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An (Xlzn) = (Qn-1 (Xlzn—l) An (Xn| Xl:n—l)
= q (Xl) q2 (X2| X1) **dn (Xn| X1:n—1)

so if Xl(:'g_l ~ gn—1 (x1:n—1) then we only need to sample
X XL ~ ar (s X)) t0 bt X~ 31 G

@ The importance weights are updated according to

’)/n (Xlzn)
Yn-1 (Xllnfl) dn (Xn‘ Xl:nfl)

Wi (Xlzn) = 2;:((;?:)) = Wp—1 (Xlzn—l)

&p (Xlzn)
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o At time n =1, sample Xl(i) ~ q1 (+) and set w; (Xl(f)) _
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o At time n =1, sample Xl(i) ~ q1 (+) and set w; (Xl(i)) = (

o At time n > 2

o sample X,Si) ~ qn (| Xl(:'.’)171>




Sequential Importance Sampling

o At time n =1, sample Xl(’) ~ qi () and set w; (Xl(/)) _ 71( L )

o At time n>2

« e X~ 0, (-1X0).)
e compute wpy (Xf'g) = wp_1 <X1(127—1> ®n (Xf'g) .




Sequential Importance Sampling

o At time n =1, sample Xl(’) ~ qi () and set w; (Xl(/)) _ 71( L )

o At time n>2
o samole Xy (-130).4)
e compute wpy (Xf'g) = wp_1 <X1(127—1> ®n (Xf'g) .

o It follows that

N .
ﬁn (dxlzn) = Z ng’)(sx i) (Xm:n) ’

Z = LYo (x0).




Sequential Importance Sampling for State-Space Models

@ State-space models

Hidden Markov process: X1 ~ p, Xi| (Xk—1 = xk—1) ~ f (| xk—1)

Observation process:  Yi| (Xk = xk) ~ g (| xk)




Sequential Importance Sampling for State-Space Models

@ State-space models
Hidden Markov process: X1 ~ p, Xi| (Xk—1 = xk—1) ~ f (| xk—1)
Observation process:  Yi| (Xk = xk) ~ g (| xk)
@ Assume we have received y;.,, we are interested in sampling from

P (Xlzn: }/I:n)

TTp (Xl:n) =P (Xl:”‘ y1:n) - p (y1:n)

and estimating p (y1:,) where

o (1) = p Octome i) = 1 Ga) TTF Ol ) TT e (el xe)
k=2 k=1

Zn = P(Y1:n) :/ : /V (Xl)gf(xk|xk—l)lgg()/k|xk) Xm:n-




Locally Optimal Importance Distribution

@ The optimal IS distribution g, (x,| x1:n—1) at time n minimizing the
variance of w, (x1.,) is given by

qut (X,,’ Xl:nfl) = Tln (Xn’ Xl:nfl)

and yields an incremental importance weight of the form

Tn (Xlzn—l)
Yn-1 (Xlzn—l)

Kp (Xlzn) =




Locally Optimal Importance Distribution

@ The optimal IS distribution g, (x,| x1:n—1) at time n minimizing the
variance of w, (x1.,) is given by

qut (X,,’ Xl:nfl) = TTp (Xn’ Xl:nfl)
and yields an incremental importance weight of the form

Tn (Xlrn—l)

Kp (Xlzn) =
Yn-1 (Xlzn—l)
@ For state-space models, we have

g (Yl xa) £ (Xa| Xn-1)
P(Yn|Xn—1) ,

opt
an

(Xn| Xl:nfl) = p(Xn|}/nan71) =

Xn (Xlzn) =p (_VH| Xn—l) .
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Sampling.
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@ Sequential Importance Sampling is a special case of Importance
Sampling.
@ Importance Sampling only works decently for moderate size problems.

@ Today, we discuss how to partially fix this problem.




Resampling

@ Intuitive KEY idea: As the time index n increases, the variance of the
unnormalized weights {W,, (Xf'),)} tend to increase and all the mass

is concentrated on a few random samples/particles. We propose to
reset the approximation by getting rid in a principled way of the

particles with low weights Wn(') (relative to 1/N) and multiply the
particles with high weights W,,(') (relative to 1/N).
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@ The main reason is that if a particle at time n has a low weight then
typically it will still have a low weight at time n+ 1 (though | can
easily give you a counterexample).




