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Abstract

Sensor scheduling has been a topic of interest to the target tracking community for some years now and
more recently, it has enjoyed fresh impetus with the current importance and popularity of applications in
Sensor Networks and Robotics. The sensor scheduling problem can be formulated as a controlled Hidden
Markov Model. In the paper [7], we addressed precisely this problem and considered the case in which
the state, observation and action spaces are continuous. We presented a novel simulation-based method
that used a two timescale stochastic approximation algorithm to find optimal actions. In this report,
we study the convergence of the proposed stochastic approximation algorithm under general assumptions
and for the specific observer trajectory planning application of [7].
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1 The Main Algorithm and its Convergence

The simulation-based method proposed in [7] to solve the sensor scheduling problem is a two timescale
stochastic approximation (SA) algorithm. We commence the report by presenting this SA algorithm in its
general form and study its convergence. Section 2 presents a small variant of the SA algorithm studied here
which is more suitable from the observer trajectory planning (OTP) application. (Note that OTP may be
viewed a sensor scheduling problem.) We show that the convergence results carry over easily. Finally, the
OTP problem of [7] is presented in Section 3 and the convergence of two timescale SA for this application is
established.

Notation 1 The notation that is used in the report is now outlined. The norm of a scalar, vector or matrix
is denoted by |·|. For a vector b, |b| denotes the vector 2-norm

√∑
i |b(i)|2. For a matrix A, |A| denotes

the matrix 2-norm, maxb:|b|6=0
|Ab|
|b| . For convenience, we also denote a vector b ∈ Rn by b = [b(i)]i=1,...,n, or

the i-th component of a vector by [b]i. For scalars aj,i, j = 1, . . . ,m, i = 1, . . . , n, let
[
[aj,i]j=1,...,m

]
i=1,...,n

denote the stacked vector [a1,1, . . . , am,1, . . . , a1,n, . . . , am,n]T .) For a vector b, let diag(b) denote the diagonal
matrix formed from b. For a function f : Rn → R, we denote (∂f/∂z(i)) (z) by ∇z(i)f(z) and ∇f(z) =
[∇z(1)f(z), · · · ,∇z(n)f(z)]T . For the vector valued function F = [F1, · · · , Fn]T : Rn → Rn, let ∇F denote
the matrix [∇F1, · · · ,∇Fn]. For real-valued integrable functions f and g, let 〈f, g〉 denote

∫
f(x)g(x)dx. For

a random variable X and probability P , X ∼ P implies the law of X is P . 1 denotes the vector with elements
1.

Consider the following two timescale SA algorithm, which is the main SA algorithm of this report,

θk+1 = θk − αk+1Γ(bk) (h1,θk
(ωk+1) + h2,θk

(ωk+1)− Sθk
(ωk+1)bk) , (1)

bk+1 = bk − βk+1

(
S2

θk
(ωk+1)bk − Sθk

(ωk+1)h1,θk
(ωk+1)

)
, (2)

ωk+1 ∼ Pθk
, k ≥ 0, (3)

where bk, θk ∈ Rd. For each θ ∈ Rd, functions h1,θ and h2,θ are Rd-valued, i.e., h1,θ, h2,θ : Ω → Rd. Likewise,
for each θ ∈ Rd, Sθ is a d × d diagonal matrix valued function, i.e., Sθ : Ω → Rd×d. The step-sizes αk and
βk are non-negative scalars. The scalar valued function Γ : Rd → (0,∞) is given as follows,

Γ(b) =
C

1 + |b|
, (4)

where C > 0 is a constant. The function Γ is needed to ensure that the iterates bk remain bounded almost
surely (see Assumption 3 below). Define the σ-algebra

Fk = σ {θ0} , Fk = σ {θ0, ω1, . . . , ωk} , k ≥ 1,

and let Ek(·) denote E(·|Fk). It follows that θk and bk are Fk-measurable. For each θ ∈ Rd, we assume the
function Sθ satisfies

Eω∼Pθ
(Sθ(ω)) = 0.

For each θ ∈ Rd, define

h̄i(θ) = Eω∼Pθ
(hi,θ(ω)), i = 1, 2, (5)

hθ(ω) = h1,θ(ω) + h2,θ(ω), ω ∈ Ω, (6)
h̄(θ) = h̄1(θ) + h̄2(θ). (7)

Additionally, we assume that h̄ itself is a gradient of some performance criterion J , i.e.,

h̄(θ) = ∇J(θ).
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Thus when ω is sampled according to Pθ, hθ(ω) is an unbiased estimate of ∇J(θ).
The convergence of a two timescale SA algorithm similar to (1)-(3) was studied in [5]. We may write the

slow time-scale process in a more general form as

θk+1 = θk + αk+1Hk+1. (8)

If the parameter θk did not change, say θk = θ for all k, the process {bk} would converge to some b̄(θ). When
θk varies slowly, we would like the process {bk} to track b̄(θk). Under certain regularity assumptions on the
process {Hk} (see Section 1.1 below), it can be shown that the process {bk} converges in the sense

lim
k

∣∣∣bk − Eω∼Pθk

(
S2

θk
(ω)
)−1

Eω∼Pθk
(Sθk

(ω)h1,θk
(ω))

∣∣∣ = 0.

As for the convergence of {θk}, we will use the line of proof in [1], which are based on the classical arguments
of [6] with slightly modified assumptions, to show lim infk

∣∣h̄(θk)
∣∣ = 0.

1.1 Convergence of the fast timescale

The assumptions below to establish the convergence of process {bk} are essentially the same as in [5] but
with some omissions. These are due to the Markov structure of ωk+1 in [5], i.e., ωk+1 depends on θk and ωk,
while in our case, there is no dependence on ωk.

Assumption 1 The step-size sequences {αk} and {βk} satisfy

αk, βk ≥ 0,
∑

k

αk =
∑

k

βk = ∞,∑
k

α2
k < ∞,

∑
k

β2
k <∞,

∑
k

(
αk

βk

)p

< ∞,

for some p > 0.
Assumption 2 Define the following functions,

S2(θ) = Eω∼Pθ

(
S2

θ (ω)
)
,

S × h1(θ) = Eω∼Pθ
(Sθ(ω)h1,θ(ω)) .

(a) There exists some constant C such that for all θ ∈ Rd, we have

max
(∣∣∣S2(θ)

∣∣∣ , ∣∣S × h1(θ)
∣∣) ≤ C.

(b) There exists some constant C such that for all θ, θ′ ∈ Rd, we have

max
(∣∣∣S2(θ)− S2(θ′)

∣∣∣ , ∣∣S × h1(θ)− S × h1(θ′)
∣∣) ≤ C |θ − θ′| .

(c) For each p > 0, there exists a constant Cp > 0 such that almost surely1,

sup
k
Eωk+1∼Pθk

(∣∣S2
θk

(ωk+1)
∣∣p) < Cp,

sup
k
Eωk+1∼Pθk

(|Sθk
(ωk+1)h1,θk

(ωk+1)|p) < Cp.

1The proof actually requires the following weaker set of conditions [5]:

sup
k
E

(∣∣∣S2
θk

(ωk+1)
∣∣∣p)

< Cp,

sup
k
E

(∣∣Sθk
(ωk+1)h1,θk

(ωk+1)
∣∣p)

< Cp.

However, in Section 4.1.1, we verify the stated stronger assumptions for the OTP problem.
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Assumption 3 Re-writing the iteration for θk as θk+1 = θk + αk+1Hk+1, we require

sup
k
E (|Hk|p) <∞

for all p > 0.
Assumption 4 (Uniform positive definiteness) There exists some constant a > 0 such that for all

b, θ ∈ Rd,
bTS2(θ)b ≥ a|b|2.

The proof of the following result is available in [5].

Lemma 2 [5, Theorem 7] If Assumptions 1-4 are satisfied then, almost surely, supk |bk| <∞ and
limk

∣∣∣bk − S2(θk)−1S × h1(θk)
∣∣∣ = 0.

Remark 3 The statement of the above lemma concerning the convergence of
∣∣∣bk − S2(θk)−1S × h1(θk)

∣∣∣ is
general in the sense that the only restriction imposed on the recursion for θk is that it should be able to be
written in the form θk+1 = θk + αk+1Hk+1 with Hk satisfying Assumption 3.

