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Bayesian Curve Fitting Using MCMC With
Applications to Signal Segmentation

Elena Punskaya, Christophe Andrieu, Arnaud Doucet, and William J. Fitzgerald

Abstract—\We propose some Bayesian methods to address thewhere ﬂgpi) is a vector ofp; model parameters for théh
problem of fitting a signal modeled by a sequence of piecewise con-(j = 0, ..., k) segment, andn.....,_; is a vector of i.i.d.
stant linear (in the parameters) regression models, for example, 53,,ssian noise samples of varianceassociated with théth

autoregressive or Volterra models. A joint prior distribution is set .
up over the number of the changepoints/knots, their positions, and model. The changepoints of the modety, ,, are arranged

over the orders of the linear regression models within each segment in the vectorr, = 7.5, and we adopt the conventiog = 0

if these are unknown. Hierarchical priors are developed and, as andr;,; = 7" — 1 for notational convenience. We also denote
the resulting posterior probability distributions and Bayesian esti- 2 A o A o

mators do not admit closed-form analytical expressions, reversible 7% - 00:(]’;_)a_nd Pk = PO:’“ Wh?repz - 0, "".pmaX' The
jump Markov chain Monte Carlo (MCMC) methods are derived ~ matrix G, is the matrix of basis functions for thth segment
to estimate these quantities. Results are obtained for standard de- (i = 0, ..., k). For example, for the piecewise polynomial
noising and segm_enta_tion of_speech data problems that have al- model,GEpf) is given by

ready been examined in the literature. These results demonstrate

the performance of our methods. 1 T 22 oo gpi—l
7i T T
Index Terms—Bayesian model, curve fitting, Markov chain 1 e 2 .
Monte Carlo methods, signal segmentation. G(Pfl) o i mitl il
poly ¢
2 . .... pz;l
I. INTRODUCTION e Fripi-1
A. Problem Statement and for a piecewise constant autoregressive (AR) proﬁéz(g's),

EGRESSION problems are among the most comméh of the following form:

problems in signal processing. The aim is to estimate an
assumed functional relationship between a response and some
explanatory variables given noisy measurements. Many para- foﬁ)i —
metric and semi-parametric methods have been proposed in the : :
literature in order to solve these problems, including smoothing Yriv—2  Yri1—3
splines and kernel methods. We adopt here a standard model ) ) ]
where the regression function is assumed to be a functionTypically, the orders of the different linear regression models
made up of low-order pieces that are standard linear regresskmk are assumed equal and known, thatpis,= p; = po
models within some segments, where the number and positféh any (¢, j) € {0, ..., k}. However, in practice, there are

of the segments are parameters to estimate. numerous applications (speech processing, for example) where
More forma”y, let us denote for any generic sequenge different model orders should be considered for different

Kisj é(,% Kit1, ., 1;)T,and letyo. 7_; be avector of 'real segments and estimated from. the data. Thus,l in the general
observations. The elements v, may be represented by case, the nugnber of changepoiktand the associated param-
one of the models\1;, o, , corresponding to the case when theters®;, ,, = (14, pr, {8}, o7) are unknown. Given
signal is in the form of the linear regression model with piece#: 7—1, our aim is to estimaté and ¥, ,, .

wise constant parameters ahdk = 0, ..., kyay) Change-

points. That is, one has B. Background

. —_gle)gr) This model allows for a wide range of applications from
Mipii Yririn -1 =GB A e curve fitting of noisy data [1] to changepoint detection and

i=0,....k (1) signal segmentation [2]. For example, the general piecewise

linear model and its extension to study multiple changepoints
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and set a prior (which also works as a penalty against overfitting)1) Bayesian Hierarchical Modelln our case, itis natural to
on all the unknown parameters. Bayesian curve fitting/signiatroduce a binomial distribution as a prior distribution for the
segmentation for related models has been studied by sevemanber of changepoints and their positions (as in [2])
authors recently, including [1]-[3] and [6]. Gustafsson [2] and

Djuri¢ [6] have proposed to perform MAP (maximuanpos-  p(k, 7x|A) = M\*(1 = )T 72 ¢, (12.), 0<A<1 (2
teriori) changepoint estimation using deterministic algorithms.

Although these methods are fast and can give good results, @rfere Y, £ {rix € {1,..., T — 2 suchthatr; # m #
cannot compute any confidence intervals or perform Bayesian # 7.}, andl~y, () is an indicator function of the sé&f;
model averaging. Moreover, it seems difficult to generalize theh if 7. € Y, 0 otherwise). We assign a normal distribution to
to the case where the model orgemwithin each segment is un- the parameters of the modejs & po here)

known.

