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Abstract The probability hypothesis density (PHD) filter is a first moment ap-
proximation to the evolution of a dynamic point process which can be used to ap-
proximate the optimal filtering equations of the multiple-object tracking problem.
We show that, under reasonable assumptions, a sequential Monte Carlo (SMC) ap-
proximation of the PHD filter converges in mean of order p > 1, and hence almost
surely, to the true PHD filter. We also present a central limit theorem for the SMC
approximation, show that the variance is finite under similar assumptions and es-
tablish a recursion for the asymptotic variance. This provides a theoretical justifi-
cation for this implementation of a tractable multiple-object filtering methodology
and generalises some results from sequential Monte Carlo theory.
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1 Introduction

In a standard Hidden Markov Model (HMM), the state and measurement at time k
are two vectors of possibly different dimensions, belonging to £ and F' respec-
tively. These vectors evolve randomly over time but their dimensions are fixed. The
aim is to compute recursively in time the distribution of the hidden state given all
the observations that have been received so far. In multi-object filtering, recently
introduced and studied by the data-fusion and tracking community [9, 11], the aim
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is to perform filtering when the state and observation variables are the finite subsets
of E and F'. Conceptually, this problem can be thought of as that of performing
filtering when the state and observation spaces are the disjoint unions, &$°, E* and
W, ', respectively. We remark that developing efficient computational tools to
propagate the posterior density is extremely difficult in this setting [8].

An alternative which is easier to approximate computationally, the Probability
Hypothesis Density (PHD) filter, has recently been proposed [11]. The PHD fil-
ter is a recursive algorithm that propagates the first moment, also referred to as the
intensity [4], of the multi-object posterior. The first moment is an appropriately de-
fined measure on E (although we also use the term to refer to the Radon-Nikodym
derivative of this measure with respect to some appropriately defined dominating
measure on the same space). While the first moment is now a function on F, i.e.
the dimension of the “state space” is now fixed, the PHD filter recursion still in-
volves multiple integrals that have no closed form expressions in general. An SMC
implementation of the PHD filter was proposed in [14].

The aim of this paper is to analyse the convergence of the sequential Monte
Carlo (SMC) implementation of the PHD filter proposed in [14]. SMC is a class
of computational methods for the sequential approximation of integrals via a se-
quential importance sampling and resampling strategy [5,7,12]. Although numer-
ous convergence results and central limit theorems have been obtained for par-
ticle systems which approximate Feynman-Kac flows [5] (including the optimal
filtering equations), the PHD filter, being a first moment of the multi-object poste-
rior, is an unnormalised density that does not obey the standard Bayes recursion.
Thus, convergence results and central limit theorems which have been derived for
Feynman-Kac flows do not apply to the SMC approximation of the PHD filter.
Our contribution is to extend existing results to this system which has a number
of added difficulties, particularly that the total mass of the filter is a time-varying
quantity and the recursions are non-standard.

2 Background and Problem Formulation
2.1 Notation and Conventions

It is convenient, at this stage, to summarise the notation used throughout the re-
mainder of this report, and the conventions which have been adopted. It is assumed
throughout that the particle system first introduced in section 2.3.1 is defined on
a probability space ({2, F,P). All expectations and probabilities which are not
explicitly associated with some other measure are taken with respect to P

For some measurable space (E, £), let the set of measurable functions on E
be denoted by B(E), the space of bounded measurable functions (endowed with
the supremum norm, |||, = sup,cp |{(u)| forany § : E — R) by By(E), and
the set of finite measures by M (E). The symbol 1 is used to denote the unit func-
tion on any space. We have assumed throughout that all measures admit a density
with respect to some dominating measure, A (dz), and used the same symbol to
represent a density and its associated measure, i.e. for some measure y € M(E),

n(dz) = p(a)A (de)
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Given a measure 4 the integral of a function, f, with respect to u is denoted p( f).
A Markov Kernel K from E to E induces two operators. One acts upon func-
tions in By,(F) and takes values in B, (E) and may be defined as:

Vue E VfeBy(E) K(f)(u):/EK(u,dv)f(v)

and the other acts upon finite measures on E and takes values in M(FE) and is
defined by

Yu e M(E) MK(-)z/Eu(du)K(uw)

Given two transition kernels K and L which admit a density with respect to a

suitable dominating measure, where L is absolutely continuous with respect to K,
K >> L, we define £ (u,v) = §1L<((7;)) (v) (i.e. the Radon-Nikodym derivative).
Given a transition kernel K and a non-negative function g : £ x E — R we
define the new kernel K x g by K x g(u,dv) = K(u,dv)g(u,v). Similarly, for

two measures 4 and v on E, we define £ (u) to be % (u). If p and v both admit

densities with respect to the same dominating measure A then % (u) is simply the
ratio of those densities evaluated at the point u. For any two functions f, g : E —
R we write fg for the standard multiplication of these functions.

Where it is necessary to describe matrices in terms of their components, we
write A = [a;;] where a;; is the expression for component 7, j of matrix A.

When dealing with random finite sets, the convention in the literature is to use
capital Greek letters to refer to a random set, a capital Roman letter to refer to a
realisation of such a set and a lower case Roman letter to refer to an element of a
realisation. We have followed this convention wherever possible.

Finally, we have considered the evolution of the PHD as an unnormalised den-
sity on a general space E. It is usual, but not entirely necessary, to assume that
E = R? and that the dominating measure ) (dz) is Lebesgue measure. For the
target tracking application described in section 2.4, this is, indeed, the case.

2.2 Multiple Object Filtering

‘We remark that although the description below is removed from any particular ap-
plication, the model is popular with the data fusion and target tracking community
[9,11,8]. Our intention in giving this abstract presentation is to emphasise the gen-
erality of the model with the intention of arousing the interest of other scientific
communities.