Remark 4 Concerning Assumption 3, strictly speaking, we only need supk E (|Hk|p) <∞ to be satisfied for

the value of p for which
∑

k

(
αk

βk

)p

< ∞. However, from a practical point of view, it is not much more
difficult to verify Assumption 3 for all p > 0. Also, the choice of step-sizes are typically

αk = k−α, βk = k−β ,

where constants α and β are allowed to assume values from the range α > β > 0.5. Thus,
∑

k

(
αk

βk

)p

< ∞
may only be satisfied for a large positive p.

1.2 Convergence of the slow timescale

The proof of the convergence of ∇J(θk) below is based on the approach in [1]. Before we present the analysis,
we require the following two lemmas from [1].

Lemma 5 [1, Lemma 1] Let Yk, Wk and Zk be three real valued sequences such that Wk is non-negative for
all k. Assume that

Yk+1 ≤ Yk −Wk + Zk,

k ≥ 0, and limp→∞
∑p

k=0 Zk exists. Then, either Yk → −∞ or else Yk converges to a finite value and∑∞
k=0Wk <∞.

Lemma 6 [1] Let f : Rd → R be a continuously differentiable function satisfying for some constant C,

|∇f(θ)−∇f(θ′)| ≤ C |θ − θ′| ,

for all θ′, θ ∈ Rd. Then,

f(θ′)− f(θ) ≤ (θ′ − θ)T∇f(θ) +
C

2
|θ′ − θ|2 .

We now present the line of arguments to establish the convergence of ∇J(θk) and then formally state the
result as a lemma.

In (8) and Assumption 3 above, we wrote θk+1 = θk + αk+1Hk+1, where

Hk+1 = −Γ(bk) (h1,θk
(ωk+1) + h2,θk

(ωk+1)− Sθk
(ωk+1)bk)

= −Γ(bk)h̄(θk) +Wk+1,
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and

Wk+1 = −Γ(bk)
(
h1,θk

(ωk+1)− h̄1(θk)
)

−Γ(bk)
(
h2,θk

(ωk+1)− h̄2(θk)
)

+ Γ(bk)Sθk
(ωk+1)bk.

Note that {Wk} satisfies Ek (Wk+1) = 0. We assume h̄(θ) is bounded. Also, assume h̄(θ) (= ∇J(θ)) satisfies
for some constant C and all θ, θ′,

|h̄(θ)− h̄(θ′)| < C |θ − θ′| .
By Lemma 6,

J(θk+1) ≤ J(θk) + (θk+1 − θk)T
h̄(θk) +

C

2
|θk+1 − θk|2

= J(θk)− αk+1Γ(bk)
∣∣h̄(θk)

∣∣2 + αk+1W
T
k+1h̄(θk) +

C

2
α2

k+1 |Hk+1|2 .

Assumption 3 asserts supk E
(
|Hk|2

)
<∞. Thus,

E

{
lim

p→∞

p∑
k=1

α2
k |Hk|2

}
= lim

p→∞

p∑
k=1

α2
kE
{
|Hk|2

}
<∞,

which implies
∞∑

k=1

α2
k |Hk|2

exists almost surely. If we can also assert
∞∑

k=0

αk+1W
T
k+1h̄(θk)

exists almost surely then, we can invoke Lemma 5 below to conclude that either J(θk) → −∞ or else J(θk)
converges to a finite value and

∑∞
k=0 αk+1Γ(bk)

∣∣h̄(θk)
∣∣2 <∞, where the remark holds almost surely. Since J is

bounded below,∑∞
k=0 αk+1Γ(bk)

∣∣h̄(θk)
∣∣2 < ∞ almost surely. Also, since supk |bk| < ∞ almost surely, Γ(bk) is bounded

below and lim infk

∣∣h̄(θk)
∣∣ = 0. Note that if lim infk

∣∣h̄(θk)
∣∣ > 0 then, for large enough T and some ε > 0,

infk≥T

∣∣h̄(θk)
∣∣ > ε, which would contradict the fact that

∑∞
k=0 αk+1Γ(bk)

∣∣h̄(θk)
∣∣2 <∞.

To assert
∑∞

k=0 αk+1W
T
k+1h̄(θk) exists almost surely, we will need the MCT (Martingale Convergence

Theorem). Note that

|Wk+1|2 =

∣∣−Γ(bk)
(
h1,θk

(ωk+1)− h̄1(θk)
)

−Γ(bk)
(
h2,θk

(ωk+1)− h̄2(θk)
)

+ Γ(bk)Sθk
(ωk+1)bk

∣∣2
≤

(∣∣h1,θk
(ωk+1)− h̄1(θk)

∣∣
+
∣∣h2,θk

(ωk+1)− h̄2(θk)
∣∣+ |Γ(bk)Sθk

(ωk+1)bk|
)2

≤ 2
∣∣h1,θk

(ωk+1)− h̄1(θk)
∣∣2

+4
∣∣h2,θk

(ωk+1)− h̄2(θk)
∣∣2 + 4 |Γ(bk)Sθk

(ωk+1)bk|2 ,

where in the last line we have used the inequality (see A.N. Shiryaev, Probability, 2nd Ed., pg.194): if a, b > 0
and p ≥ 1, then (a+ b)p ≤ 2p−1(ap + bp). Assume the following conditions hold,

sup
k
E
{∣∣h1,θk

(ωk+1)− h̄1(θk)
∣∣2∣∣∣Fk

}
< ∞ a.s.,

sup
k
E
{∣∣h2,θk

(ωk+1)− h̄2(θk)
∣∣2∣∣∣Fk

}
< ∞ a.s.,

sup
k
E
{
|Sθk

(ωk+1)|2
∣∣∣Fk

}
< ∞ a.s.
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Then,

∞∑
k=0

α2
k+1E

{∣∣WT
k+1h̄(θk)

∣∣2∣∣∣Fk

}
≤ C

∞∑
k=0

α2
k+1E

{
|Wk+1|2

∣∣∣Fk

}
≤ C

∞∑
k=0

α2
k+1 sup

k
E
{
|Wk+1|2

∣∣∣Fk

}
< ∞

almost surely, where the constant C is the bound on |h̄(θ)|2. The MCT [4, Theorem 2.17] then states∑∞
k=0 αk+1W

T
k+1h̄(θk) exists almost surely.

We summarise the above analysis of lim infk

∣∣h̄(θk)
∣∣ in the following lemma.

Lemma 7 Consider the recursion for θk re-written as θk+1 = θk +αk+1Hk+1, where Hk+1 = −Γ(bk)h̄(θk)+
Wk+1, and the ‘noise’ term Wk+1 is given by

Wk+1 = −Γ(bk)
(
h1,θk

(ωk+1)− h̄1(θk)
)
− Γ(bk)

(
h2,θk

(ωk+1)− h̄2(θk)
)

+Γ(bk)Sθk
(ωk+1)bk, (9)

and satisfies Ek (Wk+1) = 0. Let the following assumptions hold,
(a) h̄(θ) (= ∇J(θ)) satisfies supθ |h̄(θ)| <∞ and, for some constant C and all θ, θ′,

|h̄(θ)− h̄(θ′)| < C |θ − θ′| ;

(b)

sup
k
E
(
|Hk|2

)
< ∞,

sup
k
E
{∣∣h1,θk

(ωk+1)− h̄1(θk)
∣∣2∣∣∣Fk

}
< ∞ a.s.,

sup
k
E
{∣∣h2,θk

(ωk+1)− h̄2(θk)
∣∣2∣∣∣Fk

}
< ∞ a.s.,

sup
k
E
{
|Sθk

(ωk+1)|2
∣∣∣Fk

}
< ∞ a.s.;

(c) supk |bk| <∞ almost surely.
Then, if J is bounded below,

lim inf
k

|∇J(θk)| = 0.

Remark 8 Lemma 7 could have been stated in a slightly more general and concise way by omitting the
declaration of Wk in (9) entirely, and replacing assumption (b) with
(b’)

∑∞
k=0 αk+1W

T
k+1h̄(θk) exists almost surely.