ﬂ(n)

(02, 63) ~ N (0, 02671,,,) i=0,....,k (3)
C. Resolution
We favor a “full” Bayesian approach where the complete powth the same hyperparametéf for all segments when the

terior distribution and any posterior feature of interest is esthodel order is assumed knowd}, = &, = 0, ..., k, and
mated using MCMC. Bayesian approaches for multiple changeconjugate Inverse-Gamma distribution to the noise variances
point detection based on MCMC for different models are pro- (Ve Vo Ve Yo .
posed, for example, in [7] or [8]. The closest work to the one 7 (57 ?) ~ 16 (?7 3) ; i=0,....k (4
presented here is the technique followed in [1]; see also [9]. Our _ _ _ .
methodology is, however, different in many respects. with 7, = 2. This choice of prior [see (3) and (4)], given the
Our model is more genera] as it allows not 0n|y for aﬁ;aUSSian noise mOdEI, allows the marginalization of the param-
unknown number of segments [1] but for an unknown modéfers ({ﬂgpol)}fzm Uz) o ) _
order within each segment as well, if necessary [9], that is, The algorithm requires the specificationfé; and-, . Itis
we face a “double” model selection problem. We also adofleﬁ_‘r that these parameters play an important role in model se-
hierarchical prior distributions where the hyperparameters dfétion. Indeed, the Bayes factors are dependent on them. Thus,
assumed random with a vague prior distribution; a simildp order to Increase the robustness of the prior, we propose to
approach was adopted in [10]. This has the effect of increasifigimateA, &5, v, from the anta (as it is done, for example,
robustness of the Bayesian models in comparison with the[10]). i-€., we considen, &y, v, to be random. We assign
standard approach, where these parameters are fixed [1], fYadue conju2gate Inverse-Gamma distribution to the scale hy-
which was also demonstrated by a simulation study. We pra€rParametes;

ose efficient algorithms in order to sample from the posterior .
Eased on revers%blejump MCMC [11]. P P B2l(cs, 05,) ~ IG(as, bs,),  a5>0,05,>0,i=0, ..., k

and setys = 1. We also choose a uniform prior distribution for
D. Plan . L o
A, A ~ U, 1y and a noninformative improper Jeffreys’ prior for
The rest of the paper is organized as follows. For the sakef.
clarity, as the “double” selection problem is quite complex, we Thus, the following hierarchical structure is assumed for the
have chosen to begin in Section Il with the case where the ordprior of the parameters.
of the different linear regression modeis are all equal and
known; then, in Section IlI, the case where they can be differemtk, ®x, A, 63, Vo) = p(k, 7| A) p(A)
and are unknown is treated. In Section IV, we apply our methods k
to standard denoising problems [1] and speech segmentation [2], X H [p (ﬂ?“)
=0

[41, [5].

o, 53) p (o7 %)} P(80)p(vs)

which can be visualized with a directed acyclic graph (DAG),
as shown in Fig. 1 (for convenience, we do not show the fixed
We assume that the model order for each segment is fixed @r@tameters,, s, andés, ).

Il. BAYESIAN INFERENCE FORFIXED MODEL DIMENSIONS

known a priori, i.e.,p; = po, fori = 0, ..., k, po is given, For our problem, the overall parameter space can be written
and for notational convenience, we will denote the unknovas a finite union of subspace® 2 UZ“:‘*};‘{I@} x Ypx
parameters in this cask; 2 (Tk, {ﬂgm)}ﬁ;o, a3). Hf‘:O ®,, x (0, 1) xZBy, whered®,,, denotes the space of the

parametersﬂgm), o? for the ith segment, i.e.®o 2 R,

D, 2 (R0 x RT), E, denotes the hyperparameter
We follow a Bayesian approach whede, are regarded as . A (62, v,) space, which is given byEj A Rt o« R+,

randqm with a known prior that ref!gcts our degree_of belief Bndkma, = T — 2 (X is defined in Section I1-AL).

the different values of these quantities. In order to increase ro-

bustness of the prior, the hyperparameters are assumed randdifiis worth noticing that from the algorithmic point of view, this model allows

with a vague distribution [12], that is, we adopt a hierarchic r the faster updating of the Markov chain due to conditional independence be-

. een the coefficient and regression variance parameters on the hyperparame-
Bayesian model. ters.

A. Bayesian Model and Estimation Objectives
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A. The resultant expression fptk, 74, £;,|yo.7—1) up to anor-
malizing constant is (herigy |4 2 yTAy)

p(kv Tk, £k|y0:T—1)
k 1/2
o H UMEPO)
1=0

2
X (’70’ + |‘y7'7':7'7'+1—1HP7(_P0>

—((wotmiy1—7:)/2)
) |

k
> H o (Tir1-7:)/2)
Fig. 1. DAG for the prior distribution. =0

. . . . . Vo +Tiy1 — T
There is a natural hierarchical structure for this setup, which N ———

) (ve)" 2| T, (k)

2
we can formalize by modeling the joint distribution of all vari- x Uy
ables as I (7)

D+ )07 — k- 1)

—1

p(kv ‘I’kv )‘7 £k7 y0:T—1)

(63)70{57(’&])0/2)71

:p(ka ‘Ilka )‘a gk)p(yo:T—l|ka ‘I’k) e
X exp <_12) (5)
As the noise is assumed to be i.i.d. Gaussian (Section I), the e
likelihood takes the form with
-1
) ) ) 1
K M@ — [G@?)TGW e
p(yor-1lk, ¥r) = H(27Wz‘2)_((ﬂ“_ﬂ)/2) ’ ’ ‘ &
= 2 m(pZ) :M(pi)G(pi)TY‘r-:‘r- 1—1
‘ y - G_(po)ﬂ(po) ) ) ) e Tit
TitTitl— (3 (3 . . . .
xexp | — = PEPZ) =L . - GEPZ)MEPZ)GEPZ)T (6)
where, againp; = po andé? = &3 for the fixed model order
case.
where|| - || is the Euclidean norm. It has already been pointed out that this posterior distribu-

2) Bayesian Detection and Estimatiosny Bayesianinfer- tion is complex in the parametet, 7+, £,) and that the pos-
ence ork and¥y,, A, £, is based on the following posterior ob-terior model probability(k|yo. 1) cannot be determined an-
tained using Bayes’ theorem: alytically. In the next section, we develop a method to estimate
p(k, i, A, &l yo.m-1) k

ok, Tk, &]yo:7—1) or, if needed
. (po) 2
O(p(YO:T—1| ka ‘I’k)p(k, ‘I’lm )\, £k) . p <k’ Tk {ﬂz }1:07 Tg» )‘7 gk y0:T—1> .

