﬁmmwm=//mwwmmm%w%www)

for i € M”, B € %" (notice that Ry(y,)’) maps M’ into M” for all y,)’ € R?), while
{Ro(y, Y}y yere is a family of kernels mapping M 1nto M” and having the property
that iRy(-, )IB is Borel-measurable for all i € M”, B € %”. Moreover, for 0 € O,
nwe Ml e M’ , ¥,V € Rilet Fo(u,y,y') € M? and Fg(u,,u,y,y) € M” be measures
defined as

Fo(u, 3,y 5 = (uRo(r, "))~ uRo(y, )1 3, 3)

Folu, 11y y, ) 3 = (Ro(v, ) (itRo(y, ') — (iRo (v, YD F o(1, v, ¥ )
+ (URy (D) (uRy(3, ) — (WRy(r, Y )DF (1, . Y N (4)

for B € #”. Furthermore, for 0 € ©, pe€ M?, i € M" and a sequence {(Vi}k=o from
R, let {Fp(u,y"},=0 and F(,(,u, o,y )}n>0 be measures from M? and M’

(respectively) defined as F?) 0,0 =, FO(,u it,3°) = jt and

F”-H(,u’ ”-H) = F(‘)(F (:u’y ) yn’yn+l) (5)

” 1 n n
o Ty = Fo(Fi( ™), Fy(its i s Vs Vi) (6)

n=0. It is straightforward to verify that for n>1, Fj(u, Y") is the optimal filter for
estimating X, given Yy,..., Y, in the probability space (2, 7, Zy). Under additional
conditions establishing a relationship between Ry(-,-) and Rg( -) (see Section 5), for
each n>1, F 9(,u @i, Y") is a derivative of Fiy(u, Y") with respect to the parameter 0.
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3. Exponential forgetting

The problem of the exponential forgetting of {Fp(u,y")},~o and {F;(u, V") o0

with respect to the initial conditions u € M?, i € M” is considered in this section.
This problem is analyzed under the following assumptions:

(A3.1) For all 0 € O, there exist a Borel-measurable function & : R x R? — (0, 1)
and a family {vo(y, ")}, ers of measures from M” such that vy(-,-)I is Borel-
measurable for all B € #” and

&0y, VY o, Y p<SxRo(v, Y) 5 <eg ' (v, oy, Y ) 5
for all x e R?, y,y' € R?, B #°.

(A3.2) For all 0 € O, there exists a Borel-measurable function & : R? x R? — (0, 1)
such that

4R (v, YOI <5 (0, Y )uRo(r, )T
for all u e M?, y,y' € RY.

Remark. It can easily be deduced that under (A3.1) and (A3 2) kRo»,Y)f,
[iRy(y,y)f are well-defined and finite for all y,y’ € R, ji e M” and any bounded
Borel-measurable function f : R — R.

Assumption (A3.1) corresponds to the stability of the kernel Ry(-,-) which itself is
tightly related to the stability of the transition probability kernel Py(-,-).
Assumptions of this kind have been introduced in [4] and latter used in [9].
Assumption (A3.1) is satisfied if for all 8 € ©, there exist a constant ¢y € (0,1) and a
measure vy € M? such that

e0vo(B) < Py(x, B)<éy ' vo(B) (M

for all x € R?, B € #”. On the other hand, (7) holds if (1) for all 0 € ©, Py(-,-) has a
density py(-, -) with respect to a reference measure k € M”, and (2) for all 0 € ©, there
exists a set Xy € #” such that fX,, Ppo(x, x)r(dx") = 1 for all x € R’ and py(x,x")=¢ep
for all x,x" € Xy.

Assumption (A3.2) is related to the kernel Ry(-,-). It can be shown that (A3.2)
holds if (1) for all 0 € ®, Py(-,-) has density py(-,-) with respect to a reference
measure k € M?, (2) pp(x, x") and gy(x, y,)’) are differentiable with respect to 0 for all
x, X € R, y,y e R1, (3) forall 0 € O,

sup py(x, %) pg(x, X < o0,

x,x'eRP

SuRE) ‘](gl(xsys)’/)|%(X,y,y/)| <OO,

vy/eRd

where py(x, x'), gy(x,y,)’) are derivatives of py(x, x’), gy(x,p,)") (respectively) with
respect to 6, and (4) for all 6 € O, Ry(-,-) is the derivative of Ry(-, -) with respect to 6,
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ie., forall 0 € O, y,y € RI, Be #°,
ﬂmmﬁbz//MMMMWMmemﬁbW)
+//mmmwwMJWmeuw>

For 0 € ©, y,y € R?, let

(. )) = (1 — g0 YDA + (. )"
a9(r,)) = 2log™ 3¢5 2 (n,))75 (0, ),
So(y.)") = 80log ™' 3¢5 (v, ¥ )ty (1, 1),
bo(.y) = &5 (0. )8 1)1 (0. ¥).
Vo y) = ()75 1.,

Bo(r,) = 2log™"3e5* (v, )15 ' (0, 1).

Moreover, for € @, n>1, and a sequence {y;};>o from RY, let

2p(y") = o9(yo, y1) H t0(Vie1, 00
i=1
n—1 n

(") = aco(yo,yl)(z boWi 1y Wi yist) + <7>0(y,,_1,y,,>> (H m(y,-_l,y,»)),
i=1 i=1

/?Z(yn) = Be@o:yl) H (Vi1 V0)-

The main results on the exponential forgetting of {F7 (u V)}uso and {F 9(% V") o0

with respect to the initial conditions p € M%, i € M are contained in the next two
theorems.

Theorem 3.1. Let (A3.1) hold, while {y,}i=¢ is a sequence from R?. Then, for all
w € My, n=1,

I Fp(u, y") — Fo(u', yI < og() e — 1)

Theorem 3.2. Let (A3 1) and (A3 2) hold while 0 € © and {y,}x>¢ is a sequence from
R?. Then, for all pu, ) € M3, i, i’ € M, n=1,

1F o 3" = Fou', i1, YOI <Ml — I+ 120D + Bl — /1. (8)

Proofs of Theorems 3.1 and 3.2 are provided in Section 6.

In [9], the exponential forgetting of {Fj(u, ")}, has been considered, and the
same results as those in Theorem 3.1 have been obtained (Theorem 3.1 has been
included in the paper for the sake of completeness, since it is a crucial prerequisite for
Theorem 3.2 and the results presented in the next section). The exponential
forgetting of {F Z(,u, &, ¥")} =0 has been studied in [1,5,8]. Compared with the results
of [1,5,8], Theorem 3.2 seems to be considerably more general. The results presented
in [1] cover only the case of hidden Markov models with finite state and observation
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spaces, while the results of [5,8] are fairly restrictive for cases where the likelihood
probability density functions g¢,(x,y,-) are not compactly supported. Instead of
&y (-, ), the upper bound of the left-hand side of (8) obtained in [5,8] (and extended
to state-space models) depends on the function dy(-,-) defined as

/ SUDPycrr qH(xa y,J/)

99(y, ") R ) 9
for6 € ©, y,y € R’. However, if ¢4(x, y, -) are not compactly supported, dy(y, ") can
(and usually do) tend to infinity as ||y||, |[)/|| — oo: it can easily be shown that Jy(-, -)
grows exponentially if gy(x,y,-) are Gaussian probability density functions. On the
other hand, if there exists a constant ¢y € (0, 1) such that (7) holds, then &; (-, ) itself
is bounded by that constant.