2 A Variant of the Main Algorithm

In this section, we present a variant of the main algorithm (1)-(3) that is more suitable for the OTP appli-
cation. As we show, the convergence results for the main algorithm carry over easily.

Let
F = [F1, · · · , Fd]

T : Rd → Rd

6



be bounded mapping with bounded partial derivatives, i.e.,

sup
θ∈Rd

|F (θ)| < ∞, (10)

sup
θ∈Rd

|∇F (θ)| = |[∇F1(θ), · · · ,∇Fd(θ)]| <∞. (11)

(Note that ∇Fi = [∂Fi

∂θ1
, · · · , ∂Fi

∂θd
]T .) As detailed in Section 3 below, introducing the mapping F is important

for the OTP application. It follows that

∇(J ◦ F )(θ) = ∇F (θ)∇J(F (θ))
= ∇F (θ)

(
h̄1(F (θ)) + h̄2(F (θ)

)
= ∇F (θ)Eω∼PF (θ)

{
h1,F (θ)(ω) + h2,F (θ)(ω)

}
.

Drawing parallels with algorithm (1)-(3) (and the discussion) in Section 1 suggests the following algorithm
to minimise J ◦ F ,

θk+1 = θk − αk+1Γ(bk)∇F (θk)
×
(
h1,F (θk)(ωk+1) + h2,F (θk)(ωk+1)− SF (θk)(ωk+1)bk

)
, (12)

bk+1 = bk − βk+1

(
S2

θ̃k
(ωk+1)bk − Sθ̃k

(ωk+1)h1,θ̃k
(ωk+1)

)
, (13)

ωk+1 ∼ Pθ̃k
, (14)

θ̃k = F (θk), k ≥ 0. (15)

This is the main algorithm of the report.
Let the range of the function F be denoted by range(F ). Assuming F has bounded partial derivatives we

have,
|F (θ)− F (θ′)| ≤ C |θ − θ′|

for some constant C. Since θ̃k+1 = θ̃k + αk+1
(θ̃k+1−θ̃k)

αk+1
, we also have∣∣∣∣∣ θ̃k+1 − θ̃k

αk+1

∣∣∣∣∣ ≤ C

αk+1
|θk+1 − θk| = C|Hk+1|,

which implies that it is sufficient to verify Assumption 3 with

Hk+1 = −Γ(bk)∇F (θk)
(
h1,F (θk)(ωk+1) + h2,F (θk)(ωk+1)− SF (θk)(ωk+1)bk

)
. (16)

The following corollary to Lemma 2 is straightforward.

Corollary 9 Consider Algorithm (12)-(15). Let Assumption 1 be satisfied, Assumption 2a for all θ ∈range(F ),
2b for all θ, θ′ ∈range(F ) and 2c with θk replaced by θ̃k defined in (15). Let Assumption 3 be satisfied with
Hk+1 given in (16) and Assumption 4 for all b ∈ Rd, θ ∈range(F ). Then, almost surely, supk |bk| < ∞ and
limk

∣∣∣bk − S2(θ̃k)−1S × h1(θ̃k)
∣∣∣ = 0.

We now state the equivalence of Lemma 7 for the modified algorithm (12)-(15) in the following corollary.

Corollary 10 Consider the recursion for θk above re-written as θk+1 = θk + αk+1Hk+1 where Hk+1 =
−Γ(bk)∇F (θk)h̄(θk) +Wk+1, and noise term

Wk+1 = −Γ(bk)∇F (θk)
(
h1,F (θk)(ωk+1)− h̄1(F (θk))

)
−Γ(bk)∇F (θk)

(
h2,F (θk)(ωk+1)− h̄2(F (θk))

)
+Γ(bk)∇F (θk)SF (θk)(ωk+1)bk

7



satisfies Ek (Wk+1) = 0. Assume
(a) ∇F (θ)h̄(F (θ)) (= ∇(J ◦ F )(θ)) satisfies supθ |∇(J ◦ F )(θ)| <∞ and, for some constant C and all θ, θ′,

|∇(J ◦ F )(θ)−∇(J ◦ F )(θ′)| < C |θ − θ′| ;

(b) that

sup
k
E
(
|Hk|2

)
< ∞,

sup
k
E
{∣∣∇F (θk)

(
h1,F (θk)(ωk+1)− h̄1(F (θk))

)∣∣2∣∣∣Fk

}
< ∞, a.s., (17)

sup
k
E
{∣∣∇F (θk)

(
h2,F (θk)(ωk+1)− h̄2(F (θk))

)∣∣2∣∣∣Fk

}
< ∞, a.s., (18)

sup
k
E
{∣∣∇F (θk)SF (θk)(ωk+1)

∣∣2∣∣∣Fk

}
< ∞, a.s.; (19)

(c) supk |bk| <∞ almost surely.
Then, if J ◦ F is bounded below,

lim inf
k

|∇(J ◦ F )(θk)| = 0, almost surely.

Remark 11 In Corollary 10, if we assume that function F has bounded first and second order derivatives2,
we have,

|F (θ)− F (θ′)| ≤ C1 |θ − θ′| ,
|∇F (θ)−∇F (θ′)| ≤ C2 |θ − θ′| ,

and the Lipschitz condition on ∇(J ◦F ) is satisfied provided |h̄(F (θ))| is bounded and ∇J Lipschitz when its
domain is restricted to range(F ). This follows since,

|∇F (θ)h̄(F (θ))−∇F (θ′)h̄(F (θ′))|
≤ |h̄(F (θ))||∇F (θ)−∇F (θ′)|+ |∇F (θ′)||h̄(F (θ))− h̄(F (θ′))|.

Remark 12 When F is bounded, to verify (17)-(19) in Corollary 10, it is sufficient to verify

sup
θ̃∈range(F )

Eω∼Pθ̃

{∣∣∣h1,θ̃(ω)− h̄1(θ̃)
∣∣∣2} < ∞,

sup
θ̃∈range(F )

Eω∼Pθ̃

{∣∣∣h2,θ̃(ω)− h̄2(θ̃)
∣∣∣2} < ∞,

sup
θ̃∈range(F )

Eω∼Pθ̃

{∣∣Sθ̃(ω)
∣∣2} < ∞.

3 Trajectory Planning Problem

A more detailed account of the OTP problem is contained in [7]. Below, we only present the relevant material
from [7] for the convergence to be studied and the report to be self-contained.

At time n, let Xn ∈ Rdx and Yn ∈ Rdy be the random vectors that model the dx-dimensional state and
its dy-dimensional observation respectively. Suppose that an action An ∈ Rda is applied at time n. The state
{Xn}n≥0 is an unobserved Markov process with initial distribution and transition law given by

X0 ∼ π0, Xn+1 ∼ p (·|Xn) , (20)

2supθ

∣∣∣ ∂2Fi(θ)
∂θk∂θj

∣∣∣ <∞ for each i, k, j.
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respectively. The observation process {Yn}n≥0 is generated according to the state and action dependent
probability density

Yn ∼ q (·|Xn, An) . (21)

In OTP, we wish to track a maneuvering target for N epochs. At epoch n, Xn denotes the state of the target,
An the position of the observer and Yn the partial observation of the target state, i.e., Yn = g(Xn, An, Vn),
where Vn is measurement noise. The aim of OTP is to adaptively maneuver the observer to optimise the
tracking performance the target.

Given the sequence of actions a1:n := {a1, ..., an} and measurements y1:n := {y1, ..., yn}, the filtering
density at time n is denoted by πn (or π(y1:n,a1:n)

n to emphasise the dependence on y1:n, a1:n) and satisfies
the Bayes recursion

πn(x) =
q (yn|x, an)

∫
p(x|x′)πn−1(x′)dx′∫ ∫

q (yn|x, an) p(x|x′)πn−1(x′)dx′dx
. (22)

The initial state density π0 is fixed. The full posterior, i.e., the density of X0:n given Y1:n and A1:n is,

π0:n(x0:n) =
(Πn

i=1q (Yi|xi, Ai) p (xi|xi−1))π0(x0)∫
(Πn

i=1q (Yi|xi, Ai) p (xi|xi−1))π0(x0)dx0:n
.