Once the approximation efk, 74, &, |yo.7—1) iS obtained, the

Our aim is to estimate this posterior distribution and, moig,mper of changepoints and their positions can be easily esti-
specifically, some of its features such as the marginal digated according to the MAP criterion

tributions. In our case, however, it is not possible to obtain ) )

these quantities analytically, as it requires the evaluation (k, Tx, &) = argmax p (k, 7, &l Yo 7-1)

of high-dimensional integrals of nonlinear functions in the (ko 84)

parameters. Therefore, we apply MCMC methods and where i, 7, and &, is the corresponding estimates. Alter-

reversible jump MCMC method in particular (see Section Il-Batively, one can compute the minimum mean square error

for details). The key idea is to build an ergodic Markov chai(MMSE) estimate of the regression function using Bayesian

(KD, w9 \G ¢, whose equilibrium distribution model averaging.

is the desired posterior distribution. Under weak additional

assumptions, thé® > 1 samples generated by the MarkoB. MCMC Algorithm

chain are asymptotically distributed according to the posteriorThe problem addressed here is, in fact, a model uncertainty

distribution and can thus be used to easily evaluate all posteripoblem of variable dimensionality in terms of the number

features of interest. of changepoints. It can be treated efficiently using reversible
The proposed Bayesian model allows for the integration pfmp MCMC method [11]. This method extends the tradi-

the nuisance parameter«‘g@ém)}fzo, o) and hyperparameter tional Metropolis—Hastings algorithm to the case where moves
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from one dimension to another are proposed and accept 1% I segment i segment
with some probability. This probability should be designet «s 424 Py ... cor Lo - aee
in a special way in order to preserve reversibility and thu Tu T, Twm T Tin
ensure thatp(k, 7, &,|yo.7—1) is the invariant distribution I [}

of the Markov chain (MC). In general, if we propose a move

. Dot L . Dri J I
from the model(k) with parameterqr;, £, ) to the model **°7F = oeee  eee T t b oo
(k') with parametergry,, &) using a proposal distribution ~ t# Tin T T T
q(K', T, &k, Tk, &), the acceptance probability is given by Dot = pit + pa Pii~Up,.p
. ory, & L P2 = Dsi - Pri
o :lnin{l p(K, 7w, §pwlyor—1)
p(k, Th, &l yo.7-1) Fig. 2. Death (left) and birth (right) moves.

Q(kv Tk £k|k/7 Tk, £k’)

} @

q (K, T, &L ks Ty &) Ith will be merged, thus reducinig+ 1 by 1, and a new segment
Here, the proposal is made directly in the new parameteill be created (see Fig. 2).

space rather than via “dimensional” matching random variables

[11], and the Jacobian term is equal to 1; see [13] and [14] for a

detailed introduction. _ Algorithm for the Death Move
In fact, a particular choice of the moves will only affect thg Choose a changepoint to be removed:

convergence rate of the algorithm. To ensure a low level of re-; ~ UG -

jection, we want the proposed “jumps” to be small; thereforg, Evaluate Qearn: S€€ (8).

the following moves have been selected: o If  (ug~Up, 1) < Qgearn, the new MC state is
* birth of a changepoint (proposing a new changepoint ataccepted.
random); m
 death of a changepoint (removing a changepoint chosen
randomly); . ) »
« update of the changepoint positions (proposing a new po-For the birth move { — & + 1), again, the position of
sition for each of the existing changepoints). a new changepoint is first proposed, which means that the

At each iteration, one of the moves described above is rdif? Ségment (forr; < 7 < 7;41) should be split into two if
domly chosen with probabilitiek,, d, anduy, such that, + the move is accepted. Assuming that the current state of the

di +uy, = 1forall0 < k < kpay. Fork = 0, the death of MC is (k Tk, 63, 7,), we have the following {1, ..., 7' —
a changepoint is |mp053|ble and for= k.., the birth is im-  2}\{7%} = Ufzo{ﬁ' +1, ..., 741 — 1} here).
possible; thusdy 20, b, = 2 0. Otherwise, we choodg, =
dy. = ug. After each move, an update of the hyperparameters is
performed. We now describe the main steps of the algorithmAlgorithm for the Birth Move
e Propose a new changepoint position
T~ U T2 (T

Reversible Jump MCMC Algorithm e Evaluate  aum; see (8).

(Main Procedure) o If (wp ~ Up1)) < irn, the new state of

1) Initialize k@ 79 ¢ eco. set j=1. the MC is accepted.

2) It (u ~ Ugp, 1)) < by then birth of a new |

changepoint (Section I1I-B1);

else if « < by, + dis then death of a
changepoint (Section II-B1);

else update the changepoints positions

(Section 11-B2).