4. Geometric ergodicity

Let 2:% — [0,1] be a probability measure on (Q,%). Moreover, let P:
R x #” — [0, 1] be a transition probability kernel, while ¢ : R” x R? x R? — [0, 00)
is a Borel-measurable function satisfying [¢(x,y,))A(dy’) =1forallx € R’, y € R?
(A(-) is defined in Section 2). Suppose that {X,},~ and {Y,},>, are distributed on
(Q, 7 ,2) according to

P(Xn1 € Bo X", Y") = P(X,, By) wop.l, (10)

A € BIX Y = [ Ko Yan)i@) wpl ()

o

for all B, € #”, B, € #, n>0. Let S: Mb™" — M}L* be a transition probability
kernel defined as

S(ays B) = 3y STy = / / P, dx)AdY (x5 y)

for xe R, y € RY, Be %" x #9. Furthermore, let u, € M5, iy € M" be determi-
nistic measures, while 1/ = Fi(u,, Y"), ﬁfj = Fg(uo,,&o, Y")for 0 € O, n>=1. Then, for
all 0 € O, (X, Yo, )} ,50 and {(X,, Y, 1, i)},,= ¢ are Markov chains on (Q, 7, 2)
with values in R” x R? x M{, R x R? x M{ x M” (respectively) and transition
probability kernels ITy, Iy (respectively) defined as

o(x,y, pt, B) = (xp0Ilol p = / S(x, y,dx', dy") (X', ¥, Fo(u, y,))), (12)
ﬁg(x, Y, i, /jt, B) = 5(x,y,y,ﬁ)ﬁé)[[;

- / Gy, A, ) 5, Fol vy, Folis o)) (13)

forxe R’y e R, pe M), jue M", Be %" x B x A5, Be B x B x MY x "
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The process {(X,, Yn)},=o distributed on (£, %,7) (and characterized by the
transition probability kernel P(-,-) and likelihood probability density function
q(-,-,-)) can be interpreted as a true system, while for 6 € @, the processes
{(Xn, Yn)}uso distributed on (Q,%,%)) (and characterized by the transition
probability kernel Py(-,-) and likelihood probability density function ¢,(-,-,-)) can
be considered as a parameterized (candidate) model of the true system. In the context
of the system identification, the aim is to determine 6 € @ such that {(X,, Y,)},>¢
distributed on (2, #, %) approximates best {(X,, Y,)},( distributed on (2, 7, 2).

The problem of the geometric ergodicity of {(X,, Yn,uﬁ)},1>0 and
{(X 0, Yn,,uz,,aZ)}Do is considered in this section. The problem is analyzed under
the following assumptions:

(A4.1) For all 0 € O, there exist a constant & € (0, 1) and a family {vy(y, )}, yers Of
measures from M? such that vy(-,-)I 5 is Borel-measurable for all B € %” and

egvo(ys V) p<SxRo(v, Y) p<eg 'vo(y, ) p

forall x e R, y,y € R1, Be #°.

(A4.2) There exist a probability measure s € M€+q, constants C € [1,00), p € (0,1)
and a Borel-measurable function ¢ : R’ x R? — [1,00) such that s¢ <oo,
sSIp = sl for all Be #°™ and

|5(x,y)S”f —sf1<Cp"Pp(x,y)
for all xe R, y € RY, n=1, and any Borel-measurable function f : R x
RY — R satisfying 0<f(x,y)<¢(x,y) for all x € R, y € RI.

Assumption (A4.1) corresponds to the stability of the kernel Ry(-,-) and is a
special case of (A3.1). It is satisfied if (7) holds.

Assumption (A4.2) is related to the stability of the system {(X,,Y,)},s¢. It
requires the Markov chain {(X,, Y,)},>¢ to be uniformly ergodic (for more details
on this type of geometric ergodicity see [10, Chapter14]). It is satisfied if the system is
a hidden Markov model with geometrically ergodic hidden process. Another
situation where (A4.2) is satisfied is provided in [12].

Let t9=(1— 8(2))(1 + 8(2))_1. The main results on the geometric ergodicity of
(X 0y Yoo i)} 0 and {(X, Y, 1, 1)},= ¢ are contained in the next two theorems.

Theorem 4.1. Let (A4.1) and (A4.2) hold, while 0 € © and f : R® x RY x M — R is
an B x B x AMY-measurable function. Suppose that

VACHADIES(C ) (14

|f(x’ya:u) —f(xy)’yll/)|<¢(an’)||ﬂ—.U/” (15)

forall x e R,y € RY, p, i’ € MY. Then, there exist constants Ky € [1,00), rg € (0, 1)
(depending on ¢y, C, p, s¢p only) such that

(T3 )6y, 1) = T Y 1< Korj(@(x, ) + d(x, )
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forall x,x € R, y,y € R, u, )’ € MY, n>0. Moreover, there exist constants f ) € R,
Ly € [1,00) (depending on &y, C, p,s¢p only) such that

|5 )X, v, 1) — fol < Loryp(x, y)
forallxe R',y e RY, pe Mjj, n=1.

Theorem 4.2. Let (A3.2), (A4.1) and (A4 2) hold, while 0 € @ and f : R’ x RY x
M5 x M" — R is an B x B x MY X A" -measurable function. Suppose that there
exist constants o, 5 € (1,00), y € [0, oo) Ky € [1,00) such that o' + p~' =1 and

16 1, OIS P e, )1+ 117, (16)

FCeps 1 1) = 63, 1 OGP Oe, )L+ IRIP A+ U 1)Ul = 11+ 1 = ),
)

[ 050 d¥ 0V < Ko ) (8)
forallx e R,y € R, u, 1/ e~Mp, o, [l € M. Then, there exist constants Ky € [1,00),
rg € (0, 1) (depending on &y, Ky, C, p, s¢p,y only) such that

(T £)(%, s 1o 1)) — (T )X, 1 1)
< Korp(x, »)(1+ [IEITT + Korfp(, )1 + IF 117

Sor all x,x' € R, y,y' € R%, u, i/ € M%), i, [i' € M”, n=1. Moreover, if there exist a
constant Ly and a Borel-measurable function \ : RI’ R? — [1,00) such that

/ DX, )5, (0, 1)S(x, v, A, dy) < Low(x, ) (19)

for all x e RP, y € RY, then there exist constants fy € R, Ly € [1,00) (depending on
¢0, Ko, Ly, C, p,5¢,y only) such that

(T )%, 9, s 1) — f ol S Lors(p(x, ») + Y(x, )1 + 177
forallxe R, ye R, pe M), e M", n>1.