The simulation-based algorithm proposed in [7] for sensor scheduling requires both the marginal πn and
the full posterior π0:n for all N epochs, i.e., for 1 ≤ n ≤ N . In [7] we proposed to approximate these densities
using a mixture of Dirac delta-masses,

π̂0:n(x0:n) :=
L∑

j=1

w(j)
n δ

X
(j)
0:n

(x0:n), (23)

where δ
X

(j)
0:n

denotes the Dirac delta-mass located at X(j)
0:n and the importance weights {w(j)

n }L
j=1 are non-

negative scalars that sum to one. The approximation to πn, namely π̂n, follows by marginalising π̂0:n. There
are a number of ways to define such a point-mass approximation. For example, the simplest scheme would

be to sample L independent state trajectory realisations
{
X

(j)
0:n

}L

j=1
from (Πn

i=1p (xi|xi−1))π0(x0). The

importance weights would then be

w(j)
n :=

Πn
i=1q

(
Yi|X(j)

i , Ai

)
L∑

j=1

Πn
i=1q

(
Yi|X(j)

i , Ai

) . (24)

For any integrable function h,
∫
h(x0:n)π̂0:n(x0:n)dx0:n converges to

∫
h(x0:n)π0:n(x0:n)dx0:n as L→∞ (see

[3, Ch. 2] for a precise statement of the mode of convergence). Practically though, we would prefer a
small sample size L and this simple scheme of sampling from the state transition model can result in the
majority of the importance weights w(j)

n being very small. There are number of remedies proposed for this
in the Sequential Monte Carlo literature [3, Ch. 1.3.2]. For example, the importance sampling step can

be designed to minimise the conditional variance of the importance weights by sampling
{
X

(j)
0:n

}L

j=1
from a

Markov transition density that takes the observations into account. We emphasise that standard techniques
from the Sequential Monte Carlo literature can be adopted in constructing an approximation of the form (23)
to the full posterior, but we do not study this issue in detail here. To simplify the presentation, we will only
focus on the simple scheme of sampling from the state transition model. To emphasise the dependence of π̂0:n

on the realisation of observations Y1:n and the sequence of actions A1:n, we use the notation π̂(Y1:n,A1:n)
0:n . We

often drop the sequence of observations and\or actions from π̂0:n in order to unclutter the expressions. The
reader is reminded though that π̂0:n should always be regarded as a function of (Y1:n, A1:n).
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Consider a suitable test function ψ :
(
Rdx

)N+1 → R. (For example, ψ could pick out a component of
interest of the state vector.) In [7], it was proposed to solve the following sensor scheduling problem,

min
A1:N∈ΘA

J(A1:N ) = EA1:N

{〈
ψ2, π̂

(Y1:N ,A1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N ,A1:N )
0:N

〉2
}
, (25)

where ΘA ⊂
(
Rda

)N is an open set.3 The expectation operator is to be understood in the following sense.

For an integrable function h :
(
Rdx

)N+1×
(
Rda

)N ×
(
Rdy

)N → R,

EA1:N {h(X0:N , A1:N , Y1:N )}

:=
∫
h(x0:N , A1:N , y1:N )ΠN

i=1q (yi|xi, Ai) p (xi|xi−1)π0(x0)dx0:Ndy1:N . (26)

3.1 Bearings-only Tracking

We do not need to specify the target model explicitly. Our only concern is that we can sample from the
model. Maneuvering targets are often modelled such as a jump Markov linear system (JMLS) [2]. The state
of the target is comprised of continuous and discrete valued variables, i.e.,

Xn = [rx,n, vx,n, ry,n, vy,n, ξn]T ∈ R4 × Ξ,

where (rx,n, ry,n) denotes the target’s (Cartesian) coordinates at time n, (vx,n, vy,n) denotes the target’s
velocity in the x and y directions, and ξn denotes the mode of the target, which belongs to a finite set Ξ.
The target switches discontinuously, as indicated by ξn, between constant velocity maneuvers.

Let the observer model be of the form

A1:N = F (U1:N ),

where we exert control on the observer positions A1:N through the variables U1:N . For instance, the acceler-
ations of the observer could be determined from the input U1:N , which will in turn determine the observer
trajectory. The convergence results of Propositions 14 and 15 below do not depend on the specific form of
F but only that this function is sufficiently regular. We now give an example of F which was adopted in the
numerical section of [7].

Example 13 Let the state of the observer be

Xo
n =

[
ro
x,n, v

o
x,n, r

o
y,n, v

o
y,n

]T
, (27)

with
An =

[
ro
x,n, r

o
y,n

]T
. (28)

Assume the following kinematic model for the evolution of the state,

Xo
n+1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


︸ ︷︷ ︸

=: G

Xo
n +


T 2/2 0
T 0
0 T 2/2
0 T


︸ ︷︷ ︸

=: H

× C × atan(Un+1) (29)

where the initial state Xo
0 is fixed, T is the sampling interval, and Un+1 ∈ R2 determines the acceleration in

the x and y directions. We have included the function atan and the positive diagonal matrix C. The function
atan and its first two derivatives are bounded. Also, atan is linear about zero and makes a nice choice of

3Problem (25) corresponds to [7, eqn. (16)] with a discount factor λ = 0. The same analysis applies for λ ∈ (0, 1].
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saturating function for the acceleration; naturally the acceleration cannot be unbounded. The matrix C alters
the saturation behaviour of the acceleration. The observer trajectory is completely determined once Xo

0 and
U1:N are given,

An =
[

1 0 0 0
0 0 1 0

]
×

(
GnXo

0 +
n∑

i=1

Gn−iHCatan(Ui)

)
. (30)

The function F is now implicitly defined.

In the bearings-only model, the observation process {Yn}n≥0 (⊂ R) is generated according to

Yn = atan
(
rx,n −An(1)
ry,n −An(2)

)
+ Vn, (31)

where Vn
i.i.d.∼ N (0, σ2

Y ). In our simulation-based framework, we require that the observation process density
is known and is differentiable w.r.t. An. The bearings-only case is one such example. To present the
convergence results of Proposition 14 and 15 below, we will assume that the x and y position of the target
corresponds to the first and third component of the state descriptor Xn,

Xn = [rx,n, ·, ry,n, · · · ]T , (32)

which is usual convention in the literature.
Before stating the two timescale SA algorithm for OTP, we first define the following functions. The R2

vector-valued function called the score is defined to be,

S(y, x, a)T =
[
∇a(1)q(y|x, a), ∇a(2)q(y|x, a)

]
× q(y|x, a)−1

= [S1(y, x, a), S2(y, x, a)]

= −σ−2
Y

y − atan
(

x(1)−a(1)
x(3)−a(2)

)
1 +

(
x(1)−a(1)
x(3)−a(2)

)2

[
1

x(3)− a(2)
, − x(1)− a(1)

(x(3)− a(2))2

]
. (33)

For each A1:N ∈ R2N , define the diagonal matrix-valued function SA1:N : (Rdx)N+1 × (R)N → R2N × R2N

as follows,

SA1:N (X0:N,Y1:N ) = diag
([

[Sj(Yi, Xi, Ai)]j=1,2

]
i=1,...,N

)
. (34)

Note that SA1:N (X0:N,Y1:N ) is just the score stacked as a vector, and then converted in to a diagonal matrix.
For each A1:N ∈ R2N , let functions h1,A1:N , h2,A1:N : (Rdx)N+1 × (R)N → (R2)N be given as follows,

h1,A1:N (X0:N,Y1:N )) =
(〈

ψ2, π̂
(Y1:N ,A1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N ,A1:N )
0:N

〉2
)
SA1:N (X0:N,Y1:N )1,

h2,A1:N (X0:N,Y1:N )

=





〈
ψ2Sj(Yi, ·, Ai), π̂

(Y1:N ,A1:N )
0:N

〉
−
〈
ψ2, π̂

(Y1:N ,A1:N )
0:N

〉〈
Sj(Yi, ·, Ai), π̂

(Y1:N ,A1:N )
0:N

〉
−2
〈
ψ, π̂

(Y1:N ,A1:N )
0:N

〉〈
ψSj(Yi, ·, Ai), π̂

(Y1:N ,A1:N )
0:N

〉
+2
〈
ψ, π̂

(Y1:N ,A1:N )
0:N

〉2 〈
Sj(Yi, ·, Ai), π̂

(Y1:N ,A1:N )
0:N

〉


j=1,2


i=1,...,N

,

where 1 is the vector with elements 1. (Notation: For scalars aj,i, j = 1, . . . ,m, i = 1, . . . , n,[
[aj,i]j=1,...,m