The acceptance ratio of the birth and death (of a changepoint)
moves are deduced from the general expression (7), and the cor-
responding acceptance probabilities are

3) Update of the hyperparameters (Sec- Cpipth, = N {1, Tpiren},  Qgeqtn = Min {1, rl;},th} (8)
tion 11-B3).
4) j«— j+1 and goto 2.
u Tbirth
p(k4 1,101, 85 o | Yorr—1) g (B, Tal b+ 1, Thgr)
We now detail the steps of the algorithm. To simplify the nota- p(k, 11, 8, Vol yo:r—1)  q(k+1, g1k, 72)

tion, we drop the superscriff) from all variables atiteratiof.  For the birth of the changepoint (; < 7 < 7;41), we obtain
1) Death/Birth of the ChangepointsFirst, let the current from (5)

state of the MC bek(+1, 7141, 63, 7»), and consider the death
move, which implies a modification of the dimension of th&wirtn
model, respectively, fromk + 1 to k. Our proposal begins by F(ris 7, po) f (T Tist, o) 2 (%)uam (63)—(1)0/2) d
choosing a changepoint to be removed améng 1 existing = — Yy

ones. If the move is accepted, then two segménts1)th and 1(7is Titas po) r ( )

K+l
by
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I1<i =i
I-1th Ih segment ithsegment
ey L oo | e
'Et 1 %1 1.71+1 %z 'Ei+1 ‘.t’-l ’.C, %‘+1
U y d
coo o Dol R ST ... SPUIUU B -/ S S oo
‘lcl 1 :Cl+1 :Ez :C ‘Ei+1 Tl—l Tl TI+1

Fixed model order: pi=p=npn=n=p fori=Il, . . k

Fig. 3. Update of the changepoint positions.

where, for convenience, we denote for the segment betweenithe = ¢, it becomes
changepoints; andr;;

. _ flr_1, T)f(7, Tiq1)
wrdete T T f (T Tien)

1/2 P L
I <W+TZ> wheref(-) is defined in (9).
We have also used a Metropolis—Hasting update with random

(9) walk proposal to perform a local exploration of the space.

3) Update of the Hyperparametersihe algorithm devel-
oped requires the simulation of the hyperparamefgend-y, .
This can be done according to standard Gibbs moves [15] so

At 62 and~, are sampled from Inverse-Gamma and Gamma

stributions, respectively.

(11)

Flr, i) 2 ‘Mz(pi)

2 —((WotTit1—7)/2)
X [,YO' + |‘Y7'7-:7'7-+1—1HP7(_P{>:| M

2) Update of the Changepoint Positionglthough the up-
date of the changepoint positions does not involve a cha
in dimension, it is somewhat more complicated than the birt
death moves. In fact, updating the position of changepgint

means removing thé&h changepoint and proposing instead a ) kpo k ﬂ(po)Tﬂ(po)

new oner (this approach also facilitates the extension of the al- bo ~IG | as+ =, 0 + > a7 (12)
gorithm to the more complex case of unknown model orders for i=0 !

each segment). We determifisuch that; < 7 < 741, and Vo (k +1) koo

it is worth noticing that ifi £ [, the update move may actually Yo ~Ga <UT’ Z F) . (13)
be described as a combination of the birth of the changepoint =1 <%

and the death of the changepoin(see Fig. 3). Otherwise, We 1 propability distribution allowing the update & requires

just update the position within the same segment. This ProC§Ss simulation of the nuisance parametéj”s?) »2 which are
is repeated for all existing changepoihts 1, ..., k andis de- in turn, sampled as T '

scribed later in more detail.

2
Vo +Tig1—m Yo T HYTFTHI’]LHPEW

2
c~T
or ~19 2 ’ 2

élr?orithm for F'Ehe_ Update of the (14)
angepoint Positions . . .

For ?:pl, ook B NN(mEPZ)a UEMEPZ)) (15)

e Propose a new position for the Ith ) (»:) (p0) N )
changepoint =~ U 1o ) with p; = po, P;¥" = P}**’ (as we are considering the fixed
determine i such t{hé.t“’ _T‘}\<{ T"< Tigl. model order case). Thus, assuming that the current state of the

e Evaluate oyyere, if 1 # i then see (10) MCis (k, Tk, 83, 7. ), the update of the hyperparameters is per-
clse see (11).1, ' formed according to the following algorithm.

of the MC is accepted.

o If  (uy ~ Up,1)) < aupaate then the new state

m Algorithm for the Update of the
Hyperparameters

e Update of &3
Since for: # I the update of the positions of changepoints sample o2|(k, ¥y, £, yo.7—1) and
combines the birth of thé&h changepoint and death of ti ﬂ§p°)|(/fa @, &, yo.r_1), see (14) and (15).
changepoint at the same time, the acceptance ratio for the proéample 82|(k, Ty Yo 7—1 (o) mﬂ(m) 0?) see
posed move is given by (12). 0\ Tky YO I S 0Ok

o e Sample ~,|(k, T, yo:7—1, 03) see (13).
Cupdate = MIN{1, Typaate } = min{l, 74 1 7gearnt-  (10) []
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I1l. BAYESIAN INFERENCE FORUNKNOWN MODEL
DIMENSIONS

In the previous section, we addressed the problem of segm:
tation under the assumption that = po, fori = 0, ..., k,
with knownpo. However, in many applications, different mode
orders should be considered for different segments, and thi
model orders should also be estimated from the data availat
We now address this difficult problem.