The multi-object state evolves over time in a Markovian fashion and at each
time k, a multi-object measurement is generated based upon the state at time k
only. The multi-object state and multi-object measurement at time k are naturally
represented as finite subsets X, C E and Z;, C F' respectively. For example, at
time k, let X, have M (k) elements, i.c.,

Xk = {"Ek’l, . vxk,M(k)} S T(E)
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where 7 (E) denotes the collection of all finite subsets of the space E. Similarly,
if N (k) observations zy 1, ..., 2 n(k) from F are received at time k, then

Zk = {Zk,h .. -7Zk,N(k)} S T(F)

is the multi-object measurement. Analogous to the standard HMM case, in which
uncertainty is characterised by modelling the states and measurements by random
vectors, uncertainty in a multi-object system is characterised by modelling multi-
object states and multi-object measurements as random finite sets (RFS) = and
2, in E and F respectively. We denote particular realisations of = and X by
X} and Zj, respectively. Conditioned upon a realisation X_; of the state at time
k — 1, =% _1 the state evolution satisfies

5r =57 (Xp 1) UEE (X 1) UT, (D)

where = (Xx_1) denotes the RFS of elements that have ‘survived’ to time k and
the other terms are RFSs of new elements, which are decomposed as =7 (X;_1)
of elements spawned (spawning is a term used in the tracking literature for the pro-
cess by which a large target, such as an aircraft carrier, emits a number of smaller
targets, such as aircraft) from X}_; and the RFS I}, of elements that appear spon-
taneously at time k. Note that the state evolution model incorporates individual el-
ement motion, element birth, death and spawning, as well as interactions between
the elements. Similarly, given a realisation X of =} at time k, the observation XY,
is modelled by

Py ZQk(Xk)UAk, )

where O (X},) denotes the RFS of measurements generated by Xy, and Ay, de-
notes the RFS of measurements that do not originate from any element in X, such
as false measurements due to sensor noise or objects other than the class of objects
of interest. The observation process so defined can capture element measurement
noise, element-dependent probability of occlusions and false measurements.

The multi-object filtering problem concerns the estimation of the multi-object
state X, at time step k given the collection Z1.,, = (Z1, ..., Zi) of all observations
up to time k. The object of interest is the posterior probability density of =7.

The above description of the dynamics of {=%} and {X} was a constructive
one, while in filtering one needs to specify the state transition and observation
density, that is, the densities of the following measures,

P(Ek S A|Ek,1 = kal),
P(Ek c B|5k = Xk),

where A C T(F) and B C 7 (F) are the measurable sets of their respective
spaces. As this paper is concerned with the propagation of the first moment of
the filtering density, we refer the reader to [14,11] for details on the state transi-
tion and observation densities. We have also omitted details on how the RFSs of
survived elements =¢ (X;_1), spawned elements =2 (X};_1) and spontaneously
spawned elements [}, are constructed. Similarly, details on the RFSs of true (or
element generated) observations O (X} ) and false measurements A were omit-
ted. Naturally, the construction of these sets are application specific and a simple
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numerical example provided in Section 2.4 below aims to clarify the ideas. We
refer the reader to [9, 11] for the constructions for applications in target tracking.

As was observed previously, it is extremely difficult to perform the computa-
tions involved in the filtering problem for this type of model. SMC methods cannot
operate efficiently when direct importance sampling on a very high dimensional
space is involved. Thus it is important to consider computationally tractable prin-
cipled approximations. This leads us to the PHD filter, one such approximation
which has become popular among the tracking community [11, 14].

2.3 The PHD Filter

The PHD filter is a method of updating a measure, &;—1 given a random set of
observations, Z, which can be interpreted as a first moment approximation of the
usual Bayesian filtering equation. Within this framework, the quantity of interest is
the intensity measure of a point process. Whilst it can be described by a measure,
itis not in general a probability measure and it is necessary to maintain an estimate
of both the total mass and the distribution of that mass. Details now follow.

Before summarising the mathematical formulation of the PHD filtering recur-
sion, we briefly explain what is meant by the first moment of a random finite set.
A finite subset X € 7 (FE) can also be equivalently represented by the count-
ing measure Nx (on the measurable subsets of F) defined, for all measurable
sets, A, by Nx(A) = >, cx 1a(xz) = |AN X]|. Consequently, the random fi-
nite set = can also be represented by a random counting measure Nz defined by
N=(A) = |=Z N AJ. This representation is commonly used in the point process
literature [4].

The first moment of a random vector is simply the expectation of that random
vector under a suitable probability measure. As there is no concept of set addition,
an exact analogue of this form of moment is not possible in the RFS case. However,
using the random counting measure representation, the 1st moment or intensity
measure of a RFS = is the first moment of its associated counting measure, i.e.,

a(A) = E[N=z(A)].

The intensity measure of a set A gives the expected number of elements of = that
are in A. Although the intensity measure & is an integral of the counting measures,
it is not itself a counting measure and hence does not necessarily have a finite set
representation.

The density of the intensity measure with respect to a suitable dominating mea-
sure \, when it exists, is also denoted & and is termed the intensity function'. In the
tracking literature, & is also known as the Probability Hypothesis Density (PHD).

The PHD is the first moment of a RFS and hence tells us, for any region,
the expected number of elements within that region. In the context of multi-object
filtering, the PHD recursion described below propagates the density of the intensity
measure &y (A) := E[Nz,(A)| Z1,...,Zx] for k > 0. This is clearly a useful

' As a reminder, we use the same notation for a measure and its density throughout.
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representation for multi-object filtering and other applications, as it provides a
simultaneous description of the number of elements of = within the space, and
their locations.

The PHD recursion can be described in terms of prediction and update steps,
just as the optimal filtering recursion can. The derivation of the update step can-
not be reproduced here due to space constraints, but the most elegant approach
involves considering the evolution of the probability generating functional asso-
ciated with a Poisson process under the action of the update step. All of this is
presented in detail by [11]:

Oék(dl') = (@kdkfl)(d:v) = (dk—l(bk)(dx) +’Vk(d£f) 3)

wk,Z(x)
Z ki (2) +ak(¢k,z)> akldr) @)

z2€Z},

dk(dx) = (Wkak)(dx) = <Vk($) +

The prediction operator @y, is described in terms of a kernel, ¢, which does
not in general integrate to 1, and an additive measure, 7,. The prediction ker-
nel, ¢ describes the dynamics of existing elements and can be decomposed as:
or(z,dy) = er(x) fr(x,dy) + br(x, dy) where ey (z) is the probability of an el-
ement at x at time k& — 1 surviving to time k, fj(z, dy) is a Markov kernel which
describes the dynamics of the surviving elements and by (z, dy) is a “spawning”
kernel which describes the probability of an element at  at time k£ — 1 giving rise
to a new element in a neighbourhood dy at time k.