Resampling

@ Intuitive KEY idea: As the time index n increases, the variance of the
unnormalized weights {W,, (Xf'),)} tend to increase and all the mass
is concentrated on a few random samples/particles. We propose to
reset the approximation by getting rid in a principled way of the
particles with low weights Wn(i) (relative to 1/N) and multiply the
particles with high weights W,,(i) (relative to 1/N).

@ The main reason is that if a particle at time n has a low weight then
typically it will still have a low weight at time n+ 1 (though | can
easily give you a counterexample).

@ You want to focus your computational efforts on the “promising”
parts of the space.




Multinomial Resampling

@ At time n, IS provides the following approximation of 7, (x1:n)

N .
Th (dX1:n> = Z WISI)(le(O <dX11n) :
i=1 !
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@ At time n, IS provides the following approximation of 7, (x1:n)
)
Tty (dX1:n> = Z Wh (le(") <dX11n) :
i=1 n

@ The simplest resampling schemes consists of sampling N times
Xl(:',z ~ Tty (dx1:p) to build the new approximation
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~ 1
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=1 “tn




Multinomial Resampling

@ At time n, IS provides the following approximation of 7, (x1:n)

N .
Tty (dX1:n> = Z W,SI)(le(,) <dX1 n) .
i=1 n
@ The simplest resampling schemes consists of sampling N times

)~(1(:i,3 ~ Tty (dx1:p) to build the new approximation

1 N

Xmn = NIZ':(SX{I,), Xmn .

@ The new resampled particles {)?1(',),} are approximately distributed

according to 71, (x1:n) but statistically dependent. This is
theoretically more difficult to study.




@ Note that we can rewrite
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@ Note that we can rewrite

where (N,(,l), ...,N,(,N)> ~ M (N; Wi, .. W,,(N)) thus
E [N,(,i)] = MW", var [N,(,l)} = v (1 - Wn(”) _
o |t follows that the resampling step is an unbiased operation

E [7T, (dx1:0)| 7Tn (dX1:n)] = 7Tn (dX1:n)

but clearly it introduces some errors “locally” in time. That is for any
test function, we have

varz, [@ (Xi:n)] > varz, [@ (Xin)]
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@ Note that we can rewrite

where (N,(,l), ...,N,(,N)> ~ M (N; Wi, .. W,,(N)) thus
E [N,(,i)] = MW", var [N,(,l)} = v (1 - Wn(”) _
o |t follows that the resampling step is an unbiased operation

E [7T, (dx1:0)| 7Tn (dX1:n)] = 7Tn (dX1:n)

but clearly it introduces some errors “locally” in time. That is for any
test function, we have

varz, [@ (Xi:n)] > varz, [@ (Xin)]

@ Resampling is beneficial for future time steps (sometimes).
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but V [N] < v (1- wy).
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Stratified Resampling

@ Better resampling steps can be designed such that [E [N,(,i)} = NW,SI)
but V [N] < v (1- wy).
@ A popular alternative to multinomial resampling consists of selecting

1
UlNZ/{|:0,N:|
and for i =2,...,. N
i—1 1
U=U+ N —U,_1+N.

where Y0, = 0.

@ [t is trivial to check that [|E [N,(,i)] = NWn(i).




An alternative approach to resampling

@ Assume
®p (x1:n) < 1 over E, (rescale if necessary)
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@ Assume
®p (x1:n) < 1 over E, (rescale if necessary)
@ We have
& (X1 Xn| X1:n—1) TTh—1 (X1:p—
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An alternative approach to resampling

@ Assume
®p (x1:n) < 1 over E, (rescale if necessary)
@ We have
& (X1 Xn| X1:n—1) TTh—1 (X1:p—
T, (X1:n> _ n( l,n) qn( n’ 1:n 1) n 1( 1l:n 1)

f Xn (Xlzn) An (dxn’ Xl:nfl) TTh—1 (dxlznfl)
= p (Xl:n) An (Xn| Xl:n—l) TTh—1 (Xl:n—l)

+ (1 — /(x,, (X1:n) Gn (dXn| X1:0-1) TT0—1 (dX1:n1)>

Kp <X1:n) dn (an Xl:nfl) TTh—1 (X1:n71>
f Xn (Xlzn) An (an| Xl:n—l) TTh—1 (dXI:n—l)

@ Looks like measure-valued Metropolis-Hastings algorithm.
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rejection probability
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Probabilistic interpretation

o We have
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Probabilistic interpretation

o We have
TTn <X1:n) = Kp (Xlzn) An (Xn’ Xl:n71> TTh—1 (Xlznfl) +
———
accept with proba w, trial distribution

(1 — /an (x1:n) Gn (dXn| X1:0—1) TTn—1 (dX1:n—1)> T (X1:n)

rejection probability

o Say X\) | ~ 7, 1 and sample X\ ~ q, ('I Xf:i3_1>-
@ With probability a, (X,Si)>, set )~(1('13 = 1(:i,)7 otherwise
)?1(:?1 ~ ZIN:I W,gl)éxl(,) (dxl:n)-

@ Remark: Allows to decrease variance if «, (xl;,,) “flat" over E,; e.g.
filtering with large observation noise.