]
i=1,...,n

denotes the stacked vector [a1,1, . . . , am,1, . . . , a1,n, . . . , am,n]T ; see the declaration of
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notation in the Introduction.) One may verify that the gradient of the performance criterion satisfies4

∇J(A1:N ) = EA1:N {h1,A1:N (X0:N,Y1:N )) + h2,A1:N (X0:N,Y1:N )} . (35)

The aim is to study the convergence of the following two timescale SA algorithm for OTP that was
presented in [7]:

U1:N,k+1 = U1:N,k − αk+1Γ(bk)∇F (U1:N,k)
×
(
h1,A1:N,k

(X0:N,k+1, Y1:N,k+1)
+h2,A1:N,k

(X0:N,k+1, Y1:N,k+1)

−SA1:N,k
(X0:N,k+1, Y1:N,k+1)bk

)
, (36)

bk+1 = bk − βk+1S
2
A1:N,k

(X0:N,k+1, Y1:N,k+1)bk
+βk+1SA1:N,k

(X0:N,k+1, Y1:N,k+1)
×h1,A1:N,k

(X0:N,k+1, Y1:N,k+1)), (37)
(X0:N,k+1, Y1:N,k+1) ∼ PA1:N,k

, (38)
A1:N,k = F (U1:N,k), k ≥ 0, (39)

where A1:N,k, U1:N,k ∈ R2N . If we set θk = U1:N,k, θ̃k = A1:N,k and ωk+1 = (X0:N,k+1, Y1:N,k+1) then, the
correspondence between this algorithm and Algorithm (12)-(15) is obvious.

Define

S2(A1:N ) = EA1:N

{
S2

A1:N
(X0:N , Y1:N )

}
, (40)

S × h1(A1:N ) = EA1:N {SA1:N (X0:N , Y1:N )h1,A1:N (X0:N , Y1:N )} . (41)

For the bearings-only observation model, we have the following result concerning the convergence of the fast
and slow timescale.

Proposition 14 Consider Algorithm (36)-(39) for the bearings-only observation model corrupted by Gaus-
sian additive noise (31). Suppose that the following assumptions hold,

sup
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p} <∞, 1 ≤ i ≤ N, p > 0, (42)

sup
A1:N∈range(F )

max
l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai(2)

∣∣∣∣∣ <∞, 1 ≤ i ≤ N, (43)

inf
1≤i≤N

inf
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

σ
−2
Y

1
(Xi(3)−Ai(2))

2[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2
 > 0, (44)

inf
1≤i≤N

inf
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

σ
−2
Y

[
Xi(1)−Ai(1)

(Xi(3)−Ai(2))
2

]2
[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2
 > 0. (45)

4Note that

∂

∂ai(j)

〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉
,

=
〈
ψ(·)Sj(yi, ·, ai), π̂

(y1:N ,a1:N )
0:N

〉
−

〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉 〈
Sj(yi, ·, ai), π̂

(y1:N ,a1:N )
0:N

〉
.
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Then, almost surely, supk |bk| < ∞ and limk

∣∣∣bk − S2(A1:N,k)−1S × h1(A1:N,k)
∣∣∣ = 0. Furthermore, if F has

bounded second order derivatives then, almost surely,

lim inf
k

|∇(J ◦ F )(U1:N,k)| = 0.

The proof of Proposition 14 appears in Section 4. Condition (43) relates to the samples used to approx-
imate the posterior density (23)-(24). Also, the first and third component of the target state is its x and y
coordinate respectively. Note that the proposition does not limit the specific form of function F that relates
inputs U1:N to actions A1:N . It only requires F to be sufficiently regular as specified by the last assumption
concerning bounded second order derivatives. For F defined implicitly by (30), this assumption is satisfied.

The next result gives the conditions under which assumptions (42)-(45) hold. The result basically says
that if the support of X0:N and that the range of F do not intersect, then the assumptions hold and we have
the desired convergence of two timescale SA for OTP. It is interesting to note that the scenario where this
is true is that studied by all previous works on OTP for bearings-only observations [7]. Thus, the conditions
of Proposition 14 do not appear to be too restrictive for the application.

Proposition 15 Write the mapping F : R2N → R2N as F = [F1,1, F1,2, · · · , FN,1, FN,2]
T . (Note that

Ai(j) = Fi,j(U1:N ).) Suppose that the density of X0:N , f(x0:N ), has a compact support Kf ⊂ R4(N+1).
Furthermore, suppose that for each 1 ≤ i ≤ N , the compact set Kf,i := {xi(3)|x0:N ∈ Kf} does not intersect
with the closure of the set range(Fi,2), i.e., there exists a compact set KA,i such that range(Fi,2) ⊂ KA,i, and
Kf,i ∩ KA,i = ∅. Then, conditions (42)-(45) are satisfied.

Proof. Note that infXi(3)∈Kf,i,Ai(2)∈KA,i
|Xi(3)−Ai(2)| > 0 since we a minimising a continuous function

over the compact set Kf,i × KA,i; at least one solution from this compact set exists. Condition (42) now
follows since for any A1:N ∈range(F ),

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p}
= E(X0:N ,Y1:N )∼PA1:N

{
IKf,i

(Xi(3))
∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p}
≤ E(X0:N ,Y1:N )∼PA1:N

{(
sup

Xi(3)∈Kf,i,Ai(2)∈KA,i

1
|Xi(3)−Ai(2)|

)p}

≤ E(X0:N ,Y1:N )∼PA1:N

{(
1

infXi(3)∈Kf,i,Ai(2)∈KA,i
|Xi(3)−Ai(2)|

)p}
.

A similar argument establishes (43). As for (45), note that

inf
X0:N∈Kf ,A1:N∈range(F )

1
(Xi(3)−Ai(2))

4[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2

≥

1(
supXi(3)∈Kf,i,Ai(2)∈KA,i

|Xi(3)−Ai(2)|
)4[

1 +
(

supX0:N∈Kf ,A1:N∈range(F )|Xi(1)−Ai(1)|
infXi(3)∈Kf,i,Ai(2)∈KA,i

|Xi(3)−Ai(2)|

)2
]2 = b(> 0).
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Thus,

E(X0:N ,Y1:N )∼PA1:N


[

Xi(1)−Ai(1)

(Xi(3)−Ai(2))
2

]2
[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2


= E(X0:N ,Y1:N )∼PA1:N

IKf
(X0:N )

[
Xi(1)−Ai(1)

(Xi(3)−Ai(2))
2

]2
[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2


≥ E(X0:N ,Y1:N )∼PA1:N


IKf

(X0:N ) (Xi(1)−Ai(1))2

× infX0:N∈Kf ,A1:N∈range(F )

1
(Xi(3)−Ai(2))

4[
1+

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2


≥ bE(X0:N ,Y1:N )∼PA1:N

{
(Xi(1)−Ai(1))2

}
≥ b× var {Xi(1)} ,

where in the last line, the density of X0:N is independent of the sequence of actions A1:N and hence we write
var {·} omitting reference to the actions. A similar argument establishes (44).

4 Proof of Proposition 14

4.1 Verifying the assumptions for convergence of the fast timescale

Proposition 14 stipulates a set of conditions under which we have convergence of the fast and slow timescale.
We begin by showing how satisfying (42)-(45) would imply the assumptions of Corollary 9 are satisfied and
hence proving convergence of the fast timescale in Proposition 14.

4.1.1 Assumptions 2a and 2c

We will show that a sufficient condition for Assumption 2a and 2c is

sup
A1:N

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p} <∞, 1 ≤ i ≤ N, p > 0,

i.e., (42) of Proposition 14.
Recall the definition of h1,A1:N,k

(X0:N,k+1,Y1:N,k+1)),

h1,A1:N,k
(X0:N,k+1,Y1:N,k+1))

=
(〈

ψ2, π̂
(Y1:N,k+1)
0:N

〉
−
〈
ψ, π̂

(Y1:N,k+1)
0:N

〉2
)
SA1:N,k

(X0:N,k+1,Y1:N,k+1)1.