A. Extended Bayesian Model

In Section 1I-A, an original Bayesian model was propose
for the case of fixed model orders for each segment. The ste
analogous to those taken in that section can yield an extenucu
Bayesian model whereby the unknown parameters, including
the orders of the models for different segments, are regarded
as being drawn from appropriate prior distributions.

1) Hierarchical Structure for the Prior:Here, we adopt a
truncated Poisson distribution for the model ofder

Fig. 4. DAG for the prior distribution.

which can be visualized with a DAG, as shown in Fig. 4
(for convenience, we do not show fixed parametess s,

Cor Xvps €, X8)-
P Raex g 2) Bayesian InferenceAs was mentioned in Section [I-A2,
p(pil) = Gy pil 10, s pnaxt (Pi)s Cpan = p.!  theBayesianinference on the unknown parametels 5, , A,
max pi=0 A

o . andg, ., [whereé, ,, = (3, 82, ~,, 05)] is based on the pos-
where the mean is interpreted as the expected (approximaig@rior probability distributionp(k, Tipes N Exp, [Yo:7-1)
aSpmax < o) number of model parameters. '

For the parameters 1, ﬂgm, ands?, we assign priors sim-
ilar to the ones introduced in Section II-A1 [see (2)—(4)], wit
the only exception that the hyperparamefgiis now different
for the different segment 2 62, ,, although it is still assumed
to be drawn from the Inverse-Gamma distribution

87| (aus, 05) ~ TG(as, b5),

with as = 1. However, since in our particular case the Bayeps(
factors depends on the hyperparamétdsee (22)], we assume

ﬁ(kv ‘Ilk,pkv )‘7 £k,pk | y{):T—l)
0<Z’(Y0:T71| k? ‘Ilk,pk)p (kv ‘I’k,pkv )‘7 gk,pk) . (17)

As in the fixed model order case, the parameters
({BP)}%_,, 02) and hyperparameterA can be in-
tegrated out giving the marginalized expression for
s Thy Phs Ek,py [Y0:7—1)

i=0,...,k

that 65 is also randomly distributed according to a conjugat

prior Gamma distribution to make the prior more robust

85| (Co, x0) ~ Ga(Cs, x0)

with (4 = 1 and fixedys = ¢g, (¢4 < 1). Similarly, we assign

a conjugate prior Gamma density¢o

Y| (G5 Xw) ~ Gal(Cy, Xu)

where(, = 1 andx, = e, (e, < 1). Again, a uniform prior
distribution and a noninformative Jeffreys’ priors are chosen for i=0

A and~,, correspondingly.

As a result, the following extended hierarchical structure is -

assumed for the prior of the parameters.

P (kv ‘Ilk,pm )‘7 ?/17 6%7 Yo s 96)

k
=[] le (p:l¥)]p()

1=0
L ()02, 82)p (2] 20) (621 00)]
2=0

x p(k, i A) p(M)p(v0)p(s)

é)(kv Tk, Pk, £k| YO:T—I)
x D(k+ )T — k- 1)

=0

2
X (’70 + Hy7’i:7'7'+1—1HPSP7'>

XH F(’/U+Ti2+1—ﬁ> PP

Cpmx pi!

1/2

—((WoFTip1—7:)/2)
) |

X exp (—xu¥)

Vo
! r(3)
9;5 (63)_‘15_(Pi/2)_1 9,

g () o <“>

£ ()"
> H o~ (Tep1—m)/2) Lo/
=0

x 65"~ exp (—xa6s) v5 e, (T4) Ve (PR) (18)

(16) whereF, 2 {0, ..., pmax}* [Se€ also (6) foMEPi),mgm), and

(pi)

3In fact, any other discrete probability distribution may be adopted as a prior’"_l_h : It ior distributi . hiahl
for p,. In addition, the priors dependent on the number of changepoints can be! N€ résulting posterior distribution again appears highly non-

introduced.

linear in its parameters, thus precluding analytical calculations,
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and MCMC methods must be employed in order to evaluate theThe different steps of the algorithm are described in the fol-

posterior features of interest. lowing [the superscriptj) from all variables at iteration is
dropped].
B. MCMC Algorithm 1) Changepoint MovesThe algorithms for the birth, death

f&he changepoints, and update of their positions presented in
eection II-B-1 can be easily extended to the case wherg;the
are unknown. The main difficulty here is to choose the proposal
g‘wthe new model orders. We employ the following approach. If
two segment§l —1)th andith are to be merged, the model order
6%( the new segment,; is the sum of the model orders of the two
mrlginal segments, i.ep,; = pu + pa, Wherepy, pa; are the
model orders of the existing— 1)th and/th segments. If thé&h
ﬁegment is to be split, one of the new model orders is selected
randomly,py; ~ Uy, ... p.;3» @nd another one is set equal to
: = Doi — P1;, Wherep,; is the order of the originakth model
%él% Fig. 2). The latter ensures that the birth/death moves are
eversible p,; = p1:+p2:)- The update move, as was mentioned
efore, is performed as a combination of the birth and death of
. changepoints (see Fig. 3). However, if, during the update, the
to the moo_lel(k’, p) With par_amete_r$7kf/, gk’:Pk') are gen- position of a changepoint with respect to the other changepoints
erated using a proposal distributiof(X, 7, Px', &w.p,,  goes not change (it stays between the same changepoints as it
| B 7x, Py &, p,) a'_q_d are randomly accepted according to ﬂ\ﬁas before), we do not update the order of the models.
acceptance probability, p, In addition, we should also sample the hyperparantgtésr
the new segments created when removing or adding a change-
YO:T—I) point (recall tha®? is different from segment to segment). We
select as proposal distribution f6f