The update operator ¥, is a nonlinear operator which resembles a linear combi-
nation of Boltzmann-Gibbs operators (one of which describes the update equation
of Bayesian filtering) with different associated potentials. However, there are some
subtle differences which prove to be significant. The term Z}, denotes the random
set of observations at time k and vy, ., is the “likelihood” function associated with
an observation at z at time k. k() is the intensity of the false measurement pro-
cess at z. Finally, vk () is the probability of failing to observe an element at x at
time k.

Note the correspondence between the terms in the PHD recursion and the sets
in the constructive description of the multi-object filtering problem in section 2.2.
The pairing of the terms are as follows: (£, b;) describe object birth includ-
ing spawning, (I';,vx) describe spontaneous births, and (£, ey, fx) describe the
dynamics of surviving objects. The measurement model has a more subtle rela-
tionship, ©;, incorporates all of the information of 1)y, ., and v}, while the effect of
Ay, on the first moment is described by k.

2.3.1 An SMC Implementation of the PHD Filter We consider essentially the al-
gorithm proposed in [14] which describes a sequential Monte Carlo method for
approximating the evolution of the PHD filter. It is assumed that the filter is ini-
tialised at time zero by sampling a set of L particles from the true PHD (or, rather,
the probability measure obtained by appropriately normalising it) and weighting
them according to the total mass at time zero such that each particle has weight
w((f) = @&o(1)/Lo. The following recursion is then used to predict the particles
description at the next time step and then to update the estimate based upon the



Convergence of the SMC Implementation of the PHD Filter 7

next observation set, just as in the standard filtering case. It is understood that the
importance densities used may be conditioned upon the current observation set in
addition to the previous particle position. We omit the dependency on the observa-
tion set in our notation.

Assume that a particle approximation consisting of Lj_; weighted particles is
available at time k — 1, with associated empirical measure déﬁ}l.

1. Prediction:

— Propagate forward the particles which survived the previous iteration to
account for the dynamics of existing objects. For ¢ = 1,..., Lj_;, sam-
ple Yk(l) from some importance distribution g, (X ]8_)1, -) and calculate the
importance weights

=(1) _

(@) (@)
P (XH’Yk ) (i)
w, w4 ®))

=0 o) U

— Generate some new particles to account for spontaneous births. For ¢ =
Li_1+1,..., L1+ Jg, sample Yk(l) from some importance distribution
pi(+) and calculate the importance weights

(@)
) =+ ll ) (©)
k pi (Yk )
— Let My = Ji + Li_1 and let 042/1 * denote the particle approximation to the
predicted PHD filter at time k£ comprising these two weighted particle sets
2. Update:

— Compute the empirical estimate of the normalising constant associated

with each observation,

Li_1+Jk

Cr(z) = rr(z) + > o (V")

i=1

— Adjust the particle weights to reflect the most recent observations. Update
all the particle weights with:

| . v (W)
A0 _ ( (@ ’ = (%)
o) = |v () + 3 LV
2€Z}, Ck(z)
3. Resampling: 4
— Estimate the total mass: Nj, = Zfﬁ;lJrJ’“ @Z)](j )

— Resample to reduce sample impoverishment (that is, the presence of a large
(and increasing in time) number of particles with very small weights) and
to prevent exponential growth of the size of the particle ensemble. Starting

o) Y Lk—1+Jk
from the particle/weight pairs {“;\’; ,Yk(l)} sample L, particles
k .



8 A. M. Johansen, S. S. Singh, A. Doucet and B.-N. Vo

60 60

— track 1
-6 track 2
2 track 3
40 —=— track 4

20

-40 4 -40r

_60 L L L L L _60
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

X X
(a) Ground truth (b) PHD filter output estimates (P)

Fig. 1 Plots of 4 superimposed tracks over 40 time steps.

from the empirical probability distribution obtained by suitably normalis-

ing it, to obtain a set of Ly, particles of equal weight {w,(;) / Ni, X ,gi) }ZL_kl

— Rescale the weights to reflect the total mass of the system (i.e. multiply
the particle weights by a factor of Ny) giving the particle/weight ensemble
{w,(:) , X,ii) } Lk which defines dﬁ’“.

2.4 A Motivating Example

We present a brief example (which is taken from [14]) to illustrate the utility of
the multi-object filtering framework and the SMC implementation of the PHD
filter. Consider the problem of tracking an unknown number of targets that evolve
in R, For instance, in a two dimensional tracking example, each target could
be described by its x and y coordinates as well as its velocity in these directions.
Existing targets can leave the surveillance area and new targets can enter the scene.
At time k, a realisation of the state is X3, = {zx.1,. .. ,xk’M(k)} C R*. As for
the observations, each target generates one observation with a certain probability
(i.e. each target generates at most one observation) and, the sensors can measure
false observations that are not associated with any target, i.e., clutter. Assume that
sensors measure a noisy value of the x and y coordinate of a target. A realisation
of the observation would be Z;, = {zm, cey 2R N(k)} C R? where measurement
2x,; could either correspond to an element in X, or be a false measurement. Note
that the number of observations need not coincide with the number of targets.

We now demonstrate the results of tracking the targets using the SMC im-
plementation of the PHD filter. In our example each target moves according to a
standard linear Gaussian model. Each existing target has a probability of survival
that is independent of its position and velocity, i.e., a target at time k — 1 survives
to time & with probability 0.95. For simplicity no spawning is considered. At each
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time k, new targets can appear spontaneously according to a Poisson point process
with an intensity function -y, set to 0.2N(; Z, Q), where N'(+; Z, Q) denotes a nor-
mal density with mean Z and uncertainty corresponding to the covariance, ). This
corresponds to one new target being created every five time steps around a location
T with covariance . As for the observations, each target generates a noisy obser-
vation of its position with certain probability. Additionally, false measurements are
generated according to a Poisson point process with a uniform intensity function.