Degeneracy Measures

@ Resampling at each time step is harmful. We should resample only
when necessary.
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Degeneracy Measures

@ Resampling at each time step is harmful. We should resample only
when necessary.

@ To measure the variation of the weights, we can use the Effective
Sample Size (ESS) or the coefficient of variation CV

5= (Fey) o (v -7)

i=1

@ We have ESS = N and CV =0 if W,q(i) =1/N for any i.

@ We have ESS=1and CV =N -1 if W,Si) =1 and W,Sj) =1 for
j# i




@ We can also use the entropy

Ent = — Y W7 log, (Wn(”)

N
P

1
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@ We can also use the entropy

Ent = — m¢”|og2(vuy>>

N
—

1

o We have Ent = log, (N) if W) = 1/N for any i. We have Ent =0
if W) =1and WY =1forj#£i.
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@ We can also use the entropy
N . .
Ent = — Y- W, log, (W)
i=1

o We have Ent = log, (N) if W) = 1/N for any i. We have Ent =0
if W) =1and WY =1forj#£i.

@ Dynamic Resampling: If the variation of the weights as measured by
ESS, CV or Ent is too high, then resample the particles.
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Generic Sequential Monte Carlo Scheme

o At time n =1, sample Xl(i) ~ q1 (-) and set w; (Xl(i)) =
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Generic Sequential Monte Carlo Scheme

o At time n =1, sample Xl(i) ~ q1 (-) and set w; (Xl(i)) =

Resample {Xl(i), Wl(i)} to obtain new particles also denoted {Xl(i)}
o At timen > 2

o sample X\” ~ g, ('| Xl(:ir)1—1)

e compute wj (Xl(',),) =n (Xl(lr)1> '

Resample {Xl(:'g, W,Si)} to obtain new particles also denoted {Xl(:i,z}




@ At any time n, we have two approximation of 77, (x1:5)

AD.
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ﬁn (dxlzn)
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@ At any time n, we have two approximation of 77, (x1:5)

Ttn (dxl:n)

ﬁn (dxlzn)

@ We also have

AD.

=

I
—

i=1

W, s

X

() (dx1:n) (before resampling)

Lin

N
Zéx(, (dxi.n) (after resampling).
1:n

16 / 30



Sequential Monte Carlo for Hidden Markov Models
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Sequential Monte Carlo for Hidden Markov Models

o At time n =1, sample Xl(i) ~ g1 (-) and set
. (i) (@)
Wi (Xl(,)> _ n(xd )g(i()yl\xl )
q(X1 ‘y1)

@ Resample {Xl(i), Wl(i)} to obtain new particles also denoted {Xl(i)}
o At time n > 2
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Sequential Monte Carlo for Hidden Markov Models

o At time n =1, sample Xl(i) ~ g1 (-) and set

) _ mx")g(nx”)
wq (X1 ) = q(Xl(,-)‘yl) )

@ Resample {Xl(i), Wl(i)} to obtain new particles also denoted {X(i)}
o At time n > 2

e sample X,Si) ~q (-|y,,,X,EQ1)

1




Sequential Monte Carlo for Hidden Markov Models

o At time n =1, sample Xl(i) ~ g1 (-) and set
. (i) (@)
Wi (Xl(,)> _ n(xd )g(i()yl\xl )
q(X1 ‘y1)

@ Resample {Xl(i), Wl(i)} to obtain new particles also denoted {Xl(i)}

o At time n > 2

o sample X\ ~ q (-Iyn,X,Ei,1)
)
n




Sequential Monte Carlo for Hidden Markov Models

o At time n =1, sample Xl(i) ~ g1 (-) and set

) _ mx")g(nx”)
wq (X1 ) = q(Xl(,-)‘yl) )