In the case where the orders of the models for each segm
are unknown, Bayesian computation for the estimation of t
joint posterior distributionn(k, 74, px, & p, [Yo:7—1) is even
more complex. Here, a “double” model selection, in terms
both the number of changepointsand the model orders;,

of “jumping” between subspaces of variable dimensionality
terms of botht andp;, ¢ = 0, ..., k should be constructed. In
order to be able to sample directly from the joint distribution o

© = Uy {k} x @ with ©,, = 1o x [T, ULy {pi} < Za
(21, denotes the hyperparameter space), we propose a rever
jump MCMC method [11].

The procedure is similar to the one described in Section II-

The moves from the modék, py) with parametergry, &, ,,, )

P (klv Tk, P&/, £k’,pk1
P (kv Tk, Pk, £k,p;\, | y{):T—l)

Qp,p, = min ¢ 1,

R i R B(Pi)TB(Pi)
2.~ . pi _ i i
(19) 6 (517 as, 96) 7 Gs =as+ 5 0s =05+ =

k7 Tk, Pk, £k,pk) (20)

q (kv Tky Pk> gk,pk| klv Tk, Pk £k’,p,\,/)

q (k/7 T, Pk, £k’,pk/

In particular, moves relative to birth, death of the changepoint&hereﬁgm), o 7 are the means of the distributions given by
or update of their positions are randomly chosen with probgt4) and (15) but with matricdk/[ﬁ’”)*, ngf)*andmgpf)* cor-
bilities bx, dx, andus such thatb, + di + ux = 1 for all responding to the value of the hyperparaméfér= ;s /(s +

0 < k < kmax; bk, di, anduy are the same as in Section II-B.p; /2 — 1) [the mean of the distributiofiG («s + p; /2, 65)] (see

In addition, due to “double” variable dimensionality, an updatd 6] for details)
of the model order for each of the segments is performed after

each of the “changepoint” moves. Thus, the algorithm proceedﬁgp;) _ m(p;)*7

T pi)*
32 . Yo +Y‘I‘7‘27’7‘+1—1P7§ ) Yrimip—1
as follows. ’

T

Vo +Tig1 — T — 2

(21)
The acceptance probabilities for the birth and death moves
are as in (19)

Reversible Jump MCMC Algorithm

(Main Procedure) O _© .o irer = mIn{ L, vy }y Qgearn = min{l, ri;h, b (22)
1) Initialize kO 79 pl? g0 O. Set _ .

)j :”1 'z K Pt Gip) € where from (18) for the birth of the changepoint(r; < 7 <
2) If  (u ~ Upg 1) < by then birth of a new Ti+1), We obtain

changepomt (Section 111-B1); ’ B (%)uam dyoyr

else if u < buyn + di then death of a 7bi7‘th—2Tb—k(poi+1)

changepoint (Section 11-B1); F(f)

else update the changepoints positions F(7i, 75 priy S2)F(T, Tig, p2i 63)

(Section 111-B1). (23)

3) Update of the model orders and hyperpa- .
rameters (Section II-B2). with
4) j < j4+1 and goto 2.

f(Ti+17 Tiy Pis 53)

- f(7i, i1, pis 62) = f(7iy Tit1, i)

T

. . . PP 03¢ T () 05 — 05
4We could also integrate out the parameterbut this increases significantly X i exp | — 5 . (24)
the computational complexity of the resulting MCMC sampler. Cpmaxpi- 95 ¢ (046) 6;
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The acceptance probability for the update of the changepokur the birth move ; — p; + 1), the acceptance ratio is
positions is given by (10) if # ¢. Forl = ¢, it becomes ap; .y, =min{l, 7., }, wherery;.y, = T 41y Assuming
that the current model order ig;(+ 1), one obtains the

S, o pey, 8837, T, iy 63)) :
1l 2 (25) acceptance ratio for the death moye{ 1 — p;) asc?,,,;, =

Tupdate = .
P fney, T pie, 82 ) F( T, oo 67)

min{1, r-* }. Thus, the birth/death moves are, indeed,
The algorithms for these moves are presented in more detgiersible.
in [16]. Taking into account the series representation of the exponen-

2) Model Orders Update:The update of the model orderstial function, we adopt the following proposal distribution for
for each segment does not involve changing the number tbg parametey:
changepoints or their positions. However, we still have to per-
form “jumps” between the subspaces of different dimensjgns Ga <
and will therefore continue using the reversible jump MCMC
;?)(reé?ogi’mailllg;lc;/l,l?r?eIgiv?srrgiaéﬁgsg%ﬁc;%: less comphcateéjnd sample) according to a Metropolis—Hastings step with the

i acceptance probability equal to
1) birth of the model parametep,(— p; + 1);

k
¥ G+ ) pis Xw"i‘(k‘f‘l)) (27)