The peaks of &y are points in F with the highest local concentration of the
expected number of targets, and hence may be used to generate estimates for the
location of the elements of =. Since the total mass of the intensity measure gives
the expected number of targets, the simplest approach is to round the particle es-
timate of this quantity to the closest integer, N and then to select the Ny, largest
peaks as target locations. This was the approach adopted in this numerical exam-
ple, for which the positions of 4 targets over 40 time steps are displayed in Figure
1(b). These 4 targets start in the vicinity of the origin and move radially outwards.
The start and finish times of each target can be seen from Figure 2(a), which plots
the individual x and y components of each track against time. The = and y co-
ordinates of the observations Zj, for all 40 time steps are shown in Figure 2(b).
Figure 1(b) shows the position estimates superimposed on the true tracks over the
40 time steps. Observe the close proximity of the estimated positions to the true
tracks even though the tracks of the targets were not strictly generated according
to the assumed model.
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Fig. 2 True target positions and generated observations as a function of time.
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3 Convergence Study

It is shown that the integral of any bounded test function under the SMC approx-
imation of the PHD filter converges to the integral of that function under the true
PHD filter in mean of order p (for all integer p) and hence almost surely. As ob-
served by one referee, the restriction that test functions must be bounded seems
more reasonable in the context of the PHD filter than the standard optimal filter
as one is typically interested in the integrals of indicator functions. The result is
shown to hold recursively by decomposing the evolution of the filter into a number
of steps at each time. A number of additional points need to be considered in the
present case. We assume throughout that the observation record {7} }, -, is fixed
and generates the PHD recursion.

Remark 1 As a preliminary, we need to show that both the true and approximate
filters have finite mass at all times. In the case of the true filter this follows by as-
suming that the mass is bounded at time zero and that ||¢|| . is finite. Proceeding
by induction we have:

k(1) = U Prag—1(1)
Ppag-1(1) < V(1) + [|Prll o Ar-1(1)
ar(1) < | Zik| + (1) + || k]| o r—1(1) @)

whilst, in the case of the particle approximation, it can always be shown to hold
from the convergence towards the true filter at the previous time. Note that, when-
ever we have a result of the form (10) or (11) together with (7) the total mass of
the approximate filter must be finite with probability one and a finite upper bound
upon the mass can be obtained immediately (consider the [L; convergence result
obtained by setting p = 1 in (10) or (11)).

We make extensive use of [5, Lemma 7.3.3], the relevant portion of which is
reproduced here.

Lemma 1 (Del Moral, 2004) Given a sequence of probability measures (t;)i>1
on a given measurable space (E,E) and a collection of independent random
variables, one distributed according to each of those measures, (X; )7;21, where
Vi, X; ~ pi, together with any sequence of measurable functions (h;);>1 such
that p;(h;) = 0 for all i > 1, we define for any N € N,

ma (X)(h) = %Zhi(Xi) and o3, (h) = 1 Z sup(hi) — inf(hi))?

If the h; have finite oscillations (i.e., sup(h;) — inf(h;) < oo Vi > 1) then we
have:

VNE [[mu(X)WI")? < d(p)Pow (h)
with, for any pair of integers n,p such that n > p > 1, denoting (n), = n!/(n —

p)l:
d(2n) = (2n),27" and d(2n —1) = (2n
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We begin by showing that as the number of particles used to approximate the
PHD filter tends towards infinity, the estimate of the integral of any bounded mea-
surable function under the empirical measure associated with the particle approx-
imation converges towards the integral under the true PHD filter in terms of L,
norm and that the two integrals are [P — a.s. equal in the limit of infinitely many
particles. The principal result of this section is theorem 1 which establishes the
first result and leads directly to the second.

Throughout this section we assume that a particle approximation consisting of
L1 weighted particles is available at time k — 1, with associated empirical mea-
sure di *1". These particles are propagated forwards according to the algorithm de-
scribed previously, and an additional J, particles are introduced to account for the
possibility of new objects appearing at time k. This gives us an My = Ji, + Ly
particle approximation, denoted a,g/l * to the PHD filter at time k, which is subse-
quently re-weighted (corresponding to the update step of the exact algorithm) and
resampled to provide a sample of L particles at this time, &é *. This leads to a
recursive algorithm and provides a convenient decomposition of the error intro-
duced at each time-step into quantities which can be straightforwardly bounded.
We assume that Ji and M, are chosen in a manner independent of the evolution
of the particle system, but which may be influenced by such factors as the number
of observations.

3.1 Conditions

As a final precursor to the convergence study, we present a number of weak condi-
tions which are sufficient for the convergence results below to hold. The following
conditions are assumed to hold throughout:

The particle filter is initialised with some finite mass by iid sampling from a
tractable distribution &.

The observation set is finite, | Zx| < coVk.

All of the importance ratios are bounded above:

M’<R1<oo sup

gk (Z‘, y) relE

V()
pr(T)

sup
(z,y)€EEXE

< Ry <0 ®)

and that at least one of these ratios is also strictly positive.
The individual object likelihood function is bounded above and strictly posi-
tive:

O<¢k72($)<R3<OO C))

The number of particles used at each time step are not dependent upon the par-
ticle approximation at that time step. In the case of the convergence results we
allow for fairly general behaviour, requiring only that the number of particles
at each stage is proportional to the number used at the previous step in the al-
gorithm, Ly o< My = Li_1 + Ji and J o< Lj_1; in the central limit theorem
we assume that N particles are propagated forward at each time step and some
additional fraction 7, are introduced at each time k to describe the spontaneous
birth density (this is done for convenience rather than through necessity).
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— Resampling is done according to a multinomial scheme, that is the number of
representatives of each particle which survives is sampled from a multinomial
distribution with parameters proportional to the particle weights.

The first of these conditions simply constrain the initialisation of the parti-
cle approximation, the next is a weak finiteness requirement placed upon the true
system, the next two are implementation issues and are required to ensure that
the importance weights and that the filter density remains finite. The penultimate
condition prevents unstable interactions between the filter mass and the particle
approximation.

3.2 L, Convergence and Almost Sure Convergence

The following theorem is the main result of this section and is proved by induction.
It is shown that each step of the algorithm introduces an error (in the L, sense)
whose upper bound converges to zero as the number of particles tends to infinity
and that the errors accumulated by the evolution of the algorithm have the same

property.

Theorem 1 (L, Convergence)
Under the conditions specified in section 3.1, there exist finite constants such
that for any § € By(E), £ : E — R the following holds for all times k:

<o lell

< o s

Convergence in an 1L, sense directly implies convergence in probability, so we also
have:

& [Jod () - an(9) ] " (10

p} 1/p (11

B [|at ) - an©)

ap™ ()

Furthermore, by a Borel-Cantelli argument, the particle approximation of the in-
tegral of any function with finite fourth moment converges almost surely to the
integral under the true PHD filter as the number of particles tends towards infin-
iry.
Proof.