Proofs of Theorems 4.1 and 4.2 are provided in Section 7.

In [6], the geometric ergodicity of {(X,, Y., 10)},=o has been considered and
similar results as in Theorem 4.1 have been obtained. However, the results of [6] have
been proved using arguments which are completely different from and less
transparent than those used in the proof of Theorem 4.1. The geometric ergodicity
of {(X,, Yy, uﬁ,ﬂz)},@o has been studied in [5,8]. Compared with the results of [5,8],
Theorem 4.2 seems to be considerably more general. In [5,8], the geometric
ergodicity of {(X,, Y, i, ,u‘9)}n>0 has been demonstrated under conditions which are
fairly restrictive for cases where the likelihood probability density functions gy (x, y, -)
are not compactly supported. The assumptions adopted in [5,8] (and extended to
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state-space models) require that

sup / 50,3 )q(xs v,y )A(dY) <00 (20)

XER’, yeR!

(00(-,-) is defined in (9)). However, it can easily be shown that (20) does not hold if
qo(x,y,-) are Gaussian probability density functions. On the other hand, Theorem
4.2 cover a fairly broad class of hidden Markov models and non-linear AR models
with Markov switching (see [12]) and allow the likelihood probability density
functions gy(x,y,-) to be Gaussian.

5. Filter derivatives

For0 € O, let uy € M} and Jiy € M. The problems of the weak differentiability of
{Fp(ug, Y")}nso with respect to 0 and determining the corresponding derivatives are
considered in this section (see e.g. [11] for details on weak differentiability and weak
derivatives). Let

Ay ={(»,)) € R x R : ||lvo(y,y")I| >0},

Ay = {(1,)) € R x RY : v, 3 = O},

while A" = Jyg Ay and A” = Uy 4p. The problems mentioned above are analyzed
under the following assumptions:

(A5.1) For all 0 € ©, y,y € RY and any bounded Borel-measurable function

f:RP - R,
Jim 18— 01" sup [x(Rs(.) = R(25/) = (8 = ORs(. )1 = 0.
- XER?
(A5.2) For all 0 € ®, y,y € R? and any bounded Borel-measurable function
f: R - R,
1}3}9(9 —0)" (g — g — (3 — O)fig)f = 0. (21)

(A5.3) There exists a set 4 € #¢ x #? such that (1 x 1)(4)=0and 4 C AU A",

Remark. Assumption (AS.1) implies that for all y,y’ € RY, Ry(y,)y’) is weakly
differentiable with respect to 6 and Ry(y, ') is its weak derivative. Similarly, (A5.2)
implies that u, is weakly differentiable with respect to 6 and [, is its weak
derivative.

The main results on the weak differentiability of {F{(uy,»")},>¢ are contained in
the next two theorems.



V.B. Tadié, A. Doucet | Stochastic Processes and their Applications 115 (2005) 1408-1436 1417

Theorem 5.1. Let (A3.1), (A3.2), (A5.1) and (AS5.2) hold, while 0 € @ and {y,}>o
is any sequence from R satisfying (VY1) ¢ € Ayu A", n=0. Then, for all
n=0, Fy(uy,y") is weakly differentiable in 0 and F@(,UH,,UQ V") is its weak derivative,
Le.,

lim (8 — 0)" (Fyugs ") = Fi(, ") = (3 = OFo(11g, ig, YN = 0

for n=0 and any bounded Borel-measurable function f : R° — R.

Theorem 5.2. Let (A3.1), (A3.2) and (A5.1-AS5.3) hold. Suppose that {X,},~, and
(Y ,}us0 are distributed on (Q, 7, 2) according to (10), (11). Then, there exists A € F
satisfying P(A) = 0 such that for all 0 € O, n=0, Fy(uy, Y") is weakly differentiable in

0 on A and Fg(ue,ﬁ(,, Y") is its weak derivative on A°, i.e.,
lim (3 - 6) NF(ug, Y™ = Fi(u, Y™ — (9 — O)F (. fig, Y")f =0 (22)

on A€ for all 0 € ©, n=0, and any bounded Borel-measurable function f : RP — R.

Proofs of Theorems 5.1 and 5.2 are rather straightforward so are not included
here. There are provided in [12].

The results of Theorems 5.1 and 5.2 provide a general, but still simple way to
check if {Fj(uy, Y")},>o are weakly differentiable and to calculate the correspond-
ing derivatives. To the best of our knowledge, the weak differentiability of
{Fp(ug, Y")},>0 has not been studied in the literature on optimal filtering.

6. Proof of Theorems 3.1 and 3.2

Let d(-,-) be the Hilbert projective distance between measures from M?, i.e

, Wip ply
d(p, 1) = sup 1og(— o )
BB e#P ,uI BN 1 B

W(B),u(B')>0

if there exists a constant ¢ € (0, 1) (depending on u, i') such that eul p<p/'Ip<e 'ulp
for all B € #”, and d(u, ') = oo otherwise.
For 0 € O, y,y € R?, let

ag(y,y) = 2log™ 3¢5 (1, )1y (00, 1),
bo(y,y') = 4log™" 3¢5 °(r, )75 (0,0,
dy(,y) = 101og™"3e5%(, )15 (..
dy(».) = & 0.5 0.7 0.9,
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Moreover, for 0 € @, n>1, and a sequence {y;};>o, let
n
&Ié(yn) = &00/03)}1) H TO(yiflsyi)s
i=1

By = Ee@o,yl)ﬂ W10,
0™ = 260> 012708 Wt 20),
310 = 0000 T o100
For 0 € ® and a sequence {y; )¢, let {Rj(»")},=0 be kernels defined as
UR)Y(Y)I 5 = ul g and

HRGY 5 = 1Ry ("R, 1.9, 5
for u e M?, B e #”, n=1 (notice that Rj()"") maps M? into M? for n>=0). Moreover,
for0 € @, ue M?, i € M" and a sequence {yk}kzoofrom R? let {Gg(,u, Y} =0 and
{f]g(,u,y”)}nzl be measures from M’ defined as Ge(u, it,1°) = i and

Gy, 1, ") 5 = (RSO ™ (BRI — (RRYGMDF (1, ") 5,
FI” n I _ F}’l*l n—1 R I*anfl n—1 R I
0(.“,)/) B _( 0 (,Uay ) e(ynflﬂyn) ) 0 (,Ll,y ) H(ynflﬂyn) B
— (Fy (1w " R, v)D Fy 1,y DR,y D)
x Fy(u, ") g

for Be #”, n>1.

Lemma 6.1. Let (A3.1) hold. Then, for all u,i’ € M%,

= w1 <2log ' 3d(u, 1), (23)
d(uRo(,¥'), 1! Ro(, 1) <&y (0, )l — K|, (24)
d(uRo(y,y"), ' Ro(y,¥")) <to(y, y")d(p, 1t'). (25)

Inequality (23) is proved in [2], while inequalities (24) and (25) are proved in [9].