Note that the term
(〈

ψ2, π̂
(Y1:N,k+1)
0:N

〉
−
〈
ψ, π̂

(Y1:N,k+1)
0:N

〉2
)

is bounded by

2 max
i
ψ2(X(i)

0:N ).
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Using this fact, ∣∣S × h1(A1:N )
∣∣

=
∣∣∣E(X0:N,Y1:N )∼PA1:N

{SA1:N (X0:N,Y1:N )h1,A1:N (X0:N,Y1:N )}
∣∣∣

≤ C ×
∣∣∣E(X0:N,Y1:N )∼PA1:N

{
S2

A1:N
(X0:N,Y1:N )1

}∣∣∣
≤ C × |1| ×

∣∣∣S2(A1:N )
∣∣∣ ,

where C is the bound 2maxi ψ
2(X(i)

0:N ). Thus we only have to verify the boundedness of
∣∣∣S2(A1:N )

∣∣∣ to verify
Assumption 2a.

As for Assumption 2c, we have similarly∣∣SA1:N,k
(X0:N,k+1, Y1:N,k+1)h1,A1:N,k

(X0:N,k+1, Y1:N,k+1)
∣∣

≤ C × |1| ×
∣∣∣S2

A1:N,k
(X0:N,k+1, Y1:N,k+1)

∣∣∣ .
Thus, Assumption 2c is satisfied provided

sup
k
E(X0:N,k+1,Y1:N,k+1)∼PA1:N,k

{∣∣∣S2
A1:N,k

(X0:N,k+1, Y1:N,k+1)
∣∣∣p}

≤ sup
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

{∣∣S2
A1:N

(X0:N , Y1:N )
∣∣p}

< Cp.

As S2
A1:N

(X0:N , Y1:N ) is a diagonal matrix, it is sufficient to verify

sup
A1:N

E(X0:N ,Y1:N )∼PA1:N

{∣∣S2
j (Yi, Xi, Ai)

∣∣p} < Cp,j,i

for each p > 0, j ∈ {1, 2}, i = 1, . . . , N . In fact, verifying this will also simultaneously verify Assumption 2a.

|S1(Yi, Xi, Ai)|p = σ−2p
Y ×

∣∣∣∣∣∣∣
Yi − atan

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2

∣∣∣∣∣∣∣
p ∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p

≤ σ−2p
Y

∣∣∣∣Yi − atan
(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)∣∣∣∣p ∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p
Thus, E(X0:N ,Y1:N )∼PA1:N

{
σ−2p

Y

∣∣∣Yi − atan
(

Xi(1)−Ai(1)
Xi(3)−Ai(2)

)∣∣∣p} ≤ Cp when p is even where constant Cp follows

from the central moment of a Gaussian. When p is odd, E(X0:N ,Y1:N )∼PA1:N

{
σ−2p

Y

∣∣∣Yi − atan
(

Xi(1)−Ai(1)
Xi(3)−Ai(2)

)∣∣∣p} ≤
σ−2p

Y + σ2
Y Cp+1, which follows from the inequality |x|p ≤ 1 + |x|p+1. Thus

supA1:N
E(X0:N ,Y1:N )∼PA1:N

{|S1(Yi, Xi, Ai)|p} <∞ for all i and p provided

sup
A1:N

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p} <∞, 1 ≤ i ≤ N, p > 0. (46)

A similar argument shows supA1:N
E(X0:N ,Y1:N )∼PA1:N

{|S2(Yi, Xi, Ai)|p} <∞ provided (46) holds.
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4.1.2 Assumption 2b

We need to verify Lipschitz continuity of S2(A1:N ). Since

∣∣∣S2(A1:N )− S2(A′1:N )
∣∣∣ ≤ max

j,i

∣∣∣E(X0:N ,Y1:N )∼PA1:N

{
S2

j (Yi, Xi, Ai)
}

−E(X0:N ,Y1:N )∼PA′1:N

{
S2

j (Yi, Xi, Ai)
}∣∣∣ ,

it is sufficient to verify, for each i, j, Lipschitz continuity of the function
A1:N → E(X0:N ,Y1:N )∼PA1:N

{
S2

j (Yi, Xi, Ai)
}
. By the Mean Value Theorem, the mapping

A1:N → E(X0:N ,Y1:N )∼PA1:N

{
S2

j (Yi, Xi, Ai)
}

is Lipschitz continuous if its partial derivatives are bounded. We
will show that a sufficient condition for the Lipschitz continuity of S2(A1:N ) is

sup
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣3
}
<∞, 1 ≤ i ≤ N, (47)

which is implied by (42) of Proposition 14.
Likewise, since∣∣S × h1(A1:N )− S × h1(A′1:N )

∣∣
≤ max

j,i

√
2N
∣∣∣∣E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
S2

j (Yi, Xi, Ai)
}

−E(X0:N ,Y1:N )∼PA′1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
S2

j (Yi, Xi, Ai)
}∣∣∣∣ ,

it is sufficient to establish Lipschitz continuity, for each i, j, of the function

A1:N → E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
S2

j (Yi, Xi, Ai)
}

. We will show that S × h1 is

Lipschitz continuous provided

sup
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣4
}

< ∞, (48)

sup
A1:N∈range(F )

E(X0:N ,Y1:N )∼PA1:N

{
|Yi|2

}
< ∞, (49)

sup
A1:N∈range(F )

max
l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai(2)

∣∣∣∣∣ < ∞, (50)

for 1 ≤ i ≤ N , which is implied by (42), (43), together with the observation model (31).

Lipschitz continuity of S2(A1:N ) We commence by showing that the mapping
A1:N → E(X0:N ,Y1:N )∼PA1:N

{
S2

j (Yi, Xi, Ai)
}

has bounded partial derivatives and hence is Lipschitz. Consider
first ∇Aj(1)E(X0:N ,Y1:N )∼PA1:N

{
S2

1(Yi, Xi, Ai)
}
. For j 6= i,

∂E(X0:N ,Y1:N )∼PA1:N

{
S2

1(Yi, Xi, Ai)
}

∂Aj(1)

= E(X0:N ,Y1:N )∼PA1:N

{
S2

1(Yi, Xi, Ai)S1(Yj , Xj , Aj)
}

= 0.

For j > i, the result is follows by conditioning on X0:j , Y1:j−1. For j < i, the result follows by conditioning
on X0:i, Y1:j−1, Yj+1:i.
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For j = i,

∂E(X0:N ,Y1:N )∼PA1:N
{S2

1(Yi,Xi,Ai)}
∂Ai(1)

= E(X0:N ,Y1:N )∼PA1:N

{
S3

1(Yi, Xi, Ai)
}

+E(X0:N ,Y1:N )∼PA1:N

{
∂S2

1(Yi, Xi, Ai)
∂Ai(1)

}
.

Note that E(X0:N ,Y1:N )∼PA1:N

{
S3

1(Yi, Xi, Ai)
}

= 0 as odd central moments of a Gaussian are zero.

E(X0:N ,Y1:N )∼PA1:N

{
∂S2

1(Yi, Xi, Ai)
∂Ai(1)

}
= E(X0:N ,Y1:N )∼PA1:N

{
2S1(Yi, Xi, Ai)

∂S1(Yi, Xi, Ai)
∂Ai(1)

}

= 4E(X0:N ,Y1:N )∼PA1:N


−σ−2

Y[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]3 (Xi(1)−Ai(1)

Xi(3)−Ai(2)

)
1

(Xi(3)−Ai(2))3


≤ 4σ−2

Y E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣3
}
.

Similar arguments apply to show all partial derivatives of E(X0:N ,Y1:N )∼PA1:N

{
S2

j (Yi, Xi, Ai)
}

are bounded
provided (47) holds.