Equation (11) holds at time 0 by lemma 2.

Now, if equation (11) holds at time k — 1 then, by lemmas 3 and 4, equation
(10) holds at time k.

Similarly, if equation (10) holds at time k then by lemmas 5 and 6, equation
(11) also holds at time k.

The theorem follows by induction. O
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Lemma 2 (Initialisation) If, at time zero, the particle approximation, 075 9, is ob-
tained by taking Ly iid samples from & /&o(1) and weighting each by &(1)/ Lo,
then there exists a finite constant cg, such that, for all p > 1 and for all test
Sunctions £ in By(FE):

MU (el
=L

Proof. This can be seen to be true directly by applying lemma 1. O

E (| () - do(©)

Lemma 3 (Prediction) If, for some finite constant cy._1 p, and all test functions §
hllgb(lf):

17 < oo il
= T
k—1

Then there exists some finite constant Cy p, such that, for all test functions § in
L,(E):

E[|ayis ) - akfl(ﬁ)\p

<o lel

T/ Lg—1

Bfjoals @ - @]

Proof. From the definition of the prediction operator:

E Hék@fﬁl(ﬁ) — Drag-1() p} v
—E[Jat 5 onl©) — axon@]
=E H (diﬁl - @k—l) b (&) p} v

Hence, by the assumption of the lemma:

p} 1/p < ey sup¢ ¢k (¢, §)|
>~ —1,p
v Li—1
Sup(,m ¢k(§,$) ||£||oo
Ly

E H@kdii}l(f) — Pra-1(§)

< Ck—1,p

Which gives us the claim of the lemma with: Cy. , = ck—1,p SUp; , x(v,¢) O

Lemma 4 (Sampling) If, for some finite constant, ¢y, p:

E fJoater -] < v, s

>

Then, there exists a finite constant ¢y, p, such that:

P}l/P

E[|a’* (&) - an(€)
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Proof. Let Gi,_1 be the o — field generated by the set of all particles until time

k — 1. By a conditioning argument on Gy_1, we may view (Yk(i)) as indepen-
i>1

dent samples with respective distributions (qk (Yk(i), )) . Let dé""l be the
' i>1

empirical measure associated with the particles (Yk(l)) after the re-weighting
i>1

step in equation (5), i.e.,

Ly_1

wLpo1 - (i)

ak = j{: lUk 5Yin
i=1 )

D el ,
and define the sequence of functions h;(-) = 4”&()(;—7(1))5)() — ¢r(€) (Xg_)l) and

Qe (X2

associated measures 1;(-) = qx (X,gi), -) such that pi;(h;) = 0. It is clear that:

. _ ~ _ Ly _ 7 1
&y () —ayt T enl6) Z wi  ha (V)
~L_ - ~L_

O‘kff(l) i=1 O‘kif(l)

Which allows us to write:

E[Jar ) - & on©)| |

— ., » Ly_q wl(cl) hq(Yk(l)) p
—E ‘@kjgla) B> Ao G
- an(1)

2d(p) (|[2]|_nell)”
(Vi)

where the final inequality follows from an application of lemma 1. This gives us
the bound:

Pk
qk

<E[fsi @l

1 < 2d(p)1/7C Ry Il

Ef|ar© -ar @] < L1

1
Where C}', is the finite constant which bounds E Hdéi? (1) p} /p
1).

If we allow di’“ be the particle approximation to i obtained by importance
sampling from py, then it is straightforward to verify that, for some finite constant
BZ obtained by using lemma 1 once again:

(see remark

it P17 ]| €l
B [|af©) @] < 2amr| 2
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k—1

And noting that on" = ak + a we can apply Minkowski’s inequality to

obtain:
Pk
p71/p |3
E [jai(0) - ouai, '] < 207 pdp) /1
k—1
|1€]]
+2d(p 1/p =3
2 Pk |loo VK

Defining ly,—1 = Li_1/My, and ji, = Ji/My for convenience, we arrive at
the result of the lemma with (making use of (8)):

Ry Ry
+2d(p) /P —=
V=1 ®) Vi

Grp = 2d(p)/PCE,

O

Lemma 5 (Update) If for some finite constant ¢y, p:

el

E [l 9 - @] <

Then there exists a finite constant ¢,y such that:

1/p
1 < g, Wl

VL

Proof. The proof follows by expanding the norm and using Minkowski’s inequality
to bound the overall norm. The individual constituents are bounded by the assump-
tion of the lemma.

E[|7eal () - ax(©)

E H%a?f ©-a@f]"”

Mk |y ¢kzg
(’““Z @+ Mk(apkz))

2€Z},

¢k,z€
—ay, <ka + Z ki (2) + ak(ibk,z))

ZEZy,

p] 1/p
H F(vk€) —Oék(Vkﬁ)‘ }1/17

p11/p
M;, 1/sz5 —a d}k,zf
2" ( o)+ ap" wkz)) (o) ]

z€Z},
Noting that vy is a probability, the first term is trivially bounded by the as-
sumption of the lemma:

+

p1/
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In order to bound the second term a little more effort is required, consider a
single element of the summation:

[ b€ b€ s
Jm \Z 2
B i s <nk(2) +apk (wk,z)> S (Hk(Z) + akwk,z)) ]
<E [ oM 1/% zf _ M < Vi, € > 3 1/p+
- M (Y2 B\ kk(2) + o (P2
I Yp-& YpnE it
. i (fik +k04k (¢ z)) o (fik(Z) +k04k(1/1k,z)> }
= [ 000 [ () + b () — (z) + anta )] [ 1/p+
Tl ()l wns))) (nl2) + (@)
|, s s Py
B I o (Hk(z) +k04k(1/1k,z)) oo (Hk(z) +kak(7/}k,z)> }

1/
= Elled o) —enwea| ] el
- kk(2) + ar(Yr,2)

Where the final line follows from the positivity assumptions placed upon one
of the weight ratios and the likelihood function. This allows us to assert that:

p11/p
My, Vi, =€ W s
Z : l <“k('z) +ap Wk,z)) ; (“k(z) + Oék(wk,z)) ]

zZ€Z},
p} 1/p

H M (g,2) — (Y, 2)
( )+O‘k(¢k,2)

< QZkEk’p ||£||DO sup ||wk,2||oo

= VM = Kg(2) + ar(r,2)

Combining this with the previous result and assumption (9) gives the result of the
lemma with:

<273 (€]l o sup

R3
kk(2) + ar(Yr,2)

Ckp = 1+ 2Z1Cp p SUp
4
O

Lemma 6 (Resampling) If, for some finite constant, cy, p:

1€l oo
7;0\/—

and the resampling scheme is multinomial, then there exists a finite constant cy,

such that: y
p
p} <o el

E[|oa () - ano)]

<c

B [|at© - an©)
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Proof.
By Minkowski’s inequality,
1/
E [jak© -]
1/ 1/
<& [|af ) - mal @) ] "V E [|mait ) - ance)'] ’

By the assumption of the lemma:

P} 1/p [1€]oo

E[|eat™(©) - an©| ] <o

We can bound the remaining term by taking the expectation conditioned upon the
sigma algebra generated by the particle ensemble prior to resampling, noting that
the resampled particle set is iid according to the empirical distribution before
resampling:

1/p

E [k () - mad o) 2

,|p1l/p
where C ,f » 18 the upper bound on & Hdgj k } approximation at the resampling

stage (again, this must exist by remark 1) and C,fp is a constant given by Del
Moral’s LL,,-bound lemma, lemma 1.
Thus we have the result of the lemma with:

My
CkJ, = C]fpclfp + Ck,p L_k

It would be convenient to establish time-uniform convergence results and the
stability of the filter with respect to its initial conditions. However, the tools pio-
neered by [5] and subsequently [10,3] are not appropriate in the present case: the
PHD filter is not a Feynman-Kac flow and decoupling the “prediction” and “up-
date” steps of the filter is not straightforward due to the inherent nonlinearity and
the absence of a linear unnormalised flow. It is not obvious how to obtain such
results under realistic assumptions.

O

4 Central Limit Theorem

A number of people have published central limit theorems for SMC Methods [6,
5,3,10]. As the PHD filtering equations are somewhat different to the standard
Bayes recursion, a number of significant differences need to be addressed in this
case. Firstly, the total mass of the filter is variable and unknown rather than fixed
at unity and secondly, two importance sampling steps are required at each time.
The other main result of the paper is theorem 2 which shows that a central limit
theorem holds for the SMC approximation of the PHD filter. We adopt an inductive
approach to demonstrating that a central limit theorem applies to estimates of the
integral of an arbitrary test function under the random measure associated with the
particle approximation to the PHD filter.
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4.1 Formulation

It is convenient to write the PHD slightly differently to equations (3) and (4) for
the purposes of considering the central limit theorem. It is useful to describe the
evolution of the PHD filter in terms of selection and mutation operations to allow
the errors introduced at each time to be divided into the error propagated forward
from earlier times and that introduced by sampling at the present time-step. The
formulation used is similar to that employed in the analysis of Feynman-Kac flows
[5] under an interacting-process interpretation.

We introduce a potential function, G, : £ — R and its associated se-
lection operator Sy o, : F X E — R and as the selection operator which we
employ updates the measure based upon the full distribution at the previous time,
we may define the measure Sy, o, () = ax(Sk.ay (- 2))k(Gr.ap ) /ar(1) which
is obtained by applying the selection operator to the measure and renormalising to
correctly reflect the evolution of the mass of the filter:

N d}k,Z(')
G () = i) + Z o (2) + an(es)

Sy (2, ) = %

Sk,ak () = Oék(')Gk,ak ()

For clarity of exposition, we have assumed in this section that N particles are
propagated forward from each time step to the next and that 7, N particles are
introduced to account for spontaneous births at time k (i.e., in the notation of the
previous section, Ly, = N and Ji = 7, N). The notation N, = (1 + nx )N is also
used for notational convenience.

The interpretation of this formulation is slightly different and perhaps more
intuitive. Update and resampling occur simultaneously and comprise the selection
step, while prediction follows a mutation operation. Here we use oy, to refer to
the predicted filter as in (3), and it is not necessary to make any reference to the
updated filter. We separate the spontaneous birth component of the measure from
that which depends upon the past and write the PHD recursion as:

k(&) = an(§) + ar(§)
k(&) = Sk—1,0p_, 0k (€)
ax(§) = (§)

Q

4.1.1 The Particle Approximation Within this section, the particle approxima-
tion described previously can be restated as the following iterative procedure. This
provides an alternative view of the algorithm given in section 2.3.1, with the addi-
tional assumption that the number of particles propagated forward at each time step
is constant, and no explicit reference to i “*. As we are concerned with asymp-
totic results the increased clarity more than compensates for the slight reduction in
generality.
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1. Let the particle approximation prior to resampling at time k — 1 be of the form

1 Ni_1

Ni_1 _ ~(7)

ol = 2 By,
i=1 )

2. Sample N particles to propagate forward via the selection operator:

{9 es, (-)}N

k1,
F—1 i=1

3. Mutate these N particles.
, , N
(50 - a0},
4. Introduce 7, N particles to account for the possibility of births.
Ny

{X,gi) — Pk(')}

i=N+1

5. Define the particle approximation at time % as ag F=al + &Z""N where:

1L 1 &
ay = N Zu?,(f)éxm and dZ"‘N = Z 11),(;)5)(@)
i=1 ¥ i=N+1 "
and the weights are given by:

oMo (e )X e Ny
@1(:) _ k=1 k=Lo k7t | gy X () B

1w :

T o (x() ZG{N+1,...7N]€}

4.2 Variance Recursion

Theorem 2 (Central Limit Theorem) The particle approximation to the PHD
filter follows a central limit theorem with some finite variance for all continuous
bounded test functions £ : E — R at all times k > 0:

Jim VA [af(¢) — an()] 4 N (0,07(6))
provided that the result holds at time 0, which it does, for example, if the filter
is initialised by obtaining samples from a normalised version of the true filter by
importance sampling and weighting them correctly.

In all cases we prove the case for scalar-valued test functions and the general-
isation to the vector-valued case follows directly via the Cramer-Wold device [2,
p-397].
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Proof. By assumption, the result of the theorem holds at time 0. Using induction
the result can be shown to hold for all times by the sequence of lemmas, lemma
7-10, that follow.

The core of the proof is the following decomposition:

Consistent with the notation defined in section 2.1, Sk LaNh (qk X %) (&) isto
1k .

be understood as

/S’k_lﬂka_l(du)/qk(u,dv)wf(v)

k—1 gk (U,’U)

i.e., qr X % defines a new transition kernel from E to E.