Proof of Theorem 3.1. Let u, ) € M%, while p,=Fjj(p, y"), W, =Fj(i, 3", en=20(V,_15
Yn)s Tn =T0(¥,_1,¥,) for n=1. Then, in order to prove the lemma’s assertion, it is
sufficient to show that for n>1,

n
i, — w1l <2log™' 3 (H ) llw = w1

i=1
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It can easily be deduced from Lemma 6.1 that for n>0,

ity — 1 <2log™"3d(w,, 1),
d(,un-H 5 /L;’+l) < Tﬂ+1d(:una M;z)s
d(:un-ﬁ-l »#:1+1)<8;_£1 ||,U,n - :u:l”

Therefore,

iy — w1 <2log™"3d(uy, 1) <2log™'3e? |l — 4.
n

I, — w,ll <2log™'3d(u,, ) <2log™'3 <H Ti) d(py, 17)
i=2

<2log™ '3 7! (H n) e =l
i=1
for n=2. This completes the proof. [
Lemma 6.2. Let (A3.1) and (A3.2) hold, while 0 € ©. Then, for all y,y € RY,

AR (v, )< 5" (0,12 0, )00, YD

Proof. Let i € M, while ut and p~ are the positive and negative part of fi. Then, it
can easily be deduced from (A3.1) and (A3.2) that for all y,) € RY, B € %9,

#iROQ’a y/)Inggl(ys y/):uive(ya y/)IB = 89_1()}3 y/)”,ui”‘)@0}5 y/)IBy

iRy (y, )M 5l < Il Ro(y, )l + lw™ Ro(y. )|
<& '3, R,y + 5 (0,5 ) Ro(y,y)I.
Consequently,
1R (v, ) <25 (0,35 ' 03O0 DU+ 1111
= &' )% 0 )00, YD
for all y,y’ € R?. This completes the proof. [

Lemma 6.3. Let 0 € O, while {y,}x>0 is a sequence from R?. Then, for all p e M?,
Be %, n=1,

F(u, ) = (R nRy(") p.

Proof. Let pe M?, while U, = Ro(y,_1,7,), V= Rp(y") for n=1. Moreover, let
{tt,}n=1 be measures from M?” defined as

wdp = WVu)™ uVulp

for Be #”, n=1. Then, in order to prove the lemma’s assertion, it is sufficient to
show that p, = Fiy(p, ") for n>1.
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It is straightforward to verify that y; = F(])(u,yl), as well as

FF)(:un’yn’ynJrl)IB = (:u“n UnJrl[)_l,un Un+llBa
tpUniiIp = (uV, 1) uU, I3

for B € %”, n=1. Therefore,

FQ(:un’yn’ynJrl)IB = (:un Un+11)71(ﬂVn1)71MV11+11B
= WVur D) uVuiids = 118
for Be #°, n>1 (notice that (uV,1 1) = (uUpr 1) ' (uV,I)~" for n=1). Then,

using the mathematical induction, it can easily be deduced that u, = Fjj(u, ") for
n>=2. This completes the proof. [

Lemma 6.4. Let 0 € ©, while {y;}i=( is a sequence from R1. Then, for all p € MY,
e M, n=0,

n . .
2 ~ n I ~ n AT i i\ T7 i
Fou o y") = Gy, i ") + Y Gy (Fi(, ), Hy(p ), 57).-
i=1
Proof. Let ue M%), i e M”, while u, = Fi(u,y") for n=0, and U, = Ry(¥,_, V),
U, = Rg(ynfl,yn) for n=1. Moreover, let ¥ = jt and ¥, = I:IZ,(u,y”) for n>1, while
Jin = Gy (s 95,01, Viern = Ry for 0<i<n. Furthermore, let i, = S0 Ain
for n=0. Then, in order to prove the lemma’s assertion, it is sufficient to show that
I, = Fy(u, ii, ") for n>0. »
It is straightforward to show that fiy = F (i, it,)°), as well as

ol g = Vi1 WV is 10l gy (26)

Jinkp = (Vi1 D) GiVigrn — GiVipiaDi) 1 27)

for B e #”, 0<i<n (in order to get (26), notice that p, = Fj'(i;,»") for 0<i<n,
and apply Lemma 6.3), and

Vulp = (.un—l Un[)il(:u'n—l Un - (,un—l ﬁﬂ]),un)IBa

n

FU(,un, :an’ynayrH-l)IB = Z(,unUn-HI)_l(}bi,n Un+] - (z[,n Un+]I)Mn+1)IB + \N’n-HIB

i=0
(28)

for all B € #”, n>1. Therefore,
1, UniiI g = (Vi1 nD) ™ Vi1 I (29)

JinUniils = WV i1nD) '\ GiVisrnit — GiVipiaD, Ui )1 5 (30)
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for all B € #”, 0<i<n, while (26), (29) and (30) imply

(W Visranr D™ = (@, Unin D™ (0 Vigrad) ™

GinUni1 Dty I3 = 1V ig1aD) ™ (GiUinir1 Ditysy — GiVisr D)ty Uni ) 8
for all B € %7, 0<i<n. Consequently,

(:un Un+11)71(;1i,n Un+1 - (Zi,n UnJrlI):un-&-l)IB = ;li,n+lIB (31)
for all B e #”, 0<i<n. Due to (28) and (31),

n
FU(,um :an’ynayn+1) = Z)“i,n-ﬁ-l + ‘~)n+l = /:‘nJrl
i=0

for n=0. Then, using the mathematical induction, it can easily be deduced that
o, = FZ(,u,,a,y”) for n>=1. This completes the proof. [

Lemma 6.5. Let (A3.1) hold, while 0 € © and {y;};.> is a sequence from RY. Then, for
allpe M2, e M”, n>1,

&0(vo, Yoo, DR DD < pRGOMI,

BRGOI < e5" (30, y) (oo, yORE DD

Proof. Let u € M?, i € M”, while u* and u~ are the positive and negative part of Ji
(respectively). Moreover, let & = &(vo,71), vi = vo(Vo,¥1)» Ui = Ro(3y,y;) and
Viein = Ry'()") for 0<i<n. Then, in order to prove the lemma’s assertion, it is
sufficient to show that for n>1,

el Vo) SpVid,
BV iall<er (VoD

It can easily be deduced from (A3.1) that for n>1,
wWVinl = pU Vo Ze1(uvi Vo, d) = e1(viRaul),

WV il = wE UV ol e WviVaoul) = &' Vau DIl (32)
Since —u~ Vi I<pVyi d<ut VI for n=1, (32) implies

|.l~1 V1,11I| < max{,u+ Vl,nla .u_ Vl,nl}

<& Vaa)max{[ut [ | 1y <er 0 VoD il

for n>=1. This completes the proof. [
Lemma 6.6. Let (A3.1) hold, while 0 € © and {y;};.> is a sequence from R?. Then, for
allpe M2, e M”, n>1,