Lipschitz continuity of S × h1(A1:N ) It is sufficient to establish Lipschitz continuity, for each i, j, of the
function

A1:N → E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
S2

j (Yi, Xi, Ai)
}

, with domain range(F ). In

doing so, we require first the following bounds.
For j = 1, 2, ∣∣∣Sj(yi, X

(l)
i , ai)

∣∣∣ ≤ σ−2
Y

∣∣∣∣∣ 1

X
(l)
i (3)− ai(2)

∣∣∣∣∣ (|yi|+D) ,

where constant D is the bound on the function atan. Thus,

E(X0:N ,Y1:N )∼PA1:N

{(
max

i

∣∣∣S1(Yl, X
(i)
l , Al)

∣∣∣)2
}

≤ σ−4
Y max

i

∣∣∣∣∣ 1

X
(i)
l (3)−Al(2)

∣∣∣∣∣
2

E(X0:N ,Y1:N )∼PA1:N

{
(|Yl|+D)2

}
.

Also,

∂

∂ai(j)

〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉
,

=
〈
ψSj(yi, ·, ai), π̂

(y1:N ,a1:N )
0:N

〉
−
〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉〈
Sj(yi, ·, ai), π̂

(y1:N ,a1:N )
0:N

〉
≤ 2 max

l

∣∣∣ψ(X(l)
0:N )

∣∣∣×max
l

∣∣∣Sj(yi, X
(l)
i , ai)

∣∣∣
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for j = 1, 2, i = 1, . . . , N . Thus,

∂

∂ai(j)

(〈
ψ2, π̂

(y1:N ,a1:N )
0:N

〉
−
〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉2
)

=
∂

∂ai(j)

〈
ψ2, π̂

(y1:N ,a1:N )
0:N

〉
− 2

〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉 ∂

∂ai(j)

〈
ψ, π̂

(y1:N ,a1:N )
0:N

〉
≤ 2 max

l

∣∣∣ψ2(X(l)
0:N )

∣∣∣×max
l

∣∣∣Sj(yi, X
(l)
i , ai)

∣∣∣
+4max

l

∣∣∣ψ(X(l)
0:N )

∣∣∣2 ×max
l

∣∣∣Sj(yi, X
(l)
i , ai)

∣∣∣
= C ×max

l

∣∣∣Sj(yi, X
(l)
i , ai)

∣∣∣ ,
where the constant C is independent of (y1:N , a1:N ).

Taking the partial derivative, we have

∂

∂Am(n)
E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
S2

j (Yi, Xi, Ai)
}

= E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
S2

j (Yi, Xi, Ai)Sn(Ym, Xm, Am)
}

+2E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
Sj(Yi, Xi, Ai)

∂Sj(Yi, Xi, Ai)
∂Am(n)

}

+E(X0:N ,Y1:N )∼PA1:N


∂

(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)

∂Am(n)
S2

j (Yi, Xi, Ai)

 .

Boundedness of the first term follows from the boundedness of
(〈

ψ2, π̂
(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)

and the

boundedness of supA1:N
E(X0:N ,Y1:N )∼PA1:N

{|Sj(Yi, Xi, Ai)|p}, p > 0. The second term is bounded because

supA1:N
E(X0:N ,Y1:N )∼PA1:N

{∣∣∣Sj(Yi, Xi, Ai)
∂Sj(Yi,Xi,Ai)

∂Am(n)

∣∣∣} <∞. (It can be shown that

supA1:N
E(X0:N ,Y1:N )∼PA1:N

{∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣4} <∞ for all i implies

supA1:N
E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∂Sj(Yi,Xi,Ai)
∂Am(n)

∣∣∣2} <∞ for all i, j,m, n.) To bound the final term, we use

E(X0:N ,Y1:N )∼PA1:N


∣∣∣∣∣∣∣∣
∂

(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)

∂Am(n)
S2

j (Yi, Xi, Ai)

∣∣∣∣∣∣∣∣


≤ E(X0:N ,Y1:N )∼PA1:N


∣∣∣∣∣∣∣∣
∂

(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)

∂Am(n)

∣∣∣∣∣∣∣∣
2


1
2

×E(X0:N ,Y1:N )∼PA1:N

{∣∣S2
j (Yi, Xi, Ai)

∣∣2} 1
2
,
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where

E(X0:N ,Y1:N )∼PA1:N


∣∣∣∣∣∣∣∣
∂

(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)

∂Am(n)

∣∣∣∣∣∣∣∣
2


≤ C × E(X0:N ,Y1:N )∼PA1:N

{(
max

l

∣∣∣Sn(Ym, X
(l)
m , Am)

∣∣∣)2
}

≤ C × σ−4
Y max

l

∣∣∣∣∣ 1

X
(l)
m (3)−Am(2)

∣∣∣∣∣
2

× E(X0:N ,Y1:N )∼PA1:N

{
(|Ym|+D)2

}
.

So, we need (49) and (50).

4.1.3 Assumption 3

We need to verify Assumption 3 with

Hk+1 = −Γ(bk)∇F (θk)
(
h1,F (θk)(ωk+1) + h2,F (θk)(ωk+1)− SF (θk)(ωk+1)bk

)
.

We will show Assumption 3 is satisfied if for all 1 ≤ i ≤ N , p > 0,

sup
A1:N

E(X0:N ,Y1:N )∼PA1:N

{∣∣∣∣ 1
Xi(3)−Ai(2)

∣∣∣∣p} < ∞, (51)

sup
A1:N∈range(F)

max
l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai(2)

∣∣∣∣∣ < ∞, (52)

sup
A1:N∈range(F)

E(X0:N ,Y1:N )∼PA1:N
(|Yi|p) < ∞. (53)

In fact, (53) is satisfied for the bearings only observation model (31). Note that |Yi|p ≤ 1 + |Yi|dpe×2 where
dpe denotes the smallest integer greater than or equal to p. Thus, it is sufficient to verify (53) for positive
even integers. We will need the following inequality (see A.N. Shiryaev, Probability, 2nd Ed., pg.194): if
a, b > 0 and p ≥ 1, then (a+ b)p ≤ 2p−1(ap + bp).

E(X0:N ,Y1:N )∼PA1:N
(|Yi|p)

≤ 2p−1E(X0:N ,Y1:N )∼PA1:N

(∣∣∣∣Yi − atan
(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)∣∣∣∣p)
+2p−1E(X0:N ,Y1:N )∼PA1:N

(∣∣∣∣atan
(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)∣∣∣∣p)
≤ 2p−1 (Cp +D) ,

where Cp follows from the central moment of a Gaussian and D is the bound on the function atan.
We may write

|Hk+1| ≤ |Γ(bk)| |∇F (θk)|
∣∣h1,F (θk)(ωk+1)

∣∣
+ |Γ(bk)| |∇F (θk)|

∣∣h2,F (θk)(ωk+1)
∣∣+ |∇F (θk)| |Γ(bk)bk|

∣∣SF (θk)(ωk+1)
∣∣

≤ C1

∣∣h1,F (θk)(ωk+1)
∣∣+ C1

∣∣h2,F (θk)(ωk+1)
∣∣+ C2

∣∣SF (θk)(ωk+1)
∣∣ ,

which implies

|Hk+1|p ≤ 22p−2Cp
1

(∣∣h1,F (θk)(ωk+1)
∣∣p +

∣∣h2,F (θk)(ωk+1)
∣∣p)+ 2p−1Cp

2

∣∣SF (θk)(ωk+1)
∣∣p .
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It is sufficient to verify
supk E(

∣∣h1,F (θk)(ωk+1)
∣∣p) < ∞, supk E(

∣∣h2,F (θk)(ωk+1)
∣∣p) < ∞ and supk E(

∣∣SF (θk)(ωk+1)
∣∣p) < ∞ for all

p > 0.
Recall the definition of h1,A1:N,k

(X0:N,k+1,Y1:N,k+1)),

h1,A1:N,k
(X0:N,k+1,Y1:N,k+1))

=
(〈

ψ2, π̂
(Y1:N,k+1)
0:N

〉
−
〈
ψ, π̂

(Y1:N,k+1)
0:N

〉2
)
SA1:N,k

(X0:N,k+1,Y1:N,k+1)1.