@ Resample {Xl(i), Wl(i)} to obtain new particles also denoted {Xl(i)}
o At time n > 2

o sample X\ ~ q (-Iyn,X,Ei,1)
)
n

e compute wpy (Xlz

@ Resample {Xl(',),, W,Si)} to obtain new particles also denoted {Xl(',z}




o Example: Linear Gaussian model

X1 o~ N(O,l), X, =aX,—1+0,V,,
Y, = Xy+o,W,

where V,, ~ N (0,1) and W, ~ N (0, 1).
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where V,, ~ N (0,1) and W, ~ N (0, 1).
o We know that p (x1:n| y1:n) is Gaussian and its parameters can be

computed using Kalman techniques. In particular p (x| y1.n) is also a
Gaussian which can be computed using the Kalman filter.
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o Example: Linear Gaussian model

Xy o~ N(O,l), X, =aX,—1+0,V,,
Y, = Xy+o,W,

where V,, ~ N (0,1) and W, ~ N/ (0, 1).

o We know that p (x1:n| y1:n) is Gaussian and its parameters can be
computed using Kalman techniques. In particular p (x| y1.n) is also a
Gaussian which can be computed using the Kalman filter.

o We apply the SMC method with
q (Xn| yni xn—1) = f (x| Xp—1) = N (Xp; axn—1,02).
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Importancé \fleights (basélgo Iogarithm)r ’
Figure: Histograms of the base 10 logarithm of W,Si) for n =1 (top), n =50
(middle) and n = 100 (bottom).

o By itself this graph does not mean that the procedure is efficient!
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@ This SMC strategy performs remarkably well in terms of estimation of
the marginals p (xx| y1.«) . This is what is only necessary in many
applications thankfully.
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This SMC strategy performs remarkably well in terms of estimation of
the marginals p (xx| y1.«) . This is what is only necessary in many
applications thankfully.

However, the joint distribution p ( x1.x| y1:x) is poorly estimated when
k is large; i.e. we have in the previous example

P (x111] y1:04) = Oxpqy (X1:11) -

The same conclusion holds for most sequences of distributions
Tk (X1:k)-
Resampling only solves partially our problems.

AD. () 20 / 30



Another lllustration of the Degeneracy Phenomenon

@ For the linear Gaussian state-space model described before, we can
compute in closed form

n

1
So==Y E[X{| Y1)
k=1

using the Kalman techniques.
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Another lllustration of the Degeneracy Phenomenon

@ For the linear Gaussian state-space model described before, we can
compute in closed form

n

1
So==Y E[X{| Y1)
k=1

using the Kalman techniques.

@ We compute the SMC estimate of this quantity given by

=ty vy w (Xk("))2

@ This estimate can be updated sequentially using our SMC
approximation.




Qa7

Q6 |- 4

Qa5 - B

a4 4

0 I I I I I I I I I

0 50 100 150 20 A0 eeny) FHD A0 40 se00)

Figure: Sufficient statistics computed exactly through the Kalman smoother
(blue) and the SMC method (red).
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Some Convergence Results for SMC

e We will discuss convergence results for SMC later; see (Del Moral,
2004).
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Some Convergence Results for SMC

e We will discuss convergence results for SMC later; see (Del Moral,
2004).

@ In particular we have for any bounded function ¢ and any p > 1

p11l/p
" < Glele
- N

E H/ @, (x1:n) (7n (dxa:n) — 700 (dxi:n))

@ It looks like a nice result but it is rather useless as C, increases
polynomially/exponentially with time.

@ To achieve a fixed precision, this would require to use a
time-increasing number of particles .




@ You cannot hope to estimate with a fixed precision a target
distribution of increasing dimension.
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@ You cannot hope to estimate with a fixed precision a target
distribution of increasing dimension.

@ At best, you can expect results of the following form

E H/ ¢ (XH*L+1ZH) (ﬁn (anfL+1:n) — TTp (dxnfLJrl:n))
M ||l
- N
if the model has nice forgetting/mixing properties, i.e.

/‘7‘(” (Xn|x1) — 7T (x,,|x{)| dx, < 2A"1

with 0 < A < 1.
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@ You cannot hope to estimate with a fixed precision a target
distribution of increasing dimension.

@ At best, you can expect results of the following form
p71l/p
E H/ ¢ (XH*L+1ZH) (ﬁn (anfL+1:n) — TTp (dxnfLJrl:n)) :|

M ||l
- N

if the model has nice forgetting/mixing properties, i.e.