G, 1Y) <O

Proof. Let ue M?, i e M, while ut, u are the positive and negative part of i
(respectively). If [|u|| =0, let {g]},~o be measures from M? satisfying ||| =0
for n=0, while in the case ||u™||>0, {§}},>¢ are measures from M} defined as
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pilp = (D) 'ptly for Be #, and w' = Fiuf,y") for n>1. Similarly, if
le= Il =0, let {u; },~0 be measures from M? satisfying |, || = 0 for n>0, while in
the case ||~ || >0, {1, },>¢ are measures from Mﬁ defined as uy Ip = (,u‘l)_l,u‘IB for
Be #, and u; = Fy(ug,y") for n=1. Moreover, let & =é&y(yy,»,), while
w, = Fo(u, "), I, = F"Z(u, i, y") for n=0. Furthermore, t, = t9(y,_,,»,) for n=1,
and Vg1, = Rz_i(y?) for 1<i<n. Then, in order to prove the lemma’s assertion, it is
sufficient to show that for n>1,

n
17, | <2log™'3er*ty (HT,) l12ll-

i=1

It is straightforward to verify that for all B € #”, n>1,

il = (" Dugls — (u Dy I, (33)
WV iDL = Vil p, (34)
Bl = WV iuD) ™ @V 10— @V a1 s, (35)

while Theorem 3.1 and Lemma 6.5 imply

max{ud Vial, ug Vial}<er' 1 Vo). (36)

wVipd Ze1(vi Vo), (37)
n

(W=D — Il <2log™' 372! (H n) (WDl — el (38)
i=1

for n>1. Due to (33)-(35),

I dp = Vi, (g Vi D D — )1 g
— WV D) g Vi D D, — ) 5 (39)

for all B € %7, n>1, while (36), (37) and (39) yield
(:uVl nI) max{,u'() Vl nI ,UO Vl nI} <<L'1 5 (40)

17, | < VD)™ WDl = wll + @V D™ (Dl — w1l A1)

for n>1. Since

(W Dllpg = ull + " Dllpg — pll <@ Dllpg |+ @ Dllpg I< el + |
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(notice that ||ug — ull < ||l < 1), it can easily deduced from (38), (40) and (41) that
forn>1,

n
I, <2log™ 3¢ (H n) (g — ull + Nl — 1l
i=1

=2log™ "3 (H n-) 172
i=1

This completes the proof. [

Lemma 6.7. Let (A3.1) hold, while 0 € © and {y;};.> is a sequence from RY. Then, for
all u,u' € M3, i, il € M", n>1,

G, 11, 3" — G, 7,y <M — 1, (42)
Gy, i ") — Gyt o, Y < By i — w1l 43)

Proof. Relation (42) is a direct consequence of Lemma 6.6 and the definition of
{67)(: ) ')}n}l' Let K, ,Ll/ € Mpa ,[l € M’), while & = 89(.y09y1)7 V] = VG(VO,Y1)~ More-
over, let w, = Fi(u,y"), , = Fy', "), fiu = Golpt, 1o "), i, = Gy, i, y") for n >0,
and Vi1, = Ry '(y}) for 0<i<n. Then, in order to prove (43), it is sufficient to
show that for n>1,

n
17, — Il <4log ™' 367077 (H m) = A (44)
i=1
It is straightforward to verify that for all B e %7, n>1,
,anIB = (,u Vl,nl)_l(:a Vl,n - (fl Vl,nl):un)IBa (45)
Bodp = WV, D) " @V 1 = RV 1 D) s (46)
while Theorem 3.1 and Lemmas 6.5, 6.6 imply
n
Iy — 1, <2log ™3¢, %7 (H n) = i1, (47)
i=1
wVind Ze1(viVaul), (48)
BV | <er' VoD, (49)
(= WOVl <er ' VoDl = 1, (50)

i=1

n
Il <2log™'3er 7! (H rl-) 121 (51)
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for n=1. Due to (45) and (46),
(Bt — ) 5 = —(uV 1)) BV 1 uD)(, — ) 5 — WV 10D) ™ (= 1)V 1aDi T

for all B € #”, n>=1, while (48)—(50) yield
WV D)V L <er? I,
WV D) = W) Vi | <er?llpn— Wl
for n>1. Therefore,
I — FLN <V D) RV L d 1ty — 11+ VD) 1 — @)V i
e, — R+ e — W I
for n>=1. Then, (47) and (51) imply

n
I, — i, <2log™'3er e (H rg) e = @A
i=1
n
+2log e St [ [ ) e — wilAN
i=1
<4log 3¢ 07! (H n) [l — 212l
i=1

for n>=1. This completes the proof. [

Lemma 6.8. Let (A3.1) and (A3.2) hold, while 0 € © and {y;};> is a sequence from
R%. Then, for all u,)’ € M5, n>1,

L H (e, )< E507),
I (1 ") — Hy(d, v <dy™llp — 11l
Proof. Let p,p/ € MY, while w, = Fj(u,»"), w, = Fj(/,y") for n=0, and f, =

~n ~ ~n ~ ~

H()(:uayn)s ,Lt:,l = HH(/“t/’yn)s &p = f@(ynflsyn)v &p = 89(y11715yn)9 Tn = T@(ynflyyn)v Vp =
VoVu_15V0)> Un = Ro(Vy_1Vn)s Un = Ro(y,_1,,) for n=1. Then, in order to prove
the lemma’s assertion, it is sufficient to show that for n>1,

172l < 26,72,
I — iyl < 101og™" 3677, e, 4, ! (H n) e =41
i=1
It is straightforward to verify that for all B € #”, n>1,
,anIB = (,un—l Unl)il(tun—l Un - (,un—l (771I)Mn)139 (52)

lp =, U W, Uy — (i U ) p. (53)



V.B. Tadié, A. Doucet | Stochastic Processes and their Applications 115 (2005) 1408-1436 1425

On the other hand, it can easily be deduced from Theorem 3.1 and Lemmas 6.2, 6.5
that for n>1,

i, — | <2log™" ey ! (H n) =4l 4
i=1

min{g,_ Un1, tt, U} =e,(v,D), (55)

(et = 1, DU < (-t = 1, DUl <& ' OuDll gty — 1,41, (56)

max{|g,_ Ul |, U1}y <&, ', (va), (57)

|ty = 1, )OI < Ny — ) Unll <&, '8 0Dty — 5,1 (58)

Due to (52) and (53),
(ty — ) g = — (W Un) ™ () Un) ™ (g — 2, ) Und)
X (,Lln71 0” - (Aun—l Unl):u;,)IB