The first term in this decomposition accounts for errors introduced at time k
by using a particle approximation of the prediction step and this is shown to con-
verge to a centred normal distribution of variance Vi (&) in lemma 7. The second
term describes the errors propagated forward from previous times, and is shown
to follow a central limit theorem with variance Vi (&) in lemma 8. The final term
corresponds to sampling errors in the spontaneous birth components of the filter
and this is shown to follow a central limit theorem with variance Vi(£) in lemma
9.

Lemma 10 shows that the result of combining the three terms of the decom-
position is a random variable which itself follows a central limit theorem with
variance:

o2(€) = Vil€) + Vi (&) + Va(€)

which is precisely the result of the theorem for scalar test functions.
In the case of vector test functions, the result follows by the Cramer-Wold de-

vice, applied to any linear combination of their components, and the covariance
matrix is denoted X1, (§) = [X1(&,&5)]. O

Lemma 7 (Selection-prediction Sampling Errors) The selection-prediction sam-
pling error (due to steps 2 and 3) at time k converges to a normally distributed ran-
dom variable of finite variance as the size of the particle ensemble tends towards

infinity:

i VA (a2 -3, e (0 2)@) £ ¥ (0.7100)

N—o0
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Proof. Consider the term under consideration:

&y (9) Akfl,akl,v"fl (qk x %) ©
| X .
=% Z (w,ﬁ”&(X;il)) - Skfl,akkl_l (qk x q_> (f))
=1
N
1
= —— Z Ulgvl
Ni= 7
x where . ] &
QI)](CZ)f(XIgl)) - Sk—l ay ko1 (qk 8 %)(5)
Up, = ol

kg — \/N

: : N,
Let H,]CV =0 <{X,g,l), 7])%)} n=0,..., k) be the sigma algebra generated

i=1
by the particle ensembles occurring at or before time k and further let HY j =

O
U(Hi:v—h{XIg))wl(c)}i_l)'
ONG

It is evident that conditioned upon Hy_,, {Yk(i),Xk } are iid samples
’ i=1
from the product distribution S 1 o Ve (v)qx(y, ) and, therefore:
L0
E [Ug] Heioa] =E[UR HiLa] =0

Furthermore, conditionally, U, has finite variance, which follows from assump-
tion (8) and the assumption that the observation set and the initial mass of the
filter are finite:

B[l = B[ @) ]
e[y = (s (e 2)) |

2
oE [(a;jk;lu) 12 ] R Jll%
N

Noting that, by the L, convergence result of theorem 1 the expectation may be
bounded above uniformly in N. We have that ¥/t € [0,1],e > 0:

< 0

<

IN?) ,
lim > E[(U)) Ty, s
=1

H,]infl} 20 (12)

N—o00 4

By noting that the following convergence result holds (and this can be seen by
expanding each term and using theorem 1, noting that if two sequences of bounded
random variables converge to two finite limits, then the product of those sequences
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converges to the product of their respective limits and that for nonzero random
variables the same is true of the quotient of those sequences)

2
it (G e ol (G e (000 2)©) — st (6, 100 ©)

(13)
L a1 (Grap s ) Q-1 <Gk,ak_1 (¢k X %) (5)) — ap—1 (Gryap_, Dk (f))2
(14)

it is apparent (as (13) is equal to % times (15) and (14) to % times (16)) that

Nt )
Nt
> e [ ] =P (6, )
k=1
[Sk Lalk=t (¢k X %) (&) - Sk_17aglcll(¢k(§))2:|
15)

Potag_ (Gk—l,()ﬂkfl)Q x

St (916 2) (€) - Sicso (010

(16)
From this, it can be seen that for each N, the sequence
(Ui Hii), 1<i<N

is a square-integrable martingale difference which satisfies the Lindeberg condi-
tion (12) and hence a martingale central limit theorem may be invoked (see, for
example, [13, page 543])) to show that:

lim VN <a§§(g) ~8 L <qk x %)(&)) 4N (0,74(9)

N—oo —La,

where,

Vi(€) = a1 (qu,ak_l)z |:Sk1,ak_1 <¢k X %) (S 5k1,ak_1(¢k(f))2]

= -1 (Grt,ap 1 )Sh—1.ap s <¢k X %> (€)= Sh—t.ap . (P1(6))°

O

Lemma 8 (Propagated Errors) The error resulting from propagating the particle
approximation forward rather than the true filter has an asymptotically normal
distribution with finite variance.

S, e (% 22)(©) - aa(9) 4 7 (0.7309)

klakl qk
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Proof. Direct expansion of the potential allows us to express this difference as:

5 e (0 210 - )

= a]kvfil <¢k(€)Gk1,akall> — Ok—1 (¢k(€)Gk—1,ak71)

_ak 1 (fbk(f)l/k 1) — ap—1 (op(&vi—1) +
an T (Ap-1z) — a1 (Ag-1,2)

T er(2) F o (e 2)

where Ap_1 , = Yr_1.¢(§) — Hk(i"la)(i’;;l_fi;:f)l)z)wk_lZ and the final equal-

ity can be shown to hold by considering a single term in the summation thus:

aty (We-1:06(€)  anm1 (Pr1,:00(6)

Kr—1(2) + Oéﬁff (Pp_1..)  Fk—1(2) + e—1(¥p—1,2)

1
T A e [k (e u(E) ~ ks (s u(E)

o1 (2) + an T (Pret,z) N
Kr—1(2) + ap—1(r-1,z) »

+og—1 (Vr—1,201(§)) — —1(¢k—1,z¢k(f))]

; o
= : a1 (WUk—1,20k(8)) — ar—1(Vr—1,20%(£))
Rro1(2) + an T (Prot,2) !
+ak71(1/}k71,z) ak 1 (Yr-1,2)
Ki—1(2) + ap—1 (Y1)

_ ap—1(Ve—1,20%(§))Vr—1,2

ak*kll (wk—l’quk(g) B /{k—l(;)“’lakil(lwk—kl,zd)k(kg))lwk—l,z)
Rp—1(2) + ap T (Vro1,z)

ap—1(Vr—1,208(8))%r—1,-

Qk—1 (wk—l’quk(g) o K/k—l(;)'i'lakiléwk—kl,z¢k(k§))lwk—l,z)