/‘7‘(” (Xn|x1) — 7T (x,,|x{)| dx, < 2A"1

with 0 < A < 1.
@ In the HMM case, it means that

/ }p(Xn|)/1:n.X1) —pP (Xn’)/1:n.X{) ‘ dx, < Anil
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Central Limit Theorems

@ For SIS we have

VN (Ez, (¢, (X1n)) = Ex, (9, (X1:n))) = N (0,05 (9,))

where

2 X1.
s (00) = [ T (g, () ~ B, o G




Central Limit Theorems

@ For SIS we have

VN (Ez, (¢, (X1n)) = Ex, (9, (X1:n))) = N (0,05 (9,))

where

2 X1.
s (00) = [ T (g, () ~ B, o G

@ We also have

VN (z - z,,) = N (0,0%)

where

2
0—%5 = / T (Xlin) Xm:n -1
an (Xl:n)




@ For SMC, we have

7T2 X 2
oSuc (9,) = | qln((nl)) (f @, (x2:n) 7T (x2:0] X1) A2 — B, (@, (X1:0))) dxa
n—1 Ttn (X1 )2
+ 1= nk,l(Xqu)lqi(Xlekfl)

X (f (9 (Xlzn) nnz(xk+1:n| Xk) kaJrl:n - ]Enn (QD,, (Xl:n)))2 dxq.k
[ e ety (90 (in) = Br (@ (X2))?

and

n

2 70 (xt)2
U%MC = /"<X1)dx1 + Z / (x1:4) dxi.x — n

q1 (x1) =) e (1) gk (k| xe-1)
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Back to our toy example

@ Consider the case where the target is defined on IR” and

7'(X1n HN XkO].)

(x1:n) Hexp (-) Z = (2n)"?.




Back to our toy example

@ Consider the case where the target is defined on IR” and

7'(X1n HN XkO].)

(x1:n) Hexp (-) Z = (2n)"?.

@ We select an importance distribution

q (x1:n) HkaO(f)




@ For SMC, the asymptotic variance is finite only when ¢? > % and
Vsmc {Z] 1 72 (x1)
—_— -1+ / d Ixe — 1
[ L

0_4 1/2 .
202 —1

72 N
Vis [21] 1 o n/2 .
72 N 202 —1

n

=
N

compared to

for SIS.
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@ For SMC, the asymptotic variance is finite only when ¢? > % and

Vsmc [Z'] 1 /7-[2((x) k—].]

72 TN
_n < o )1/2 )
N |\ 202 -1
compared to
Vis [27] 1 o n/2
T2 TN (w) ‘1]

for SIS.
o If select > = 1.2 then we saw that it is necessary to employ

N = 2 x 1023 particles in order to obtain V'SZ[Z ] = 1072 for
n = 1000.
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@ For SMC, the asymptotic variance is finite only when ¢? > % and

T PIY /TN TR

72 N

o ot 1/2 )
N | \202-1
compared to
Vis [27] 1 o n/2 .
Z2 N |\202-1
for SIS.
o If select > = 1.2 then we saw that it is necessary to employ
N = 2 x 1023 particles in order to obtain V'SZ[Z ] = 1072 for
n = 1000. R
@ To obtain the same performance, VS#Q[Z"] =102, SMC requires the

use of just N ~ 10* particles: an improvement by 19 orders of




@ If you have nice mixing properties, then you can obtain

C
oSmc (9) < N

for ¢ depending only on X,_; 1.5




@ If you have nice mixing properties, then you can obtain

C
oSmc (9) < N

for ¢ depending only on X,_; 1.5

@ Under the same assumptions, you can also obtain

DT
OSme < — N
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@ Resampling can drastically improve the performance of SIS in models
having ‘good’ mixing properties; e.g. state-space models: this can be
verified experimentally and theoretically.
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@ Resampling does not solve all our problems; only the SMC
approximations of the most recent marginals 7T, (x,—(4+1.1) are
reliable; i.e. we can have uniform (in time) convergence bounds.




@ Resampling can drastically improve the performance of SIS in models
having ‘good’ mixing properties; e.g. state-space models: this can be
verified experimentally and theoretically.

@ Resampling does not solve all our problems; only the SMC
approximations of the most recent marginals 7T, (x,—(4+1.1) are
reliable; i.e. we can have uniform (in time) convergence bounds.

@ The SMC approximation of 7, (x1.,) is only reliable for ‘small’ n.