= U Un) ™ (e — 1y )T — (1 — 1, UnDp )
= (U UnD) ™ () U, — 1)1

for all B € %7, n>=1. Then, (52) and (55)—(58) imply
11l < s UnD) ™ Uity Ul + Lty U [, 1) < 28525,
1ty — Tl <ty UnD) ™ @y Un) ™ Nty — 1y YOIty Ul + |ty T 112,11
+ (e UnD) ™ Wttt = 15, DOl + ey = 5, ) Ul 2,1
F (et UnD) "ty Und |1, — 11
<4, 8 iy — 1,0+ 6,28, iy — p &)

for n=1, while (54) and (59) yield

17, — | <8log™'3e; 1) e, (Hm) e —
+2log™ 377 'e, %8, (H n) =
<10log™ 3¢t e, 5, 1t (Hn) =

for n=1. This completes the proof. [
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Proof of Theorem 3.2. Let u, i/ € M%), i, [i' € M”. Due to Lemma 6.4,

Fg(:ua ,EL, yn) - Fg(ﬂ/, la/a yn)
= (G i, ") — Gy, 11, 3")) + (G, B ") — Goids 1, 3™)

+Z(Go Fiuy') Hy( ). 50 = Gy Fiud 3. By e.5'), 51)
+_Z(G9 Fyt ) ()0 = G Fyul ). H (5. 07)

for n>=1, while Theorem 3.1 and Lemmas 6.7, 6.8 imply

1G(s i1, 3™ — Gyt i, I < Byl — 1/ 11
G i ") — Gy, 1, YOI <@ — Il

Go(F (1 "), Ho(pt, 1), G()(F W), Hoy(p, ), v
= Hy(p.y") — Hy(u,y") = 0,

KMFWyﬂHNu@ﬁ-4MFWy@HNhﬁym
= 1 Hy(u, y") — Hy(l,y) I <dy(Mllp— (|

for n>1, and

1Gy (F (), Ho(u,y)y,)—Go (F Wy, Ho(u,y)y,)ll

<by ODIFN ) = Fy(ud ) H e D08 )l — al,

~n—i

IGy (Fy(', ), He(u,y)y ~ Gy (F W,y Hg(u AN All
<f’@MMwM—MMJWK%UW’”WtuH

for 1<i<n. Since
D" <00, ¥ Do y o1, 32) [ [ roic1o v,
i=1

Ay <5000, ¥ )b 1230 [ 2013,
j=1
0" = By

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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for n>1, and

0NN 0D<2 800 )P0 1y W00 [ 1005127,
Jj=1

o () <2 G000, DB 1o i) | [ 7001 3)
Jj=1

for 1<i<n, it can easily be deduced from (60)-(66) that the lemma’s assertion
holds. O

7. Proof of Theorems 4.1 and 4.2

Lemma 7.1. Let (A4.2) hold, while f : R” x R? — R is a Borel-measurable function
satisfying 0<f(x, )< ¢p(x,y) for all x € R’, y € R1. Then, for all x € R’, y € RY,
n=0,

/ SIS = sl p di dY) <20 (x, ),

[ 1638 ) <(C+ s ).
Proof. For x € R’, y € R?, n=0, let (S" —s)*(x,y,-) and (S" —s) (x,y,-) be the

positive and negative part of (S" — s)(x, y,-). Then, for all x € R”, y € RY, n>0, there
exist sets B (x,y), B, (x,y) € #'" such that

(" = 9)*(x,y, B) = (8" = $)(x, 7, BN By (x, 7))

forall x e R’, y € RY, Be %', n>=0. Therefore,
/ S YNS" = )" (x, p,dx,dy) = / SO ey (X, VNS = 5)(x, y, dX', d))

for all x € R”, y € R, n=0. Then, it can easily be deduced from (A4.2) that for all
xeR,ye RI, n=0,

/ FOEY)S" = 5% (x,p, A, dy') < Cpx, ),
] / SO NS — 8)(x, Y, dy’)' <Ch(x.).
Consequently,
/ SIS = sl(x,y ', dyf) = / SIS — ) (6, A, dy?)

4 / FOEYNS" = 8) (6,7, dyY)
<2Cp"Blx. ),
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/ﬂtwﬂm%mmwsw+/ﬂﬁwwu»m%mmw

<(C+s59)p(x, y)
for all x € R?, y € R%, n=0. This completes the proof. O

Proof of Theorem 4.1. Let ry = max'/?{p, 14}, My = 2log™'3¢;21,2, Ny = 2My(C +
s¢)* while
Ky = Ngsup (n + 1) max”/?

0<n

{p,70}

and Ly = (1 — r())_lK(;. Moreover, let v € M{; be an arbitrary measure, while

U X Vs -5 00) = LV Fi 7 (1, 31))

for x € R?, ue MY, 0<i<n, and a sequence {y;};>, from RY.
It is straightforward to verify that for all x,x’ € R’, y,y ¢ R, u, i/ € MY, n>1,

(T3 ), , 1) — (TG )X, Y, 1)
/ //(f s X s+ s V1 2) = S5 0 Xs Yoo 2 11)
X S(xp-1, Yyo1, dxp, dy,) - - - S(x1, yy, doxa, dyy)S(x, y, dxy, dyy)
o G PR R P R )
X S(Xn—1,Vp_1>dXn, dy,) - - - S(x1, 1, dxa, dyy) S, ', doxy, dyy)

n—1
+Z/"'//(fz’l(vsxﬂ’yn""’y) fnl+l(vsxn’yn""’yi+l))
i=1

X S(xnflayn lydx)bdyn) e S(xisyi3 dxi+1’dyi+l)(Si - S)(x3y7 d-xis dy;)

n—1
_Z/ //(fnl(vyxnyyna"'ay) fnl+l(vixn9yna'"5yi+1))

X S (X1 Yp_1> A% d,) - - - S, ¥3y AXi1, Ay (S — 8)(¥, ), dxi, dyy)
+///ﬁ%meW—WMNM®J

/ /fnn(v’ Xn, yn)(S" — S)(X/, y/, dx,, dy,). 7

On the other hand, it can easily be deduced from Theorem 3.1 and (A4.1) that for all
w € Mj, 0<i<n, and any sequence {y;};>o from R,
IFG () = F5 syl
= IF5 " (Fo v yip): vie) = Fy = vy
<2log™ 3¢yt I Fo(, iy vigr) — VIS Moty . (68)
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Due to (14), (15) and (68),
5 X Vs ) = S5 00 YY)
<P PIIFG (@ y}) = Fi= = i)l

< Mﬁfzii¢(xa yn)

for all pe M}, 0<i<n, and any sequence {y;};>o from R?. Then, Lemma 7.1
implies

’/"'//(f‘z’o(lu'axnayna"‘:ylay) _fg’](vaxl’layn:"‘:yl))
XS(xn—layn—l’dxmdyn)"’S(xlaylﬂdx2ady2)S(xayadxladyl)

<My7! / o y)S"(x, y, s dyy) < Mo(C + s)Tib(x, )

gN()T?)(,b(X,y), nz 17 (69)