=0

2) death of the model parametex (— p; — 1); Pmax (k+1)
3) update of the hyperparametér. Z Pr
The probabilities for choosing these moves are defined in ex- vy = min < 1, p”zo eXp(_d’) . (28)
actly the same way as for changepoint movgs+d,,, +u,, = f‘(?/)’)p exp(—1’)
1; do 20, Opnan 20 otherwiseb,, = d,, = uy,, fori = =0
0, ..., k. The procedure is performed for each segment and the
main steps are described as follows. The hyperparameterg are sampled using a standard Gibbs
move by analogy with (12).
i ﬂ(pi)Tfjgpi)
Algorithm for the Update of the Model 62 ~IG <Oé§ + 57’, s + ”2—2”> . (29)
Orders and Hyperparameters i
e For ¢ =1,...,k, Similarly, we sampley, as in (13) ands according to
— if (up ~ Up,1)) < by, then propose  p; = p; + §
1; 1
else if  w, <b, +d, then propose p;=p;— 05 ~ Ga <a5(k +1), 2 @) ' (30)
1; =
— if (upd ~ Z/{(071)) < a(pi_)pg) [see (26)], the
new state of the MC is accepted. IV. SIMULATIONS
— sample 67|(k, T, Pk, Yo:7—1, Bi; 07); See In the first set of simulations, we address the standard
(29), ) problem of denoising smooth and unsmooth test functions [1],
o7 |(k, Tk, Pk, 8> Yo:7-1), [17]. To compare our results with [1], we have used a fixed
Bil(k, Tk, Pk, 63> Yo:7—1. 07) are sam- model orderpy. Subsequently, we apply our algorithm with
pled from (14) and (15). unknown model orders to the segmentation of signals modeled
e Propose ¢'[(k, px) [see (27)]; if (wy ~ as piecewise constant AR processes and a speech signal [2],
Up,1)) < oy [seE (28)] then P =1, [4], [5].
e Sample hyperparameters Yo, 05 see (13)
and (30). A. Curve Fitting: Fixed Model Ordep,
[

1) Smooth Function:First, we assessed the performance of
the algorithm proposed in Section Il by applying it to synthetic
The acceptance probability for the different types of movgsiecewise polynomials with: = 4, po = 3, andT = 500

(in terms of the model orders) is given by (model parameters and noise variances are presented in Table I).

. The estimates of the number of changepoints and their posi-

Hpi—p;) = I {1’ "(p: —>P5>} (26)  tions were obtained using the MAP criterion (see Section 11-A2)

where from (19) after 50 000 iterations of the algorithm and a burn-in period
of 10000 (further iterations yielded no appreciable difference).

‘M(pi) 1/2 z/}pgpi!éf((pé —ri)/2) The estimated number of changepoints was equaktod, and

(i) = ! 7 ! Tablelll_gives 'Fhe estimat.ed changepoint po_sitions. Fig. _5 sh.ow
’ ‘pr ) i pl! the original noisy and estimated curves. In Fig. 6, the estimation

of the marginal posterior distributions of the number of change-

o +yT . _IP(pi)yT_:T_ . pointsﬁ_(k|y0:T__1) is pre_sented. The_ MMSE estimat_e of the
ARAAS e L AL . regression function obtained by making use of Bayesian model

Yo+ Yi-:Ti+171P§p7)yn:n+1—1 averaging was 0.026.

—((Wo+Tit1—7:)/2)




PUNSKAYA et al. BAYESIAN CURVE FITTING USING MCMC WITH APPLICATIONS TO SIGNAL SEGMENTATION 755

TABLE | TABLE I
PARAMETERS OF THEPOLYNOMIAL MODEL AND NOISE VARIANCE FOR ESTIMATED NUMBER OF CHANGEPOINTS ANDAVERAGE MMSE
EACH SEGMENT

Function k[l] k MMSE[I] MMSE
ith segment | o? g% Blocks | 35 | 11 | 0.170 | 0.021
0 0.09 0 10 —40 Heavisine | 17 | 7 | 0.033 | 0.019
1 0.09 | 1.98 —10 10 Bumps | 62 | 40 | 0.167 | 0.121
2 009 | 08 -5 5 Doppler | 37 | 18 | 0.135 | 0.008
3 009 | -1.27 2 —0.8
4 0.09 | —2.104 4 —2

TABLE I 15
REAL AND ESTIMATED VALUES FOR CHANGEPOINT POSITIONS 10

ith segment 0 1 2 3 4

T; (truevalue) | - 90 180 320 410 s
i - 91 179 320 412 . . . . . . . . .
200 400 600 800 1000 1200 1400 1600 1800 2000
2oF . . T T T : T T T T
50 100 150 200 250 300 350 400 450 500
200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 7. Blocks test curve. (Top) True function with noise added. (Bottom)
Estimate of the function.