Ki1(2) + ap T (Pre1,z)

ap—1(VYr—1,20k (f))]

If we set
Ap_q = [mG(f)’Ak—sz,l,l,---,Ak—1,zk,1,‘zk_1&
where Z,i_l denotes the i element of the set Zj,_1, and,

pNA 1 _ |1 1
k-1 — ’ .
Kk—l(Zk—l,l) + afcvfkll(lbk—l,zkfl,l)

go ey

1

Ny _
K1 (Zy—1,120 1)) + .20 (k1204 14, )
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Then the quantity of interest may be written as an inner product:

(Pt ol (Army) = anot (Ae))

Ni_1

We know from theorem 1 that p, ” LR Pk—1, where

1
1 ey
{ Kk-1(Zk-1.1) + ar—1(PYr—1,2,_, ,)

Pk—1 =

T
1
Ek—1(Zg-1,24_11) + -1 (V1,2 1,5, )

And furthermore, we know by the induction assumption that each aﬁf 1 (Ag—r)—
ag—1 (Ak—1) is asymptotically normal with zero mean and some known variance,
Yy—1(Ag_1). By Slutzky’s theorem, therefore, the quantity of interest converges to
a normal distribution of mean zero and variance Vi, (§) = p;{_l Yi—1(Ap—1)pr—1.
O

Lemma 9 (Spontaneous Births) The error in the particle approximation to the
spontaneous birth element of the PHD converges to a normal distribution with
finite variance:

tim VN [a2V(©) = an(©)] - A (0.72(9)

N—oo

Proof.
AN e = WSS (X)L,
PO — o) = 55 gvjﬂ (Ml)pk(){g))é(xk) (D)

Of course, the particles appearing within this sum are iid according to py, and this
corresponds to (1) multiplied by the importance sampling estimate giving us
the standard result:

SN [M] i]\/(o, Var,, ( Tk f))

(1) Ve (1)pr

which is precisely the result of the lemma with:

Vi) = = [ (Z67) - uter’]
O

Lemma 10 (Combining Terms) Using the results of lemmas 7-9 it follows that
ok (€) — ay (&) satisfies the central limit theorem:

Jim VIV (0 () — an(©)) 5N (0.04(6))

where the asymptotic variance is given by o1,(€) = Vi (&) + Vi (€) + Vi (&)
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Proof. The proof follows the method of [10]. The characteristic function of the
random variable of interest is

10(t) = E [exp (itVF (o(9) — aul©)) )]

As the particles associated with the spontaneous birth term of the PHD are inde-
pendent of those propagated forward from the previous time we can write:

Ti(t) = E [exp (itV/N (a7°¥(6) — an(©)) )]
x & [exp (Zt\/ﬁ (dlkv(f) — dk(f)))}

The first term of this expansion is the characteristic function of a normal random
variable, so all that remains is to show that the same is true of the second term.
Using the same decomposition as above, we may write:

E :exp (zt\/ﬁ (@kN(ﬁ) - dk(f)))}

A

—E |E {exp (it\/ﬁ{aﬁ(g) —8 | <Qk x %) (5)}) ' Hzivl]

c—1l,a 7y

<exp (VW {3,_, s (00 2)9-an0)})

ey Qk
B

=E l(A — exp (—7752‘7;(5))) B| + exp <—LVS(§)> E[B]

All that remains is to show that the first term in this expansion vanishes and we
will have shown that the characteristic function of interest 1 (t) corresponds to
a Gaussian distribution as it can be expressed as the product of three Gaussian
characteristic functions. Furthermore, it must have variance equal to the sum of
the variances of the three constituent Gaussians which is exactly the result which
we wish to prove.

By the conditionally iid nature of the particles, we can write:

N
A=E |exp itZU,i\fj Hiy zE[exp(itU,i\flﬂHka,l

J=1

}N

Hence:
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Using the same result as [10] (i.e. that [u™ — v™V| < N|u — v|V|u| < 1,|v| < 1)
we obtain:

A —exp <—%>

The following decomposition can be used to show that this difference converges to
zero as N — oo:

<N

,
E [exp (itU) | HY ] — exp <_M>|

s
E | exp (itU,?fl) — exp <—M> ’ Hg_l]
2(7N )2
=E [exp (itUp, )| Hp_1] — <1 - %) + (17)

t2 UN 2 2
<1 . %) ~ew (-GR[0 HL])+ as

exp (—%E [(UéYl)Q\HéVlD —exp (—M) (19)

We now show that the product of N and the expectation of each of these terms
. 2
converges to zero. First, consider (17). We can represent ' as 1 + iy — % +

IZé—l,BG(y) for some suitable function 0(y), |0| < 1. Thus, as U,i\fl is a martingale

increment:
£2(UN )2
exp (itUé\ﬁ) — <1 — %

13 3
< ZE[[Uf[’| ]
t3
6N 3/2

E

H;Vl]

3
< 2 el (a1 (DR +|Zoma |2 )

And N times the expectation of this quantity converges to zero as N — o0.

To deal with (18) note that 1 — u < exp(—u) < 1 —u+u? Vu > 0. Setting

U= ;E [(U,?fl)Q‘ Hljf_l}

one obtains:

e ||(1- 2 o (- (o]

4 2 2
SE[(Uh)’| H]

1
<
— 4 N2

IN

4
A1Iel1% (7 (DR + 1 Zea | B )
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and once again, the expectation of N times the quantity of interest converges to
zero.

Finally, (19) can be shown to vanish by considering the following exponential
bound. For v > u > 0, we can write e ™" — e™ V| < |1 — e“7?| < |u — v| where
the final inequality corresponds to [1, 4.2.32] and this gives us:

exp (—gﬂ‘: [(Uli\,[l)ﬂ HIJCVJ) — exp <_ tQVk(f)/N> ‘

Ve[| - o)

t2
< —
- 2N

which can be exploited by noting that:

NE[(U2)" 1Y) = |06,y e )Sy i (“b’“ : %) ()
8, (B (5))2} (20)
Vk(f) = O‘kfl(Gk*Lakq)gkfl,ak_l (¢k X %) (52)
—Skfl,ak_l(m(f))ﬂ 1)

As (20) converges to (21) in probability (cf lemma 8) and (20) is bounded
above, (20) converges to (21) in L1 and the result we seek follows. Consequently,
(19) vanishes and we have the result of the lemma. 0O
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