’/fg’"(v, Xy V) (8" — 5)(x, y,dx,, dy,)

< / A, Y)IS" — sl(x, ¥, dx,, dy,) S2Cp" h(x, y) < Nop" p(x, y) (70)

forall xe R’, ye RY, pe M5, n>1, and

‘/ s / /(fz’i(ﬂaxnyyn, LY ’yi) _fz’i+l(v7xn7yn’ LI ’yi+1))
X S(xn—l:yn—lsdxnsdyn) e S(xiayi’ dxi+ladyi+l)(Si - S)(X,y, dxia dyl)
<M9T'57i//¢(X,1,y,,)5"_i(xi,yi,dxn,dyn)lsi—Sl(x,y, dx;, dy;)

<My(C + sy / i y)IS — sl(x, y, dxsydy,)
<2MC(C + sp)p't) ' P(x, ) < Ngmax"{p, 1} p(x, ) (71)

forall xe R’, y e R?, ue M}, 1<i<n. Owing to (67) and (69)—(70),

|(IT5)(x, y, 1) — AT X, Y 1)< No(n + 1) max™{p, 1o}(d(x, ») + ¢(x',)))
<Kori(p(x,») + d(x',))) (72)
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for all x,x' e R”, y, € RY, u, i’ € M¥, n>1. Then, it can easily be deduced from
Lemma 7.1 that forall x e R”, y e RY, pe M5, n>1,

(T ) e,y ) — (T 1),y )
/ (L)Y 1) — T,y ) Tyt ', Ay i)
<Korl(x.y) + Kol / ()8 (x, A, dy)
<Kol (x.3) + (C + s Korlb((6,9) <2AC + s$)Korsp(x, ). (73)

Let

fox,y, ) =f(x,y, 1) + Z((H”“f)(x Vo) — (I f)(x, p, 1)

for x € R, y € RY, u € Mj. Then, (73) implies

(T3 /)%, y, 1) = fol < Z (TG £)Cx, v, 1) = (T )Xy, )

<2AC+ s$)Kop(x, ) Z ry = Lorj(x, y)

i=n

forall xe R?, y e RY, u € MY, n=1, while, (72) yields
|f'()(xa Vs /’L) _f‘()(x/ay/a .ul)l

<IUTG )y, 1) = TG Y Y 1O+ 1ATG )y, 1) = fo(x, ,
+ AN Y 1) = fox', ¥ i)

<(Ko + Lo)rg(d(x,y) + ¢(x', )

for all x,x’ e R, y,y € R%, u, i/ € M%), n>=1. Consequently, there exists a constant
fo € R such that fy(x,y,u) = f, for all x € R”, y € R?, u € M. This completes the
proof. [

Proof of Theorem 4.2. Let ry= max'/?{p, 19}, My =80log™" 3,12, Ny =
6KgM;T2(C + sp)?, while

Ky = 2Ngsup n*0*Vmax"?{p, 1}

1<n

and Ly = 2,+ KoLoM ’+1(1 - r9) . Moreover, let v € M” be an arbitrary measure,
while 3 € M” is a measure satlsfymg |7]| = 0. Furthermore, 1et

S T Xy Y- 30 = L6 Fi 00, (16 7))
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for xe R, peM?, e M, 0<i<n, and a sequence {yk}k>0 from RY.
It is straightforward to verify that for all x,x' € R?, y,y' € RY, u, i’ € M%, i, [l € M,
n=1,

(T )%,y 1) = (g Y 4 1)
=/"'//(fz’o(ﬂ’ﬂﬂxnﬂyn’“"yl’y)_fz’l(v"jaxn,yna""yl))
XS(xn 1> Vn— l’dxmdyn)"'S(Xlsyl’dx2’dy2)S(xayadxladyl)

/ //(f ' ~/ xnayna"'ﬂyl’y) —fZ’l(v,f),x,,,yn,...,yl))
XS(xnflsyn—l’dxn!dyn)"'S(xlaylvdxzvdyZ)S(x/’y/ydxl’dyl)

n—1
+Z/"'//(fz’l(va‘~}5xn9yna---9yz) fnl+l(va‘~)’xnay115'--5yi+l))
i=1

X Sty V1, X, dy,) -+ SCxs, v dXigr, Ay (ST — $)(x, p, dxi, dyy)

n—1
- Z/ //(fnl(v: ‘N)axmynw“ayi) nl+1(v v xn:yn:""yi+1))

X S(xn—l,ynq 5 d-xna dyn) e S(xia yia dxH—l’ dyi+|)(Si - S)(.X/, y/a d-xia dy,)
[ [ 1050008 = . vy,

- / /fz,’l(v’ \~}7 xl’layn)(Sn - S)(xlayla dXl’la dyn)' (74)

On the other hand, Theorems 3.1, 3.2, Lemmas 6.4, 6.6, 6.8 and (A4.1) imply
VEo(ue, 7y < UGl Ty 3+ 1 Gg(F (. .9, Hy it 9.5). 9.5
<2log™"3e Il + 2log ™' 327 ey 1 (10,3, )
<210g_13s Il il +210g_1359 Ty egl(y )
<Myl + 2" (0, )) (75)
forall e M2, e M, y,y € RY, and
IFG G y!) = Fy = a3
(76)
<2log™ 365 t) 2 F o,y yi) — VIS Mo,

IFy (i yDI <0Gy (i yDl+ > NGy (Fy (wy). 7y (), ¥l

j=itl

<2log™'3e;*ty |l + 2log” 138542%—/ A )

Jj=i
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n—1
<2log™"3e5 |l + 4log ™" 3e5% 15" > & 3, 3740)

J=i
n—1
<My 121+ &' 0pypn) |-

J=i

”FQ (,u,,u yl) FH (V V yl+1)||

<80log™'3¢, "7~ 4(2 & (y,,y,+1)> IFo(tt, yis yigr) = vICL+ 171

j=i+1
—1q . —4 _n—i-2 ~ by
+210g 330 T() ”F(')(:u’:uayi’yH—l)_ V”

n—1
gMHTgil <||F0(M’ﬁ9yi’yi+l)” + Z Eelo/‘sy]li»l))

j=i+l

for all ue M?, ﬁeMp, 0<i<n, and any sequence {y;};so from RY.
Consequently,

. &
1y Il < M (Ilﬂll”" +2.% "(y./=y./+1>>’
J=i

Iy (i) — Fy 0,3, p0)l

n—1

<M (R + 3 Gnyie) + Moty ™ > 5 040

j=itl
Mty '<||u||+2 & (y,yﬁ]))

for all pe M), jeM,
Therefore,

(77)

0<i<n and any sequence {y;};>o from RY.

n—1
~n—i 1 - ~—
L ES G By + 1E ™ @3,y I <3M (IIMII’ +) 5 f(y_,,y,»+1)>
Jj=i
(78)
forall u € M?, i € M”, 0<i<n, and any sequence {¥i}k>0 from R?. Due to (16), (17),
(76)~(78),