Thus we have
∣∣h1,F (θk)(ωk+1)

∣∣ ≤ C×
∣∣SF (θk)(ωk+1)

∣∣, and is sufficient to verify supk E(
∣∣SF (θk)(ωk+1)

∣∣p) <∞.
To establish supk E(

∣∣h2,F (θk)(ωk+1)
∣∣p) <∞ for all p > 0, is sufficient to show supk E(

∣∣[h2,F (θk)(ωk+1)
]
i

∣∣p) <
∞ for all p > 0, i, where

[
h2,F (θk)(ωk+1)

]
i

is the i-th component of the vector h2,F (θk)(ωk+1). From the
definition of h2,F (θk)(ωk+1), this implies showing

supk E
(∣∣∣〈ψ2Sj(Yi,k+1, ·, Ai,k), π̂(Y1:N,k+1)

0:N

〉
−
〈
ψ2, π̂

(Y1:N,k+1)
0:N

〉〈
Sj(Yi,k+1, ·, Ai,k), π̂(Y1:N,k+1)

0:N

〉
−2
〈
ψ, π̂

(Y1:N,k+1)
0:N

〉〈
ψSj(Yi,k+1, ·, Ai,k), π̂(Y1:N,k+1)

0:N

〉
+2
〈
ψ, π̂

(Y1:N,k+1)
0:N

〉2 〈
Sj(Yi,k+1, ·, Ai,k), π̂(Y1:N,k+1)

0:N

〉∣∣∣∣p)
≤ C × supk E

(
maxl

∣∣∣Sj(Yi,k+1, X
(l)
i , Ai,k)

∣∣∣p) <∞,

for j = 1, 2, i = 1, . . . , N , where the constant C depends only on the function ψ and the state samples {X(l)
0:N}l

used in π̂0:N . It was established above that for j = 1, 2,

max
l

∣∣∣Sj(yi, X
(l)
i , ai)

∣∣∣ ≤ σ−2
Y max

l

∣∣∣∣∣ 1

X
(l)
i (3)− ai(2)

∣∣∣∣∣ (|yi|+D) ,

where the constant D is the bound on the atan function. Thus

sup
k
E

(
max

l

∣∣∣Sj(Yi,k+1, X
(l)
i , Ai,k)

∣∣∣p)
≤ σ−2p

Y 2p−1 sup
k
E

(
max

l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai,k(2)

∣∣∣∣∣
p

(|Yi,k+1|p +Dp)

)

≤ σ−2p
Y 2p−1 sup

Ai∈range(F)

max
l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai(2)

∣∣∣∣∣
p

sup
k
E (|Yi,k+1|p +Dp)

≤ σ−2p
Y 2p−1 sup

Ai∈range(F)

max
l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai(2)

∣∣∣∣∣
p

sup
A1:N∈range(F)

EYi∼PA1:N
(|Yi|p +Dp) .

Thus, we require

sup
Ai∈range(F)

max
l

∣∣∣∣∣ 1

X
(l)
i (3)−Ai(2)

∣∣∣∣∣ < ∞,

sup
A1:N∈range(F)

EYi∼PA1:N
(|Yi|p) < ∞,

for supk E
(
maxl

∣∣∣S1(Yi,k+1, X
(l)
i , Ai,k)

∣∣∣p) <∞.

Since E(
∣∣SF (θk)(ωk+1)

∣∣p) = E
[
Eωk+1∼PF (θk)(

∣∣SF (θk)(ωk+1)
∣∣p)], Assumption 2c implies

supk E(
∣∣SF (θk)(ωk+1)

∣∣p) <∞ is also satisfied.
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4.1.4 Assumption 4

We need to establish that exists some constant a > 0 such that for all A1:N , b ∈ R2N , bTS2(A1:N )b ≥ a|b|2.
This would follow if

inf
j,i

inf
A1:N

E(X0:N ,Y1:N )∼PA1:N

{
S2

j (Yi, Xi, Ai)
}
> 0.

So, we require

inf
i

inf
A1:N

E(X0:N ,Y1:N )∼PA1:N

{
S2

1(Yi, Xi, Ai)
}

= inf
i

inf
A1:N

E(X0:N ,Y1:N )∼PA1:N

σ
−2
Y

1
(Xi(3)−Ai(2))

2[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2
 > 0,

inf
i

inf
A1:N

E(X0:N ,Y1:N )∼PA1:N

{
S2

2(Yi, Xi, Ai)
}

= inf
i

inf
A1:N

E(X0:N ,Y1:N )∼PA1:N

σ
−2
Y

[
Xi(1)−Ai(1)

(Xi(3)−Ai(2))
2

]2
[
1 +

(
Xi(1)−Ai(1)
Xi(3)−Ai(2)

)2
]2
 > 0.

4.2 Verifying conditions for the convergence of the slow timescale

We will show that conditions (a) and (b) of Corollary 10 are satisfied. The assumptions necessary for the
convergence of the fast timescale imply condition (c) is satisfied (see Corollary 9).

4.2.1 Corollary 10, condition (a)

By Remark 11, assuming F has bounded first and second order derivatives, the Lipschitz condition on∇(J◦F )
is satisfied provided |h̄(F (θ))| is bounded and ∇J = h̄ is Lipschitz when its domain is restricted to range(F ).

To show |h̄(F (θ))| is bounded, it is sufficient to show each component of the vector valued functions
h̄1(F (θ)) and h̄2(F (θ)) is bounded. Likewise, to show h̄ = h̄1 + h̄2 is Lipschitz, it is sufficient to show each
component of the vector valued functions h̄1 and h̄2 is Lipschitz.

For the trajectory planning problem, the components of h̄1(A1:N ) are the functions

A1:N → E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
Sj(Yi, Xi, Ai)

}

where j = 1, 2, i = 1, . . . , N . Since
(〈

ψ2, π̂
(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)

is bounded, this function is bounded

provided supA1:N∈range(F )E(X0:N ,Y1:N )∼PA1:N
{|Sj(Yi, Xi, Ai)|} < ∞, which has been verified in Assumption

2c. As for the Lipschitz continuity, we may bound

∂

∂Am(n)
E(X0:N ,Y1:N )∼PA1:N

{(〈
ψ2, π̂

(Y1:N )
0:N

〉
−
〈
ψ, π̂

(Y1:N )
0:N

〉2
)
Sj(Yi, Xi, Ai)

}
using similar arguments that were used to establish the Lipschitz continuity of S × h1(A1:N ).

The components of h̄2(A1:N ) are the functions
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A1:N → E(X0:N ,Y1:N )∼PA1:N

{〈
ψ2Sj(Yi, ·, Ai), π̂

(Y1:N )
0:N

〉
−
〈
ψ2, π̂

(Y1:N )
0:N

〉〈
Sj(Yi, ·, Ai), π̂

(Y1:N )
0:N

〉
−2
〈
ψ, π̂

(Y1:N )
0:N

〉〈
ψSj(Yi, ·, Ai), π̂

(Y1:N )
0:N

〉
+2
〈
ψ, π̂

(Y1:N )
0:N

〉2 〈
Sj(Yi, ·, Ai), π̂

(Y1:N )
0:N

〉}
,

where j = 1, 2, i = 1, . . . , N . Showing boundedness follows similar arguments used to establish Assumption
3. As for the Lipschitz continuity, we may bound its partial derivatives using similar arguments used in
verifying Assumption 2b (and 3).

4.2.2 Corollary 10, condition (b)

In verifying Assumption 3, it was shown that supk E
(
|Hk|2

)
<∞.

In Remark 12, it was stated that one may verify

sup
θ̃∈range(F )

Eω∼Pθ̃

{∣∣∣h1,θ̃(ω)− h̄1(θ̃)
∣∣∣2} < ∞,

sup
θ̃∈range(F )

Eω∼Pθ̃

{∣∣∣h2,θ̃(ω)− h̄2(θ̃)
∣∣∣2} < ∞,

sup
θ̃∈range(F )

Eω∼Pθ̃

{∣∣Sθ̃(ω)
∣∣2} < ∞,

in lieu of (17)-(19). To verify condition (a) of Corollary 10, it was shown that supθ̃∈range(F ) h̄i(θ̃) < ∞,

i = 1, 2. In verifying Assumption 3, it was shown that supθ̃∈range(F )Eω∼Pθ̃

{∣∣∣hi,θ̃(ω)
∣∣∣2} <∞, i = 1, 2, while

in Assumption 2c, it was shown that supθ̃∈range(F )Eω∼Pθ̃

{∣∣Sθ̃(ω)
∣∣2} <∞.
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