[+ 80 100 150 200 250 300 350 400 450 500

L L I I L L L
50 100 150 200 250 300 350 400 450 500

Fig. 5. Piecewise polynomials. (Top) Original curve. (Middle) Curve witt -15 ) ) ) ) ) ) ) ‘ .
noise added. (Bottom) Estimate. 200 400 600 800 1000 1200 1400 1600 1800 2000

04 T T

2048, the standard noise deviation was set equal to 1 for
all segments, and the model order for each polynomial was
set to bepg = 3. The results for the number of changepoints
and average MMSE compared with those obtained by [1] are
Fig. 6. Estimation of the marginal posterior distribution of the number gbresented in Table Ill. Figs. 7 and 8 show the original functions
changepoints for the piecewise polynomial model. with the noise added and the estimates obtained. It is worth
noticing that although the polynomial order equal to 3 was
The algorithm was coded using Matlab, and the simulatiomslopted throughout, the reconstructions of both “Blocks” and
were performed on a 500 MHz Intel Pentium Il PC. Processirigleavisine” curve are almost perfect. The estimated number
of 1000 iterations required on average 95 s. of changepoints and the average MMSE for “Bumps” and

005}

035} -1
03 -1
2(‘)0 4(‘)0 6(‘)0 860 1 OIOO 1 2‘00 1 4’00 1 6‘00 1800 20‘00
025 -
Fig. 8. Heavisine test curve. (Top) True function with noise added. (Bottom)
oz} 4 Estimate of the function.
015 ] 2) Unsmooth Functionsin the second example, we applied
our algorithm to some common curves (such as “Blocks,”
o1p 1 “Heavisine”) previously used in the literature as a test [1],
I [17]. Following [1], the number of grid points was taken to be
2 3 4 5 6 7
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TABLE IV
PARAMETERS OF THEAR MODEL AND NOISE VARIANCE FOR EACH SEGMENT
ith segment | o2 BEP B
0 1.6 | —2.3000 —2.6675 —1.8437 —0.5936
1 0.8 1.3000 —0.9200 0.2600
2 1.7 0.8000 —0.5200 0 160 1 éo 260 250 360 az';o 460 w50 500
3 0.5 2.0000 —1.6350 0.5075 Sample
4 0.6 | —1.7000 —0.7450
5 1.8 | —0.5000 0.6100 0.5850 sk |
06 4
TABLE V oar
REAL AND ESTIMATED VALUES FOR CHANGEPOINT AND MODEL ORDER o2k 1 h JL
ith segment 0 1 2 3 4 5 ° 50 100 B0 200 250 300 w0 w0 am 500
Changepoint positions
7 (true value) - 90 160 250 365 430
& . - 91 162 249 366 434 Fig. 9. (Top) Segmented signal (the original changepoints are shown as a
pi (rue value) 4 3 2 3 2 3 solid line, and the estimated changepoints are shown as a dotted line). (Bottom)
Pi = maxp (p,-| k, yg:T_l) 4 3 2 3 2 3 Estimation of the marginal posterior distribution of the changepoint positions.

“Doppler” obtained in additional experiments are also shov\oj_
in Table Ill. (The results for the wavelet methods in [17] ar
given in [1]; the method in [1] performs significantly better).

Our hierarchical model allows the “automatic” determinatio |
of hyperparameter values, contrary to the one in [1]. This h
the effect of providing both a more sparse representation of 1*[
regression function and a reduced MMSE as we prevent ov
fitting.

04

03}

B. Signal Segmentation: Unknown Model Ordgys

1) Piecewise Constant Autoregressive Procesdds: now
illustrate the performance of the segmentation method propo:
above by applying it to synthetic dat& & 500) , which canbe [
described as a piecewise constant autoregressive (AR) proc
with & = 5 changepoints. The parameters of the AR mode
{B%}5_ and noise variances?, drawn at random, are given ! 2
in Table IV. We interpret the firsp,,,. samples as the initial
conditions and proceed with analysis onthe remaiﬂingomax Eig. _10._ Mean and standard deviation for 50 realizations of the posterior
data points. distribution.

The number of iterations of the algorithm was 100 000 (the
results for a higher number of iterations are indistinguishabl@glecommunications for testing and evaluating speech recog-
and as was described in Section 1I-A2, we adopt the MAP agion algorithms, as described in [5]. According to [2], the
a detection criterion, from which one, indeed, finkls= 5 sampling frequency was 12 kHz, and a highpass filtered version
changepoints. Then, for fixeld = %, the model order for each of the signal with cut-off frequency 150 Hz and resolution of
segment; is estimated by MAR; = maxﬁ(piU}, Yo:T—1), 16 bitsis presented in Fig. 11.
i=0, ..., k Theresults are presented in Table V. Fig. 9 shows Different segmentation methods [2], [4], [5] were applied to
the segmented signal and the estimation of the marginal pogtes signal, and a summary of the results can be found in [2].
rior distributions of the changepoint positiop&:; |yo. 7—1)- We show these results in Table VI in order to compare them to

Then we estimated the mean and the associated standardideones obtained using our proposed method (see also Figs. 11
viation of the marginal posterior distributiopgkyo.7—1) for and 12). The estimated orders of the AR models are presented
50 realizations of the experiment with fixed model parameteirs Table VII, and as one can see, they are quite different from
and changepoint positions. The results are presented in Fig. 4€gment to segment. This resulted in different positions for the
and it is worth noticing that they are very stable with respect tthangepoints, which is especially crucial in the case of the third
the fluctuations in the excitation noise realization. and fourth changepoint. Its position changed significantly due

2) Speech SegmentatioWe also implemented the pro-to the estimated model orders for the secopd £ 19) and
posed algorithm for processing a real speech signal whitttird segmentsgz = 17). As it is illustrated in Fig. 12, the
was previously examined in the literature [2], [4], [5]. It washangepoints obtained by the proposed method visually seem
recorded inside a car by the French National Agency fpreferable.

02F

Number of changepoints
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