302 < )1+ I = ¢ (x, ) @)
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forallx e R”, y € RY, n>1, and

5 X, Vs 2) = L5 08, %,V v )
<Py )IF yh) — Fim = .y )l
(L IE G DI+ 1E) ™ 0,3, 02 )11
+ POy IE () — Fy T B
x (L4 1Ey G By + 1 o5 DI

n—1
<3MG e k) (Ilﬂll’ +3 570, yjﬂ))
=
5 n—1
Y yn—i g1 ~ ~—
+ 3M;)+ 'ty /ﬁ(x,yn)<||.u|| + E &y l(Y/ij+1))

j=i
n—1
< IR+ & 0 ym)

=i

n—1 tax
<6MIPn ¢ P (x, y,) (Ilﬁll +> Eel(y,-,ym))

J=i

n—1
<6M;niey 9 P (x, ) (nmw“ +y° é;”‘*”(yj,y,-ﬂ)) (80)

j=i
forall x € R”, u€ M, i € M”,0<i<n, and any sequence {Vi}k>0 from R?. Owing to
the Holder inequality, Lemma 7.1 and (18),

[ ] [ ot o

x 8" (x4 s Vis1> AXn, dp,)S(x;, v, Ao, dJ’j+1)Sj_i(X» y,dx;, dy))

A 18
< ( / (o y)S" (.3, vy, dy,»)

N a
. ( [ [0 508G53 05101, 008 dxj,dyp)

1/o
<k

| s N
( / P Cen3)S"(x, v, dxn,dyn>) ( PS5,y o, dyp)

<Ko(C+ s¢)p(x, ) (81)
forallx e R, y € RY, 0<i<j<n, and

/(’bl/ﬁ(xmyn)lsn - S|(X,y, dx’l7dyn)<2cp”¢(x>y)’ (82)
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/ 8o, 1),y s d7,) < (C 4+ 5 b, ) 83)

forall x e R”, y € R, n=1. Then, Lemma 7.1 yields

/ / / / Y Py P01 908" (06 v A, A S5, v X1, )
x 87 (xi, yi, Aoy, dy))|ST = s1(x, y, dxi, dy;)
<RUC+56) [ penpls' = sy dindy)
<Kp2(C + 5¢)p'd(x, y) (84)

forallx e R, y € RY, 1<i<j<n, and

///Q’)l/ﬂ(x"’y11)g(;(7+1)0/,~,y,~+1)

X " it Vit X, A2, SCxi, v i, e )S' (x, , dx, dyy)
<RAC+5) [ i 3)S 5.y
<Ko(C + 5P ¢(x, ) (85)
for all xe RP, ye RY, 0<i<n (set j =1 in (81) to get (85)). Due to (80), (79) and
(82)(85),

’/.'.//(fl«;’o(luaﬁaxnayn’"'7yl’y) —fZ’l(u,ﬂ,xn,yn,...,yl))

X SCtu—1, Vo1, dxu, dy,) - - - S(x1, ¥y, dx2,dy,)S(x, y, dxi, dy;)

<6M e ! / AP (x, p,)S"(x, y, dxy dp,)

n—1
229 n (41
+ oM n%gz///¢1//f(xn,yn)89<,+ i)
i=0

X Sniiil(xl‘#»l 9yi+l s dxna dyn)
X S(xiv Yio dxi+1 5 dyiJrl)Si(x’ ) dxi’ dyz)
SOMT(C + sy IR dlx, y) + 6Ko M (C + s)n (v, )

) ) (86)
SN Ha(1+ |77 p(x, p),

‘/fg,n(v’ ‘Nj’xn’yn)(sn - S)(X,y, dx,, dyn)

< / 5o y)IS" — sl(x, y. dys dy,)

<2Cp"P(x, y) < Nop"p(x, ) (87)
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forall xe R”, ye R, pe M?, fie M", n>1, and

’/"'//(f’@z’i(va‘jaxn,yna”',yi) _fz7i+l(vﬂ‘~)7xﬂ,yn9'"7yi+l))

X S(xn—layn—ladxnadyn)' o S(xiayi9 dxi+17dyi+l)(Si - S)(xay, dxi7 dyl)

n—1
742, 2 —‘E : rmtan
<6M9+ nz Tz ! ////¢l/ﬁ(xn:yl1)89 o+ )(y"yj+l)
=

X Sn_j_l(xjH > Vit dx, dyn)S(X/‘aJ’j, dxjt1, dy]‘+1)
x 8 (xi, pi dx;, dyj-)|Si — s|(x, y,dx;, dy;)
<6RMA(C + sy picy b, y) = N max"{p, 7o) (88)
forall xe R’ ye RY, ue M2, i e M’, 1<i<n. Owing to (74) and (86) — (87),

(T f)(%, s 1 1)) — (T )X s s 1))
KNP, )1+ IR + ¢, )0+ 17 171)

N0 ma (p, 20} B, ) + O + Nop"(B0s.3) + 9'.))
(89)
SKorj(@Ce, )1 + IR + ¢ )0 + I 17H)

forall x,x € R’, y,y € RY, il € M2, i, ;i € M", n>1.
Suppose that (18) holds for all x € R”, y € R?. Then, it can easily be deduced from
(75) and (89) that forall x e R”, ye RY, pe M}, i € M, n=1,

Ty )Gy 1) — (), 0 1, )
< / L3 1 1) — (T v, s T, v, s By ', A, i, )
<Korj (e, y)(1 + [IRI7)
K [ 904+ IF o By IS 0¥ )
<Korh(e, )1+ (177 + 27 K My (L + ™)
x [ B S A d)
<O KoL My (e, ) + e ) + (1727, (90)
Let

Loleaya ) =y )+ S (T N2, 1) — T )xy, 1 1)
n=0



1436  V.B. Tadic, A. Doucet | Stochastic Processes and their Applications 115 (2005) 1408-1436

forxe R’,y e R:, pe M?, i € M". Then, (90) implies
|(ﬁ3f)(x’y7 i, .u) _f(')(xaya i, ﬁ)'

<1y ey B — (T )Cx v D

i=n

o0
<2 K LMy ($lxy) + e )L+ IS 5

i=n
= Lorj(p(x,y) + (e, )L+ IR
forallxe R”, ye R, ue M5, i e M’ n=1, while (90) yields

\fole, s i 1) = foX s i, IO IATy ) ey, 1, 1) — Ty Y 1, 1)
1T )Xy, e 1) — £ o6,y 1 10
TNy ) = fox Y 1)
< (Ko + Lo)r(ep(x, ) + (e, p)(1 + (1)
+ (Ko + Lo)r(p(x', ) + w(x, )L+ [I711%)

forallx,x e R',y,y e R%, u,pi’ € MY, i, i’ € M on=1. Consequently, there exist~s a
constant fy € R such that fy(x,y, u, i) = f, forall x e R’, y e R?, pe M, i € M.
This completes the proof. [
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